有限厚无限大平板超导体模型场分布的严格解

杨鹏飞^{1 $(2,)_{\dagger}$} 白晋涛¹ 杨小鹏³

1)(西北大学光子学与光子技术研究所,西安 710069)
 2)(陕西广播电视大学榆林市分校 榆林 719000)
 3)(榆林市工业学校 榆林 719000)
 (2006年12月6日收到 2006年12月28日收到修改稿)

给出了有限厚无限大平面板超导体模型场分布的严格解,确证了文献中近似结果的有效性.

关键词:严格解, Jacobi 椭圆函数, 超导 PACC:0290, 7420D, 0340K

1.引 言

物理问题的严格解是物理问题解决的基石 ,为 了物理问题处理的简捷和直观,往往可借助等效的 方法给出问题的近似解, 然等效方法是否有效, 不 但需要实验的最终验证 还需要从逻辑上、数学上给 出问题的严格证明,以确证该近似解的有效性及其 有效的条件. 文献 1 借助半无限大超导体模型场 分布的简明形式 把有限厚无限大平板超导体模型 的场分布表示为一对半无限大超导体模型场分布的 线性叠加。由于构成模型边界条件的不同和限定约 束的非线性 该等效方法只有在超导平板厚度趋于 无限大时,才是严格的,对有限厚情形,结果只是近 似的.对此极有必要从基本方程出发找出该问题的 严格解,以判定超导体内场分布的等效结果可否有 效地拟合严格解的场分布.本文应用文献方 法^{2-7]}给出了该模型的 Jacobi 椭圆函数严格解,并 与近似结果做了比较.

2. 场分布的严格解

在近绝对零度和弱外磁场条件下,对厚度为 2d 的无限大平面板超导体,所处均匀外磁场 B。平行 于超导体表面.考虑到超导体的空间对称性和场分 布的空间对称性,直角坐标参考系位置选择为 yoz 坐标平面平行于超导体表面,坐标系 z 轴方向与外 磁场 B_0 方向一致 ,坐标原点位于对称中心.则磁场 **B** 的 x ,y 分量为零 ,电场 E 的 y ,z 分量为零 ,矢势 A 的 x ,z 分量为零 ,且各物理量仅随 x 变化 ,矢势 A、标势 φ 自然满足 Lorentz 规范条件.若忽略正电 荷层和正常电子层的厚度 ,对超导电子区及超导稳 态 ,可得简化的一维超导场方程组为^[128]

$$\frac{\partial^2}{\partial x^2} A_y = \frac{\delta_s}{\lambda^2} A_y ,$$

$$\frac{\partial^2}{\partial x^2} \varphi = \frac{\delta_s}{\lambda^2} \varphi - \frac{1}{\lambda^2} \frac{m_0 c^2}{e} ,$$

$$(e\varphi)^2 = (eA_y)^2 c^2 + m_0^2 c^4 , \qquad (1)$$

式中 $A(A_x, A_y, A_z), \varphi$ 分别为电磁场的矢势和标势 δ_s 为超导电子空间分布不均匀系数 c 为光速且 $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$, e_m m_0 分别为超导电子的电量绝对值和

静止质量 , λ 为 London 穿透深度且 $\lambda^2 = \frac{m_0}{\mu_0 e^2 n_{s0}}$, ϵ_0 真空介电常数 , μ_0 真空导磁率 , n_{s0} 静态超导电子浓 度. 进而对该超导体模型 ,问题的边界条件为

$$x = x_{0} = \pm d ,$$

$$B_{z} = B_{0} , E_{x} = \mp E_{0} , A_{y} = \pm A_{y} (d);$$

$$x = 0 ,$$

$$B_{z} = B_{z} (0) , E_{x} = 0 , A_{y} = 0 ,$$
(2)

与文献 2 方法相近 ,令

$$v \equiv \frac{eA_{y}}{m_{0}c}, u \equiv \frac{e\varphi}{m_{0}c^{2}}, \frac{x}{\lambda} \equiv l,$$

$$\alpha \equiv \frac{eB_{z}(0)\lambda}{m_{0}c}, \beta \equiv \frac{eB_{0}\lambda}{m_{0}c}, \varepsilon \equiv \frac{eA_{y}(d)}{m_{0}c}.$$
 (3)

