Yb³⁺ 敏化的 Er³⁺/Ho³⁺ 共掺碲酸盐 玻璃的上转换发光研究*

戴世勋 防旭杰 聂秋华 徐铁峰 沈 祥 王训四

(宁波大学信息科学与工程学院,宁波 315211) (2007年1月19日收到2007年3月4日收到修改稿)

用高温熔融法制备了系列 Er^{3+}/Yb^{3+} 共掺 Ho^{3+}/Yb^{3+} 共掺 和 $Er^{3+}/Yb^{3+}/Ho^{3+}$ 三掺碲酸盐玻璃 在 975 nm 激光 抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了 Yb^{3+} 离子对 Er^{3+} 和 Ho^{3+} 离子上转换发光强度 的影响以及 $Yb^{3+} \rightarrow Er^{3+}$ $,Yb^{3+} \rightarrow Ho^{3+}$ 能量传递效率.分析了碲酸盐玻璃中 Yb^{3+} 直接敏化 Er^{3+} $,Ho^{3+}$ 上转换发光机 理.当 Er^{3+} 和 Ho^{3+} 浓度较低时 $,Er^{3+}/Yb^{3+}/Ho^{3+}$ 三掺玻璃的上转换强度随着 Yb^{3+} 离子浓度的增加而增强 ,出现的 548 nm 绿光和 660 nm 红光主要是由于 Er^{3+} $(^{3}S_{32} \rightarrow ^{4}I_{15/2}, Ho^{3+} \cdot ^{5}F_{4}(^{5}S_{2}) \rightarrow ^{5}I_{8}$ 和 Er^{3+} $(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}, Ho^{3+} \in F_{5} \rightarrow ^{5}I_{8}$ 跃 迁共同作用的结果. $Er^{3+}/Yb^{3+}/Ho^{3+}$ 三掺碲酸盐玻璃的上转换机理受 Er^{3+}/Yb^{3+} 之间 $,Ho^{3+}/Yb^{3+}$ 之间 $,Er^{3+}/Ho^{3+}$ 之 间三者共同相互作用影响 $,Er^{3+}/Ho^{3+}$ 离子间存在的交叉弛豫过程可增加 Ho^{3+} 离子在可见光范围的上转换强度.

关键词:Er³⁺/Yb³⁺/Ho³⁺ 共掺,碲酸盐玻璃,光谱性质,上转换 PACC:7855,7840,4255R

1.引 言

稀土发光在彩色显示、光存储、光纤探测器以及 激光医疗等领域有着广泛的应用价值 近年来 随着 激光二极管(laser diode,LD)快速发展,利用频率上 转换机理在稀土离子掺杂的玻璃、晶体或光纤材料 中获得蓝绿光输出已成为研究的热点[1] 许多三价 稀土离子(如 Er³⁺ Tm³⁺ Ho³⁺ Pr³⁺ 和 Nd³⁺等)都可 在一定波长的 LD 激发下产生上转换发光现象^[2,3]. 目前围绕上转换蓝绿光输出特性稀土掺杂玻璃和光 纤的研究主要集中在两个方面:一是寻找更为合适 的低声子能量玻璃基质 因为低声子能量材料可降 低稀土离子无辐射弛豫概率 提高其中间亚稳态能 级寿命,可有效提高上转换发光效率,以往上转换发 光玻璃都以氟化物为基础,但是氟化物玻璃制备工 艺复杂 加之其化学稳定性和机械强度差 在实际应 用中存在较大的障碍,于是研究者开始把目光转移 到一些新型的相对较低声子能量的氧化物玻璃基质 上(例如碲酸盐、铋酸盐、氟硅酸盐玻璃等),有关稀 土离子在这些玻璃中的上转换发光研究已有不 $\mathcal{Y}^{[2-4]}$;二是如何通过共掺杂不同稀土离子的方法 得到不同波段的可见光波段上转换发光和提高上转 换发光强度,其中一个重要方法是采用稀土离子与 敏化离子共掺方式,利用敏化作用和多声子吸收的 原理提高抽运吸收效率.例如常见以 Yb³⁺离子作为 敏化离子的双掺杂种类包括 Er³⁺/Yb³⁺,Tm³⁺/Yb³⁺, Ho³⁺/Yb³⁺等.也有通过三种稀土离子共掺的方式 (例如 Er³⁺/Yb³⁺/Tm³⁺ 三掺⁵¹,Nd³⁺/Yb³⁺/Ho³⁺ 三 掺^{[61},Nd³⁺/Yb³⁺/Tb³⁺ 三掺⁷¹,Nd³⁺/Yb³⁺/Tm^{3+[81}] 掺等).

