V^+ 注入锐钛矿 TiO_2 第一性原理研究*

侯兴刚 刘安东†

(北京师范大学低能核物理研究所)射线束技术与材料改性教育部重点实验室, 北京市辐射中心,北京 100875) (2006年12月14日收到 2007年1月31日收到修改稿)

用金属离子注入方法在锐钛矿 TiO_2 薄膜中掺杂了 V^+ ,采用全势线性缀加平面波方法计算了锐钛矿 TiO_2 及 V^+ 掺杂 TiO_2 超原胞的电子结构 ,通过紫外-可见吸收光谱测试方法检测了注入不同剂量的 V^+ 对 TiO_2 薄膜吸收光谱的影响 . 理论计算和实验结果表明 ,锐钛矿 TiO_2 薄膜注入 V^+ 后 ,带隙宽度变小 ,吸收光谱发生红移 ,并且 TiO_2 的带隙宽度随着注入 V^+ 剂量的增加而减小 .

关键词: V^+ 注入, TiO_2 ,全势线性缀加平面波方法,能带结构

PACC: 7115B, 7155G, 6170T

1. 引 言

锐钛矿 TiO, 具有良好的光电特性,在光催化方 面拥有广阔的应用前景 因此成为当前研究的热点 之一[1,2]. 但是由于锐钛矿 TiO, 禁带宽度较宽(体材 料的禁带宽度 $E_g = 3.2 \text{ eV}$),只有在紫外光作用下才 能表现出明显的光催化活性,因此如何减小锐钛矿 TiO_2 的带隙宽度成为 TiO_2 研究的主要方向之一. 过 渡金属离子注入是一种对 TiO, 改性的有效方 法[3-6] 使用这种方法能够避免化学掺杂方法中带 入其他离子产生干扰的缺点,并且具有选择掺杂金 属方便、掺杂量精确可控和注入深度可根据需要作 出调整等优点. Yamashita 等 4-61对 TiO2 进行了 V, Cr Mn Fe Co Ni Cu 等元素的离子注入,实验结果 表明过渡金属离子注入可以显著改善 TiO₂ 的紫外-可见光谱,使紫外-可见光谱的吸收边向可见光方向 发生较大的红移.在过渡金属中 \mathcal{N}^+ 注入对 TiO_5 光 谱红移改进最为显著 ,文献[3,4,6]对 V⁺注入改 进 TiO。电子结构和在可见光作用下光催化降解有 机物进行了详细的研究.同时,在许多工作中已经对 锐钛矿 TiO,^[7]及不同元素掺杂锐钛矿 TiO, 做了理 论计算^{8-10]},研究掺杂对 TiO, 带隙宽度的影响.例

如张勇等⁸¹用第一性原理赝势方法计算了 Fe 掺杂对 TiO₂ 能带结构的影响; Wang 等⁹¹用全势线性缀加平面波(FP-LAPW)方法计算了 Nd 掺杂对 TiO₂ 能带结构的影响.在这些研究中,理论计算值与实验值符合较好,但作者尚未见用 FP-LAPW 方法计算 V⁺掺杂锐钛矿 TiO₂ 的报道.本文采用 V⁺注入技术对锐钛矿 TiO₂ 实现掺杂,用 FP-LAPW 方法¹¹⁻¹³]计算注入不同剂量 V⁺ 对锐钛矿 TiO₂ 电子结构的影响,并用紫外-可见吸收光谱测试方法验证 FP-LAPW 方法的计算结果.

2. 实验与计算方法

2.1. V+ 注入锐钛矿 TiO, 薄膜的制备与测试

 ${
m TiO_2}$ 薄膜以石英玻璃为衬底 ,通过匀胶机由溶胶凝胶法制备 ${
m I31}$.

离子注入采用本所自行研制的 10 型金属蒸汽真空弧源离子注入机[3,14]. V^+ 注入剂量分别为 1×10^{16} 10^{16} 10

^{*}国家高技术研究发展计划(批准号:2001AA338020)资助的课题.