[†]E-mail: ylypf@sohu.com

56 卷

5034 经无量纲约化 问题(1)(2)化为如下常微分方程组 的边值问题: $v'' = \delta_s v$, $u'' = \delta_s u - 1 ,$ $u^2 = v^2 + 1$; l = 0, $u(0) = 0, v'(0) = \alpha, u(0) = 1, u'(0) = 0,$ $l = l_0 = \pm \frac{d}{\lambda}$, $v(l_0) = \pm \varepsilon v'(l_0) = \beta$ $u(l_0) = \sqrt{1 + \epsilon^2} \equiv a u'(l_0) = \pm \frac{eE_0\lambda}{m_0c^2}$, $l \in \left[-\frac{d}{\lambda}, \frac{d}{\lambda}\right], \alpha \ge 0, \beta > 0, \varepsilon > 0, a > 1(4)$ 文中′表示 $\frac{d}{dI}$. 由文献 21 问题 4 河转化为 $v'^2 = (1 + v^2) (a^2 - 2 + 2\sqrt{1 + v^2}),$ ${u'}^2 = \mathcal{X} u - 1 \mathcal{Y} u - b \mathcal{Y} u + 1$

$$b \equiv 1 - \frac{\alpha^2}{2}.$$
 (5)

令

$$k \equiv \sqrt{\frac{1+b}{2}}, w_0 \equiv \sqrt{\frac{2}{1+a}},$$

$$\xi_0 \equiv \int_0^{w_0} \frac{\mathrm{d}w}{\sqrt{(1-w^2)(1-k^2w^2)}},$$

$$\xi \equiv \int_0^w \frac{\mathrm{d}w}{\sqrt{(1-w^2)(1-k^2w^2)}},$$
(6)

由此可得问题(4)的严格解为

$$\xi = \xi_0 \mp (l - l_0),$$

$$u = \frac{2}{\operatorname{sn}^2 \xi} - 1,$$

$$v = \pm \frac{2 \operatorname{cn} \xi}{\operatorname{sn}^2 \xi}.$$
(7)

此与半无限大超导体模型的解^[2]同为 Jacobi 椭圆函数 ,但形式略有不同,为了保证该 Jacobi 椭圆函数 解在 $l \in [-\frac{d}{\lambda}, \frac{d}{\lambda}]$ 上无奇性 ,须 $\operatorname{sn}_{\xi} \neq 0$,则(7)式及 以下各式中正负号的选择为

$$l \in \left[-\frac{d}{\lambda} \mathcal{D}\right), \xi = \xi_0 + \frac{d}{\lambda} + l,$$
$$u = \frac{2}{\operatorname{sn}^2\left(\xi_0 + \frac{d}{\lambda} + l\right)} - 1,$$

$$v = -\frac{2\mathrm{cn}\left(\xi_{0} + \frac{d}{\lambda} + l\right)}{\mathrm{sn}^{2}\left(\xi_{0} + \frac{d}{\lambda} + l\right)};$$

$$l \in \left[0, \frac{d}{\lambda}\right), \xi = \xi_{0} + \frac{d}{\lambda} - l,$$

$$u = \frac{2}{\mathrm{sn}^{2}\left(\xi_{0} + \frac{d}{\lambda} - l\right)} - 1,$$

$$v = \frac{2\mathrm{cn}\left(\xi_{0} + \frac{d}{\lambda} - l\right)}{\mathrm{sn}^{2}\left(\xi_{0} + \frac{d}{\lambda} - l\right)}.$$
(8)

要保证(8)式的解函数及其各阶导函数在区间 $l \in \left[-\frac{d}{2}, \frac{d}{2}\right]$ 上连续 则在 l = 0 处 必须有^[3,4]

$$cn\xi = cn\left(\xi + \frac{d}{\lambda}\right) = 0,$$

$$\xi_0 + \frac{d}{\lambda} = K,$$

$$K(k) \equiv \int_0^1 \frac{dw}{\sqrt{(1 - w^2)(1 - k^2 w^2)}}.$$
 (9)