有研究表明 Er³⁺/Yb³⁺ 共掺^[9]和 Ho³⁺/Yb³⁺ 共 掺^[10]氟化物玻璃系统在 980 nm LD 抽运下都能获得 红绿光上转换现象.本文选取较低声子能量(约为 700 cm⁻¹)的碲酸盐玻璃作为基质玻璃,研究了碲酸 盐玻璃中 Yb³⁺离子对 Er³⁺,Ho³⁺离子的直接敏化上 转换作用,详细分析了 Er³⁺/Yb³⁺,Ho³⁺/Yb³⁺,Er³⁺/ Yb³⁺/Ho³⁺ 共掺碲酸盐玻璃的上转换发光机理.

2. 实 验

由于 Er³⁺,Yb³⁺,Ho³⁺ 三种离子共掺下上转换

^{*}国家自然科学基金(批准号 160272034)和浙江省科技厅重点攻关项目(批准号 2006C21082)资助的课题.

[†] E-mail :daishixun@nbu.edu.cn

机理较为复杂 因此有必要首先对 Er³⁺ /Yb³⁺ 共掺和 Ho³⁺ /Yb³⁺ 共掺的碲酸盐玻璃系统的上转换机理进 行研究.我们以 TeO₂-ZnO-La₂O₃ 系统为玻璃基质制 备了多组不同掺杂类型的碲酸盐玻璃:1)75TeO₂-20ZnO-4.6 La, O3-0.4Yb, O3, 命名为 Y1; 2) HY 系列: 75TeO₂-20ZnO-(4.6 - x)La₂O₃-0.4Ho₂O₃-xYb₂O₃(x)= 0 0.4 0.8 1.6 3.2 4.0) 依次命名为 HY0 HY1, HY2 HY3 HY4 HY5 3)EY 系列 75TeO, -20ZnO-(4.6 -x)La₂O₃-0.4Er₂O₃-xYb₂O₃(x = 0, 0.4, 0.8, 1.6,3.2 A.0),依次命名为:EY0,EY1,EY2,EY3,EY4, EY5 ;4) EHY 系列: 75TeO₂-20ZnO-(4.2 - x) La₂O₃- $0.4 \text{Er}_2 \text{O}_3 - 0.4 \text{Ho}_2 \text{O}_3 - x \text{Yb}_2 \text{O}_3 (x = 0, 0.4, 0.8, 1.6, 3.2)$ 4.0) (依次命名为 EHY0 , EHY1 , EHY2 , EHY3 , EHY4 , EHY5 ;5)HYE 系列:75TeO₂-20ZnO-(3 - x)La₂O₃- $0.4 \text{Ho}_2 \text{O}_3 - 1.6 \text{Yb}_2 \text{O}_3 - x \text{Er}_2 \text{O}_3(x = 0.4, 0.8, 1.6, 3.0),$ 依次命名为 HYE1 HYE2 HYE3 HYE4.

玻璃制备所引入的 TeO₂,ZnO,La₂O₃,Er₂O₃, Ho₂O₃,Yb₂O₃ 原料纯度为 99.99%.按配方称取原料 30g左右,混合均匀后倒入 50 ml 的铂金坩埚中于 850℃温度的硅炭棒加热炉中熔制 20 min,经澄清后 浇注倒入铜模具中,再放入 330℃左右温度的马弗 炉中进行退火至室温.样品加工成尺寸为 10 mm × 10 mm × 1 mm 两面抛光用于光谱测试.样品的吸收 光谱采用 PERKING-ELMER 公司 Lambda950UV/VIS/ NIR 型分光光度计测定.上转换荧光光谱用法国 J-Y 公司 TRIAX550 型光谱仪记录,抽运源采用国产功 率为 2 W,波长为 975 nm LD.Yb³⁺ 2 F_{5/2}能级荧光寿 命测量波长为 1.004 μ m.荧光寿命测量时采用脉冲 宽度为 30 ns,频率为 50 Hz 的 975 nm LD 作为激发 源,信号经单色仪、光电倍增管传递到 Tektronix 公司 TDS1012 型示波器上,通过荧光曲线的衰减确定荧 光寿命.整个测试中抽运源功率大小和位置保持不 变 所有被测样品都紧贴于荧光光谱仪狭缝入口处 同一位置.以上测试都在室温下进行.