[†] E-mail: andong_liu@163.com

2.2. 计算方法

具有 I41/amd 空间群结构的锐钛矿 TiO2 属于 四方晶系,每个晶胞含有4个Ti原子8个0原子. 本工作从第一性原理出发,用FP-LAPW方法计算 V^+ 注入锐钛矿 TiO_2 的能带结构 ,交换-关联能采用 广义梯度近似(GGA)下的 PBE96 15]. 采用 2×2×2 超原胞分别计算了不同量的 V+ 取代 Ti4+ 时锐钛矿 TiO₂ 的能带结构 ,V * 取代 Ti⁴ * 后的锐钛矿 TiO₂ 晶胞 结构如图 1 所示. 计算中将 Ti 的 1s , 2s , 2p 态 V 的 1s, 2s, 2p 态及 0的 1s 态作为芯态;Ti的 3s, 3p 态, V 的 3s, 3p 态及 O 的 2s 态作为半芯态, Ti 的 3d, 4s 态 ,V 的 3d , 4s 态及 O 的 2p 态作为价态. Ti ,V ,O 原 子的糕模球半径分别取为 2.0,2.0,1.8 a.u.,糕模 球内基函数球谐函数中角量子数的最大值 1 , , , , 取为 8 控制基函数集大小的收敛参数 $R_{\mathrm{MT}}K_{\mathrm{max}}$ 的值设为 7 其中 R_{MT} 是糕模球的最小半径 K_{max} 是平面波展开 式中最大的倒格子矢量. 计算时不可约布里渊区特 殊 k 点取 16 ,自洽运算的收敛判据是原子间相互作 用力小于 0.136 eV/nm ,计算采用 WIEN2k 软件[16].

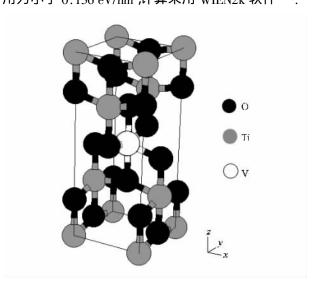


图 1 V+掺杂锐钛矿 TiO₂ 的晶胞结构示意图

3. 结果及讨论

3.1. 纯 TiO₂ 薄膜的电子能带结构和态密度

图 2 和图 3 分别是锐钛矿 TiO_2 沿第一布里渊区高对称点方向的能带结构以及导带、价带附近的态密度 ,费米能 E_F 选作能量零点 . 由图 2 和图 3 可以计算出最小带隙为 $2.3~{\rm eV}$,小于锐钛矿 TiO_2 体材

图 2 锐钛矿 TiO₂ 的能带结构

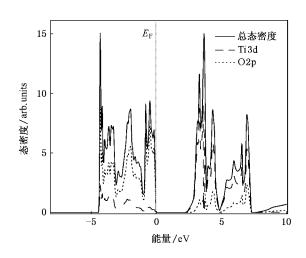
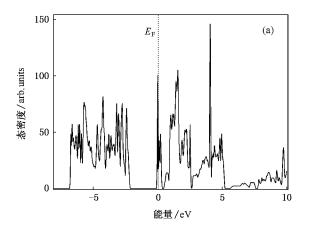



图 3 锐钛矿 TiO_2 的总态密度和分态密度

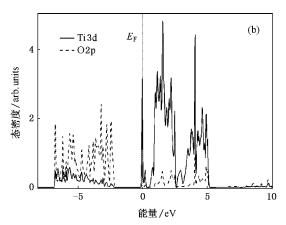

$3.2.V^{+}$ 注入掺杂 TiO_{2} 薄膜的能带结构和电子态密度

图 4 给出了 V⁺ 掺杂后锐钛矿 TiO₂ 的总电子态

密度以及各原子的分电子态密度,费米能选作能量零点.从图 4 可以看出,价带仍主要由 0 原子的 2p 轨道组成.将图 4(a)与图 3 比较后发现,掺入 V^+ 后,在 -0.1—0.35 eV 之间出现了一个尖峰.由图 4(b)(c) 可知,这个尖峰是由掺杂的 V^+ 的 3d 态电子引起的,经与 Ti 的 3d 态电子综合作用后使导带变宽,并且使

 TiO_2 的带隙宽度由未注入时的 2.3 eV 减小到 1.98 eV.通过对各分电子态密度分析发现 TiO_2 中掺杂 V^+ 后 引起了能带的偏移 Ti 和 O 的分电子态密度的峰值向左发生了约 2.27 eV 的微小位移.位于 O eV 的费米能级将 V 的 3d 态分为两部分 这表明 V^+ 掺杂后锐钛矿 TiO_2 是一种半金属基态 9^{-1} .