(9)式中 *K*(*k*)为第一类 Legendre 完全椭圆积分. 对 *k* < 1,由 Jacobi 椭圆函数的周期性和加法公式^[3], 可得

$$\operatorname{sn}\xi = \operatorname{sn}\left(K \pm l\right) = \frac{\operatorname{cn}l}{\operatorname{dn}l},$$

$$\operatorname{cn}\xi = \operatorname{cn}\left(K \pm l\right) = \mp \sqrt{1 - k^2} \frac{\operatorname{sn}l}{\operatorname{dn}l},$$

$$\operatorname{dn}\xi = \operatorname{dn}\left(K \pm l\right) = \sqrt{1 - k^2} \frac{1}{\operatorname{dn}l}.$$
 (10)

再还原约化量纲 ,从而得有限厚无限大平板超导体 模型的场分布的严格解为

$$\begin{split} u &= \frac{e\varphi}{m_0 c^2} = 1 - \frac{\alpha^2}{2} + \frac{\alpha^2}{2 \operatorname{cn}^2 \frac{x}{\lambda}} ,\\ v &= \frac{eA_y}{m_0 c} = \alpha \frac{\operatorname{sn} \frac{x}{\lambda} \operatorname{dn} \frac{x}{\lambda}}{\operatorname{cn}^2 \frac{x}{\lambda}} ,\\ u' &= -\frac{eE_x \lambda}{m_0 c^2} = \alpha^2 \left(\frac{\operatorname{sn} \frac{x}{\lambda} \operatorname{dn} \frac{x}{\lambda}}{\operatorname{cn}^3 \frac{x}{\lambda}} \right) ,\\ v' &= -\frac{eB_z \lambda}{m_0 c} = \frac{\alpha}{\operatorname{cn} \frac{x}{\lambda}} \left(1 - \frac{\alpha^2}{2} + \frac{\alpha^2}{2 \operatorname{cn}^2 \frac{x}{\lambda}} \right) ,\\ u'' &= -\frac{e\rho\lambda^2}{\varepsilon_0 m_0 c^2} = \alpha^2 \left(\frac{\alpha^2}{4} - 1 + \frac{2 - \alpha^2}{\operatorname{cn}^2 \frac{x}{\lambda}} + \frac{3\alpha^2}{4\operatorname{cn}^4 \frac{x}{\lambda}} \right) , \end{split}$$

$$\delta_{\rm s} = 1 - \frac{\alpha^2}{2} + \frac{3\alpha^2}{2{\rm cn}^2 \frac{x}{\lambda}}$$

 $x \in [-d,d]$, (11) 式中 ρ 为超导电子区内总电荷密度,物理量 $\varphi(x)$, $B_{(x)},\rho(x)$ 均为偶函数, $A_{y}(x),E_{x}(x)$ 均为奇 函数.

上述各式中参数 α,β,ε并不是独立的.由问 题(4)式中边界条件和(5)式,可推得

$$\beta = \sqrt{\mathcal{X} 1 + \varepsilon^2} \left(\sqrt{1 + \varepsilon^2} - 1 + \frac{\alpha^2}{2} \right), (12)$$
而由(6)式和连续性条件(9)式,可确定 $\alpha, \varepsilon 与 \frac{d}{\lambda}$

的关系 $\frac{d}{\lambda} = K(\alpha) - \xi_0(\alpha, \epsilon)$.因此只要问题(1), (2)中的外磁场 **B**₀和超导体的参数 *d*, λ 给定,就有 $\beta > \alpha$, 且 α , β , ϵ 仅由 $B_0\lambda$ 和 $\frac{d}{\lambda}$ 决定,从而超导体稳 态的场分布就完全确定了,超导体具有逆磁性.

3. 与近似解的比较

由上述可见,模型的严格解与文献的近似解¹¹ 是不同的,前者是 Jacobi 椭圆函数形式,后者是双曲 函数形式.但两者的奇偶性是一致的,场量的空间 变化趋势是一致的.所以探求近似解对严格解的逼 进情况非常必要,在此就两种极端情况展开讨论.