3. 实验结果与讨论

3.1. Er³⁺,Yb³⁺,Ho³⁺离子的吸收光谱

图 1 为单掺 Yb³⁺ :Y1 ,Ho³⁺ :HY0 ,Er³⁺ :EY0 和 Er³⁺ /Yb³⁺ /Ho³⁺ :EHY1 样品在 350—2200 nm 波段的 吸收光谱图 .其中 Yb³⁺ 离子只在 975 nm 处存在一个 主吸收峰 ,它对应从基态²F_{7/2} 向²F_{5/2} 激发态吸收跃 迁 .Er³⁺ 离子的吸收峰分别位于 1532 ,975 ,800 ,652 , 543 521 ,488 ,450 ,406 和 378 nm ,依次对应于从基态 ⁴I_{15/2}到激发态能级⁴I_{13/2} ,⁴I_{11/2} ,⁴I_{9/2} ,⁴F_{9/2} ,⁴S_{3/2} ,²H_{11/2} , ⁴F_{7/2} ,⁴F_{5/2} ,²H_{9/2}和⁴G_{11/2}的吸收跃迁 .Ho³⁺离子的吸收 峰位于1952 ,1154 ,891 ,645 ,548 ,487和418 nm ,分别

图 1 室温下 Y1, HY0, EY0 和 EHY1 样品的吸收光谱

表 1 Er³⁺, Yb³⁺和 Ho³⁺离子在 TeO₂-ZnO-La₂O₃ 玻璃中的吸收峰位

	Er ^{3 +}			Ho ³⁺			Yb ³⁺		
	吸收能级	峰值波长/nm	波数/cm ⁻¹	吸收能级	峰值波长/nm	波数/cm ⁻¹	吸收能级	峰值波长/nm	波数/cm ⁻¹
1	${}^{4}I_{13/2}$	1530	6536	5 I ₇	1952	5123	${}^{2}F_{5/2}$	974	10267
2	${}^{4}I_{11/2}$	976	10246	5 I ₆	1154	8665			
3	4 I _{9/2}	800	12500	5 I ₅	891	11211			
4	${}^{4}F_{9/2}$	652	15337	${}^{5}F_{5}$	645	15504			
5	${}^{4}S_{3/2}$	545	18349	⁵ F ₄ (⁵ S ₂)	548	18553			
6	$^{2}\mathrm{H}_{11/2}$	521	19194	${}^{5}\mathrm{F}_{3}$	487	20534			
7	${}^{4}\mathrm{F}_{7/2}$	488	20492	${}^{5}F_{2}$	418	23923			

对应于从基态⁵ I₈ 到激发态能级⁵ I₇, ⁵ I₈, ⁵ F₅, ⁵ F₄ (⁵S₂), ⁵ F₃和⁵ F₂ 的吸收跃迁. 三种稀土离子各自的 吸收峰所对应的相关能级在图 1 中标出.表 1 列出 了 Er^{3+} , Ho^{3+} 和 Yb^{3+} 离子的各激发态能级对应的峰 值波长以及相应的波数.根据表 1 数据确定的 Er^{3+} , Yb^{3+} 和 Ho^{3+} 离子的能级结构如图 2 所示.

图 2 Er³⁺, Yb³⁺和 Ho³⁺离子能级结构图以及 Er³⁺/Yb³⁺共掺, Ho³⁺/Yb³⁺共掺上转换机理图

3.2. Er³⁺/Yb³⁺ 共掺和 Ho³⁺/Yb³⁺ 共掺碲酸盐玻璃 的上转换光谱及上转换机理

为探明 Er^{3+} , Yb^{3+} , Ho^{3+} 三种离子共掺碲酸盐 玻璃在 975 nm LD 抽运下上转换能量转移机理,我 们首先研究了 Er^{3+}/Yb^{3+} 共掺和 Ho^{3+}/Yb^{3+} 共掺系 统的上转换机理,以及 $Yb^{3+} \rightarrow Er^{3+}$, $Yb^{3+} \rightarrow Ho^{3+}$ 能 量传递效率.