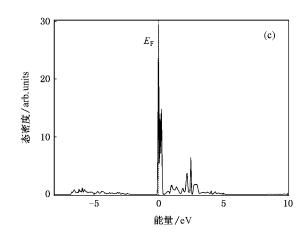


图 4 V * 掺杂锐钛矿 V_x T_{1-x} O_2 (x=0.0625)的总电子态密度(a), T_i 和 O 的电子态密度(b)及 V 的电子态密度(c)

图 5 给出了 V^+ 掺杂后锐钛矿 TiO_2 的能带结构. 将图 5 与图 4 比较后可知 ,费米能附近能级是由 V 的 3d 和 Ti 的 3d 轨道共同作用而产生. 与纯 TiO_2 不同 V^+ 注入后 TiO_2 的带隙跃迁方式将变为从 H 点到 H 点、从 Γ 点到 Γ 点的两种直接跃迁方式. 由图 4、图 5 可以看出 V^+ 注入掺杂的 TiO_2 与纯 TiO_2 相比 禁带宽度变窄 ,这将导致 TiO_2 的吸收光谱发生红移.

图 6 给出了 V^+ 掺杂量进一步增加时 TiO_2 的总电子态密度 . 将图 6 与图 3 和图 4 比较后可知 ,随 V^+ 掺杂量增加 ,电子态密度的峰值向左发生偏移的量也随着增加 ,与纯 TiO_2 相比约有 2.54~eV 的微小

位移.此外 随 V^+ 掺杂量的增加禁带宽度进一步变窄 与纯 TiO_2 相比 ,带隙宽度由 2.3~eV 减小到 1.96~eV .通过与其他研究 [5.9]比较可知 ,在锐钛矿 TiO_2 中掺杂 V .Fe 等过渡金属元素后 ,掺杂离子的 3d 电子态对 TiO_2 带隙宽度减小起到了主要作用 ,并且带隙宽度随掺杂量的增加而减小.

3.3. V⁺ 注入 TiO₂ 薄膜紫外-可见吸收光谱

图 7 给出了纯 TiO_2 和 V^+ 注入 TiO_2 薄膜的紫外-可见吸收光谱.图 7 表明 随着 V^+ 注入剂量的增加 对应的光谱吸收边逐渐向可见光方向发生移动.这说明注入 V^+ 并且在 450 $^{\circ}$ C 温度下退火 240 min

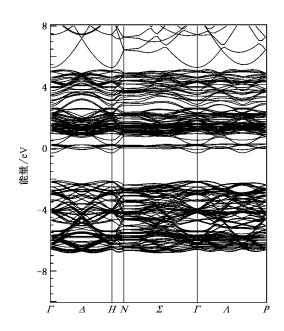


图 5 V^+ 掺杂锐钛矿 $V_x Ti_{1-x} O_2(x=0.0625)$ 的能带结构

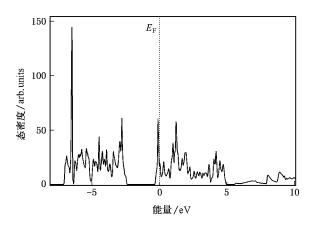


图 6 V^+ 掺杂锐钛矿 $V_x Ti_{1-x} O_2(x=0.125)$ 的总电子态密度

后 TiO_2 薄膜的禁带宽度变窄 ,吸收光谱发生红移 ,并且随着注入剂量的增加 ,吸收光谱的红移量也随之增加 ,禁带宽度进一步变窄 TiO_2 薄膜的

紫外-可见吸收光谱的红移趋势与上述 FP-LAPW 方法的计算结果一致.此外,在我们前面的工作 ³¹中已经证实 经 V^+ 注入后锐钛矿 TiO_2 薄膜在可见光的作用下能够降解有机物,这从另外的角度证明了 V^+ 注入后 TiO_2 薄膜的带隙宽度变窄.