因超导是一种低速相对论效应,由(4)-(6), (12)式,对一般超导体^[8-11]总有如下近似关系成立:

$$1 \gg \beta > \alpha \ge 0, 1 \gg \varepsilon > 0,$$

$$w_0 \simeq 1 - \frac{1}{8}\varepsilon^2, \beta \simeq \sqrt{\varepsilon^2 + \alpha^2}.$$
(13)

3.1. 对 *d*≪λ 情况

可考察 $\frac{x}{\lambda}$ →0极限情形.由(11)式,对各 Jacobi 椭圆函数在原点 x = 0处做 Taylor 展开^[3],取一阶或 二阶近似,可近似有

$$u \simeq 1 + \frac{\alpha^2}{2} \left(\frac{x}{\lambda}\right)^2$$
, $v \simeq \alpha \frac{x}{\lambda}$, (14)

由(3)(11)(13)式进而计算可得

$$A_{y} \cong B(0)x , B_{z} \cong B(0), E_{x} \cong -\frac{eB^{2}(0)}{m_{0}}x ,$$

$$\rho \cong -\frac{\varepsilon_{0}eB^{2}(0)}{m_{0}}, \Delta \varphi \equiv \varphi(d) - \varphi(0) \cong \frac{eB^{2}(0)d^{2}}{2m_{0}},$$
(15)

这对有限厚超导体是普遍成立的.

当 $\frac{d}{\lambda}$ →0,由(9)(12)(13)式有 ξ_0 →*K*, w_0 →1, ϵ →0, α → β , B_{ϵ} (0)→ B_0 . 从而得文献 1]的近似结 果与模型的严格解在 $\frac{x}{\lambda}$ →0 的取值是一致的结论.

3.2. 对 *d*≫λ 情况

可考察 $\frac{d}{\lambda} \rightarrow \infty$ 极限情形.由(3)(9)(12)和 (13)式,有 $K \rightarrow \infty, k \rightarrow 1, \alpha \rightarrow 0, \varepsilon \rightarrow \beta,$ $B_0 \lambda \cong A_y(d), \xi_0 = \frac{1}{2} \ln \left| \frac{1+w_0}{1-w_0} \right| \cong \ln \frac{4}{\varepsilon} \gg 1.$

(16)

由于 $K \rightarrow \infty$, $k \rightarrow 1$,Jacobi 椭圆函数的周期性和加法 公式不再适用 ,问题(4)的 Jacobi 椭圆函数退化解不 能取自(10)式推出的(11)式 ,而只能从(7)(8)式得 出其退化的双曲函数渐进解^[4]为

$$x \in [-d, d], \xi = \xi_{0} + \frac{d \mp x}{\lambda},$$

$$u = 1 + \frac{2}{\mathrm{sh}^{2}\xi}, v = \pm \frac{2\mathrm{ch}\xi}{\mathrm{sh}^{2}\xi},$$

$$u' = \pm \frac{4\mathrm{ch}\xi}{\mathrm{sh}^{3}\xi}, v' = \frac{2(1 + \mathrm{ch}^{2}\xi)}{\mathrm{sh}^{3}\xi},$$

$$u'' = \frac{4(1 + 2\mathrm{ch}^{2}\xi)}{\mathrm{sh}^{4}\xi}, \delta_{s} = 1 + \frac{6}{\mathrm{sh}^{2}\xi}.$$
 (17)

本式及以下各式中"+";"-"号的取法与(8)式相同 ,且解的形式与半无限大超导体模型解的形式相同^[1].由(17)式,进而对 $x \rightarrow 0$, $sh \xi \rightarrow ch \xi \rightarrow \infty$ 得原点处取值为

 $v \rightarrow 0, u \rightarrow 1, v' \rightarrow 0, u' \rightarrow 0, \delta_s \rightarrow 1.$ (18) 由(16)(17)式,进而对 $x \rightarrow \pm d$,有 sh $\xi \cong ch\xi \cong \frac{2}{\varepsilon} exp\left(\frac{d \mp x}{\lambda}\right)$,得超导体近表面处各物理量的取 值为

$$A_{y} \cong \pm B_{0}\lambda \exp\left(-\frac{d\mp x}{\lambda}\right) ,$$

$$B_{z} \cong B_{0}\exp\left(-\frac{d\mp x}{\lambda}\right) ,$$

$$\Delta\varphi \cong \frac{eB_{0}^{2}\lambda}{2m_{0}} , E_{x} \cong \mp \frac{eB_{0}^{2}\lambda}{m_{0}}\exp\left(-2\frac{d\mp x}{\lambda}\right) ,$$

$$\rho \cong -\frac{2eB_{0}^{2}\varepsilon_{0}}{m_{0}}\exp\left(-2\frac{d\mp x}{\lambda}\right) .$$
(19)

因此近似方法的结论¹¹与严格解在 $\frac{d}{\lambda} \rightarrow \infty$ 的渐进近

进

似解是一致的.