图 3 室温 975 nm LD 抽运下样品的上转换荧光光谱图 (a) HY0 和 HY2 玻璃 (b) EY0 和 EY2 玻璃

图 3(a)为室温 975 nm LD 抽运下的 Ho³⁺/Yb³⁺ 共掺 HYO(0 mol% Yb₂O₃ + 0.4 mol% Ho₂O₃)和 HY2 (0.8 mol% Yb₂O₃ + 0.4 mol% Ho₂O₃)样品上转换荧 光图,可以看出对于单掺 Ho3+ 离子的 HY0 样品而 言 975 nm LD 激发下没有观察到上转换荧光,这主 要是因为 Ho³⁺ 离子在 975 nm 附近没有从基态向高 能级跃迁吸收的缘故.对 Ho3+ /Yb3+ 共掺的 HY2 样 品而言,在 548 nm 和 662 nm 出现了明显的上转换绿 光和红光 根据 Ho³⁺ 离子的能级结构可以推断这两 处上转换荧光分别是由于 Ho^{3+} $\stackrel{!}{\cdot}$ F₄($^{5}S_{7}$)→ $^{5}I_{8}$ 和 $^{5}F_{7}$ →⁵ I。辐射跃迁产生,从图 3(a)中也可断定 Ho³⁺ 离 子所有能级的激发态粒子数分布都是通过 Yb³⁺ 离 子的能量传递实现的.图 3(b)为 Er³⁺/Yb³⁺ 共掺的 EYO(0 mol% Yb_2O_3 + 0.4 mol% Er_2O_3)和 EY2 (0.8 mol% Yb, O₃ + 0.4 mol% Er, O₃)样品上转换荧 光图.从图中可以看出对于单掺 Er3+离子的 HY0 样 品而言.在 546 nm 附近出现了很微弱的上转换绿 光.说明 975 nm LD 抽运单掺 Er3+ 离子样品可使 Fr³⁺ 离子激发至高能态,但很难获得较强的上转换 荧光,主要是由于 Er³⁺ 离子在 975 nm 处的吸收效率 低的缘故^[3]. 而对于 Er³⁺ /Yb³⁺ 共掺的 EY2 样品而 言 在 525 ,546 和 657 nm 三处出现了强烈的绿光和 红光上转换 根据 Er³⁺ 离子的能级结构可以推断这 三处上转换荧光分别是由于 Er³⁺ .²H_{11/2}→⁴I_{15/2} ,⁴S_{3/2} →⁴I_{15/2}和⁴F_{9/2}→⁴I_{15/2}辐射跃迁产生.从图 3(a)和(b) 中可知 Er³⁺ /Yb³⁺ 共掺与 Ho³⁺ /Yb³⁺ 共掺的碲酸盐 玻璃在 548 nm 和 660 nm 附近都出现了上转换红光 和绿光。

表 2 中列出了 Ho³⁺ /Yb³⁺ 共掺、Er³⁺ /Yb³⁺ 共掺、 Er³⁺ /Yb³⁺ /Ho³⁺ 三掺碲酸盐玻璃中的上转换绿光和 红光峰值相对荧光强度(分别以 I4 和 I1 表示)及 两者比值,从表 2 中看出,无论是 Er³⁺/Yb³⁺ 共掺还 是 Ho³⁺ /Yb³⁺ 共掺系统 ,Ho³⁺ 离子和 Er³⁺ 离子产生 的上转换绿光和红光荧光强度在 Yb_2O_3 浓度 0 到 4 mol%变化范围都随着 Yb3+ 离子浓度的增加而增 强没有观察到浓度淬灭的现象, Yh³⁺ 离子的引入 对 Ho³⁺ 和 Er³⁺ 的上转换荧光增强是因为 Yb³⁺ 离子 在 975 nm 处的吸收截面大^[2],通过 Yb³⁺ 离子与 Ho³⁺或Er³⁺离子之间的有效的能量传递缘故.在 Ho³⁺ /Yb³⁺ 共掺样品的绿光与红光荧光强度随着 Yb,O, 浓度的增加而增加,但两者比值 R 基本保持 不变 说明发射绿光和红光的概率增加幅度相近 但 在 Er^{3+}/Yb^{3+} 共掺系统中绿光与红光比值 R 开始随 着 Yb,O, 浓度的增加而增加 然后随之减少 说明发 射红光荧光的概率在高掺杂 Yb₂O, 浓度时增加快, 这和红光产生的上转换途径发生变化有关.