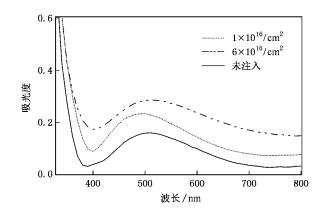


图 7 纯锐钛矿 TiO_2 和 V^+ 注入锐钛矿 TiO_2 薄膜的紫外-可见吸收光谱

4. 结 论

本文计算了锐钛矿 TiO_2 的基态及 V^+ 掺杂锐钛矿 TiO_2 的电子结构. 理论计算结果表明, 正是由于掺杂的 V3d 电子态与 Ti3d 电子态共同作用的结果, 使锐钛矿 TiO_2 的导带变宽、禁带宽度变窄, 并且随着 V^+ 掺杂量的增加, TiO_2 的禁带宽度进一步变窄. 而实验结果表明, 经过 V^+ 注入并且在 450 °C 温度下退火 240 min 的锐钛矿 TiO_2 薄膜吸收边向可见光方向得到了拓展, 带隙宽度减小, 并随着注入量的增加而继续减小. 理论计算与实验结果相符. 因此过渡金属离子注入是一种使 TiO_2 吸收光谱发生红移的有效方法, 这将改善锐钛矿 TiO_2 在可见光作用下的光催化性能.

^[1] Fujishima A, Rao T N, Tryk D A 2000 J. Photochem. Photobiol.
C 1 1

^[2] Carp O, Huisman C L, Reller A 2004 Prog. Solid State Chem. 32

^[3] Hou X G, Hao F H, Fan B, Gu X N, Wu X Y, Liu A D 2006
Nucl. Instrum. Methods Phys. Res. B 243 99

^[4] Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M 2002 J. Photochem. Photobiol. A 148 257

^[5] Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M 2003 Catal. Today 84 191

^[6] Yamashita H, Harada M, Misaka J, Nakao J, Takeuchi M, Anpo M 2003 Nucl. Instrum. Methods Phys. Res. B 206 889

^[7] Chen Q, Cao H H 2004 Chin. Phys. 13 2121

^[8] Zhang Y, Tan C Q, Dai J 2005 Acta Phys. Sin. **54** 323 (in Chinese) [张 勇、唐超群、戴 君 2005 物理学报 **54** 323]

^[9] Wang Y, Doren DJ 2005 Solid State Commun. 136 186

- Nishikawa T , Nakajima T , Shinohara Y 2001 J. Mol. Struc-Theochem . 545 67
- Blaha P , Schwarz K , Luitz J 1990 Comput . Phys . Commun . 59 [11]
- Singh D J 1991 Phys. Rev. B 43 6388 [12]
- Duan H, Chen XS, Sun LZ, Zhou XH, Lu W 2005 Acta Phys. Sin. 54 5293 (in Chinese)[段 鹤、陈效双、孙立忠、周效好、

卫 2005 物理学报 54 5293]

- Liu A D , Zhang H X , Zhang T H 2005 Surf. Coat. Technol. 193
- [15] Perdew J.P., Burke K., Ernzerhof M. 1996 Phys. Rev. Lett. 77 3865
- Schwarz K , Blaha P 2003 Comput . Mater . Commun . 28 259
- Wang Y X , Wang C L , Zhong W L 2004 Acta Phys . Sin . 53 214 (in Chinese)[王渊旭、王春雷、钟维烈 2004 物理学报 53 214]

First principles calculations on anatase implanted by V+ *

Hou Xing-Gang Liu An-Dong[†]

(Key Laboratory of Radiation Beam Technology and Material Modification of Ministry of Education , Beijing Radiation Center , Institute of Low Energy Nuclear Physics , Beijing Normal University , Beijing 100875 , China) (Received 14 December 2006; revised manuscript received 31 January 2007)

Abstract

V+ were implanted into anantase films by metal ion implantation. The electronic band structures of TiO2 films doped with V * were calculated using a self-consistent full-potential linearized augmented plane-wave method within the first principles formalism. Influence of implantation on TiO₂ films were examined by ultraviolet-visible spectrometry. The results of experiment and calculation show that the optical band gap of TiO₂ films is narrowed by ion implantation. The calculation shows that the 3d state of V+ plays a significant role in red shift of ultraviolet-visible absorbance spectrum. It was also found that the optical band gap of TiO2 films decreases, with increasing amount of V+.

Keywords: V^+ implantation, TiO_2 , full-potential linearized augmented plane-wave method, band structure

PACC: 7115B, 7155G, 6170T

^{*} Project supported by the National High Technology Development Program of China (Grant No. 2001AA338020).

[†] E-mail: andong_liu@163.com