对<u>4</u>很大但有限,渐进解(17)式在原点处不连续,产生间断点,不宜直接作为问题(4)的近似解,而 文献的近似解¹¹则很好地拟合了严格解的两种极限 情形的结果.

4.结 论

本文借助文献的方法²⁻⁷¹给出了有限厚无限大

[1] Yang P F, Chen W X 2006 Acta. Phys. Sin. 55 6622(in Chinese)
 [杨鹏飞、陈文学 2006 物理学报 55 6622]

- [2] Yang P F 2006 Acta. Phys. Sin. 55 5579 (in Chinese) [杨鹏飞 2006 物理学报 55 5579]
- [3] Wang Z X, Guo D R 2000 Introduction to Special Function (Beijing Peking University Press)(in Chinese)[王竹溪、郭敦仁 2000 特殊函数概论(北京北京大学出版社)]
- [4] Lin S K, Liu S D 2000 Nonlinear Equations in Physics (Beijing: Peking University Press)(in Chinese)[刘式适、刘式达 2000 物 理学中的非线性方程(北京 北京大学出版社)]
- [5] Lin S K ,Fu Z T ,Liu S D ,Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese)[刘式适、付遵涛、刘适达、赵 强 2002 物理学报 51 10]
- [6] Lin S K ,Fu Z T ,Liu S D ,Zhao Q 2002 Acta Phys. Sin. 51 718(in Chinese)[刘式适、付遵涛、刘适达、赵 强 2002 物理学报 51

平板超导体模型的 Jacobi 椭圆函数严格解,讨论了 严格解在极限情况下的渐进解与文献中近似方法^[1] 所得结果的异同.虽然等效近似结论不满足限定变 换的约束,但与严格解相比文献1]中近似方法所得 结果,在整个超导体内既能反映出场量变化的趋势 又保持了场量的连续分布形态,且在极限情况下能 很好地逼进欠直观的严格解,因此文献的近似结 果^[1]不失为一个直观有效的等效近似解.

718]

- [7] FuZT, LinSK, LiuSD 2004 Acta Phys. Sin. 53 343 (in Chinese)[付遵涛、刘式适、刘适达 2004 物理学报 53 343]
- [8] Yang P F, Li C Z 1999 Journal of Northwest University (Natural Science Edition) 29 (supplement) 44 (in Chinese) [杨鹏飞、李存 志 1999 西北大学学报(自然科学版) 29 (增刊) 44]
- [9] Fang J X, Lu D 1981 Solid State Physics (Shanghai :Shanghai Scientific and Technical Publishers] 方俊鑫、陆 栋 1981 固体物理学(下册)(上海:上海科学技术出版社)]
- [10] Zhang Y H 1997 Physics of Superconductivity (Hefei :University of Science and Technology of China Press)[张裕恒 1997 超导物理 (合肥:中国科学技术大学出版社)
- [11] Han R S 1998 Physics of High Temperature Superconductivity (Beijing Peking University Press)[韩汝珊 1998 高温超导物理 (北京 北京大学出版社)]

The strict solutions to the field distribution of superconducting unbounded slab model

Yang Peng-Fei^{1 (2)†} Bai Jin-Tao¹) Yang Xiao-Peng³)

1 X Institute of Photonics & Photo-Technology, Northwest University, Xi an 710069, China)

2 X Yulin Branch of Shaanxi Radio and Television University ,Yulin 719000 ,China)

3 X Yulin Industry School , Yulin 719000 , China)

(Received 6 December 2006 ; revised manuscript received 28 December 2006)

Abstract

The strict solutions of superconducting unbounded slab model are given for its field distribution, the validity of approximate results avceilable from literature is verified.

Keywords : exact solution , Jacobi elliptic function , superconductivity PACC : 0290 , 7420D , 0340K

[†] E-mail : ylypf@sohu.com