表 2 样品中的绿光和红光上转换光相对强度及比值

样品编号	I_{ig}	I≰⊥	$R = I_{\text{SR}} / I_{\text{SL}}$	$\rm Yb_2O_3/mol\%$	$\mathrm{Er}_2\mathrm{O}_3/\mathrm{mol}\%$	$\mathrm{Ho}_{2}\mathrm{O}_{3}/\mathrm{mol}\%$
HY0	3152	3154	1.00	0	0	0.4
HY1	3922	3636	1.08	0.4	0	0.4
HY2	5550	5138	1.08	0.8	0	0.4
HY3	7638	7006	1.09	1.6	0	0.4
HY4	8278	8054	1.03	3.2	0	0.4
HY5	9586	8874	1.08	4.0	0	0.4
EY0	3410	3134	1.09	0	0.4	0
EY1	6450	3560	1.81	0.4	0.4	0
EY2	12596	4938	2.55	0.8	0.4	0
EY3	15156	6990	2.17	1.6	0.4	0
EY4	16276	8220	1.98	3.2	0.4	0
EY5	19884	12626	1.57	4.0	0.4	0
EHY0	2530	2450	1.03	0	0.4	0.4
EHY1	3933	3211	1.22	0.4	0.4	0.4
EHY2	5107	3943	1.30	0.8	0.4	0.4
EHY3	7827	6891	1.14	1.6	0.4	0.4
EHY4	8285	10356	0.80	3.2	0.4	0.4
EHY5	9680	12747	0.76	4.0	0.4	0.4
HYE1	7289	6234	1.17	1.6	0.4	0.4
HYE2	6230	5633	1.11	1.6	0.8	0.4
HYE3	5105	5405	0.94	1.6	1.6	0.4
HYE4	3429	4460	0.77	1.6	3.0	0.4

图 4 (a)75TeO₂-20ZnO(4.6 - x)La₂O₃-0.4Er₂O₃-xYb₂O₃(x = 0-4) 破璃中 Yb³⁺寿命和能量传递效率随 Yb₂O₃ 掺杂浓度的 变化 (b)75TeO₂-20ZnO(4.6 - x)La₂O₃-0.4Ho₂O₃-xYb₂O₃(x = 0-4) 破璃中 Yb³⁺寿命和能量传递效率随 Yb₂O₃ 掺杂浓度的 变化

 Yb^{3+} 离子向 Er^{3+} 或 Ho^{3+} 离子能量传递效率 η 可用以下公式求得^{10]}:

 $\eta = 1 - \tau_{\rm d} / \tau_{\rm d}^0 , \qquad (1)$

5521

其中 τ_{d} 和 τ_{d}^{0} 分别为 Er^{3+} (或 Ho^{3+})离子存在和不存在时 Yb^{3+} :² $F_{5/2}$ 能级的荧光寿命.图 4(a)为 75TeO₂-20ZnO{(4.6 - x)La₂O₃-0.4Er₂O₃-xYb₂O₃(x = 0—4)玻璃中 Yb³⁺ :²F₅₂能级荧光寿命以及 Yb³⁺ → Er3+间的能量传递效率随 Yb2O3 浓度的变化 ,从图 中可以看出 Yb³⁺ 离子的寿命随 Yb₂O₃ 浓度的增加 明显降低,Yb³⁺到 Er³⁺的能量传递效率也相应增 大 ,当 Yb₂O₃ 掺杂浓度为 0.4 和 4 mol % 时 ,Yb³⁺ → Er³⁺间的能量传递效率 n(分别为 32%,48%.当 Yb_2O_3 的掺杂浓度增加到 2 mol%以上时, η 变化缓 慢.图 5(b)为 75TeO₂-20ZnO-(4.6 - x)La₂O₃- $0.4 \text{Ho}_2 \text{O}_3 - x \text{Yb}_2 \text{O}_3$ (x = 0—4)玻璃中Yb³⁺ :²F_{5/2}能级 荧光寿命以及 Yb³⁺→Ho³⁺ 能量传递效率随 Yb₂O₃ 掺杂的变化情况 其变化趋势与 Er³⁺/Yb³⁺共掺系统 玻璃中一致.当 Yb, O_3 掺杂浓度为 $0.4 \, \pi 4 \, \text{mol} \,\%$ 时, Yb³⁺→Ho³⁺ 能量传递效率 √ 分别为 25% ,57%.但 当 Yb₂O₃ 浓度增加到 4 mol%时,Yb³⁺→Ho³⁺能量传 递效率还未趋向平衡.对比图 5(a)和(b)可知当 Yb₂O₃ 在低掺杂浓度(<1 mol%)情况下 Yb³⁺→Er³⁺ 能量传递效率高于同 Ho₂O₃ 掺杂下 Yb³⁺→Ho³⁺ 的 能量传递效率,而在高掺杂浓度(Yb,O, > 1.6 mol%) 前者的传递效率低于后者传递效率.

为确认 Er^{3+} 和 Ho^{3+} 离子红绿上转换发光机理, 尤其是要探明它们归属哪种多光子上转换关系,我 们研究了 Er^{3+}/Yb^{3+} 共掺和 Ho^{3+}/Yb^{3+} 共掺玻璃系 统中 Er^{3+} 和 Ho^{3+} 离子在绿红光两波段的上转换发 光强度与抽运光功率的关系.利用在 975 nm 激光激 发下上转换红、绿光荧光强度与抽运功率双对数坐 标图(log I - log P,采用最小二乘法拟合得到曲线的斜 率 n,其值可近似表示是 n 光子过程).通过测量计 算得到 Er^{3+}/Yb^{3+} 共掺系统中 Er^{3+} 离子和 Ho^{3+}/Yb^{3+} 共掺系统中 Ho^{3+} 离子的红绿上转换荧光的双 对数曲线斜率都近似为 2,因此可断定它们的上转 换都是双光子过程.

Er³⁺/Yb³⁺ 共掺玻璃在 980 nm 波长附近的激光 抽运下的上转换发光机理已有很多研究报道^[2,11]. 图 2 给出了碲酸盐玻璃中 Er³⁺ 离子上转换荧光产生 的机理,其中上转换绿光产生主要途径如下^[11]:

Yb³⁺ $:^{2}F_{7/2} + h(975 \text{ nm}) \rightarrow \text{Yb}^{3+} :^{2}F_{5/2}(~ \text{能量转}$ 移 ,ET)→Er³⁺ $:^{4}I_{11/2}$; (2)

 $Er^{3+} : {}^{4}I_{15/2} + h\nu (975 \text{ nm}) \rightarrow Er^{3+} : {}^{4}I_{11/2} + h\nu$ (975 nm)(激发态吸收,ESA)→ $Er^{3+} : {}^{4}F_{7/2}(~无辐射$ 弛豫)→ $Er^{3+} : {}^{2}H_{11/2} + Er^{3+} : {}^{4}S_{3/2}$; (3)

Er³⁺ ⁴I_{11/2} + Er³⁺ ⁴I_{11/2}→Er³⁺ ⁴F_{7/2}(合作上转换, CU)~(无辐射弛豫)→Er³⁺ ²H_{11/2} + Er³⁺ ⁴S_{3/2}; (4) $Er^{3+} \stackrel{?}{\cdot} I_{11/2} + Yb^{3+} \stackrel{?}{\cdot} F_{5/2} \rightarrow Yb^{3+} \stackrel{?}{\cdot} F_{7/2} + Er^{3+} \stackrel{.4}{\cdot} F_{7/2}$ (交叉弛豫, CR)~(无辐射弛豫)→ $Er^{3+} \stackrel{.2}{\cdot} H_{11/2} + Er^{3+} \stackrel{.4}{\cdot} S_{3/2}$. (5)

通过以上(2)--(5)途径中能量转移,激发态吸 收,合作上转换及交叉弛豫机理实现了 Er^{3+} 离子 ${}^{2}H_{11/2}$ 和 ${}^{4}S_{3/2}$ 能级的粒子数积累,其中 Yb^{3+} 离子参与 的途径(2)和(5)占主导地位. Er^{3+} 离子从 ${}^{2}H_{11/2}$ 和 ${}^{4}S_{3/2}$ 态向基态 ${}^{4}I_{15/2}$ 能级的跃迁实现了525 nm和546 nm 上转换绿光输出.上转换红光主要是 ${}^{4}F_{9/2}$ 能级上的 Er^{3+} 离子辐射跃迁到基态产生的. ${}^{4}F_{9/2}$ 能级粒子数 形成主要通过 Er^{3+} ; ${}^{2}I_{13/2} + Yb^{3+}$; ${}^{2}F_{5/2} \rightarrow Yb^{3+}$; ${}^{2}F_{7/2} +$ Er^{3+} ; ${}^{4}F_{9/2}$ 和 Er^{3+} ; ${}^{4}I_{13/2} + Er^{3+}$; ${}^{4}I_{11/2} \rightarrow Er^{3+}$; ${}^{4}I_{15/2} +$ Er^{3+} ; ${}^{4}F_{9/2}$ 两种交叉弛豫途实现的.

从能级图 2 中也可理解 Ho³⁺ 离子在 Ho³⁺ /Yb³⁺ 共掺碲酸盐玻璃系统中上转换机理是通过被 975 nm 激光抽运到²F₅₂能级 Yb³⁺ 离子对 Ho³⁺ 激活中心的 两步能量传递最终将 Ho³⁺ 离子激发至高能级向基 态跃迁过程,其途径可表示为

$$\begin{split} & Yb^{3+} \stackrel{?}{\cdot} F_{7/2} + h\nu (\ 975 \ nm \) \rightarrow Yb^{3+} \stackrel{?}{\cdot} F_{5/2} \ ; \quad (\ 6 \) \\ & Yb^{3+} \stackrel{?}{\cdot} F_{5/2} + Ho^{3+} \stackrel{$}{\cdot} I_8 \rightarrow Yb^{3+} \stackrel{?}{\cdot} F_{7/2} + Ho^{3+} \stackrel{$}{\cdot} I_6 \ ; (\ 7 \) \\ & Yb^{3+} \stackrel{?}{\cdot} F_{5/2} + Ho^{3+} \stackrel{$}{\cdot} I_6 \rightarrow Yb^{3+} \stackrel{?}{\cdot} F_{7/2} + Ho^{3+} \stackrel{$}{\cdot} F_3 \ . \ (\ 8 \) \end{split}$$

Yb³⁺离子首先吸收抽运光能量由基态被激发 到²F_{5/2}能级,处在激发态的Yb³⁺离子把能量传递给 Ho^{3+} 离子,从而将基态的 Ho^{3+} 离子激发至 I_{a} 能级, 接着 Yb³⁺ 继续向 Ho³⁺ 传递能量并使之由⁵ I₆ 激发至 ⁵F, 整个过程中 Yb³⁺ 离子充当了直接敏化的作用. ⁵F, 能级上离子快速弛豫到⁵F,(⁵S,)和⁵F, 能级,这两 个能级上的离子辐射跃迁到⁵I。基态能级时分别发 射出 548 nm 绿光和 662 nm 红光. 另外一方面, Ho³⁺ 离子⁵F₂,和⁵I,能级之间与⁵I,和⁵I,能级之间能量差 相当 因此 Ho³⁺ 离子之间还存在 Ho³⁺ ⁵F_{2,3} + Ho³⁺: ⁵I₈→Ho³⁺ [•]I₅ + Ho³⁺ [•]I₇ 交叉弛豫过程 ,这个过程导 致51。上的粒子数不断积累,红光逐步增强,这里需 要指出的是、Yb³⁺离子与 Ho³⁺离子之间的能量传递 是以声子辅助能量转移(PAT)形式 因为 Yb3+ 离子 与 Ho³⁺离子能量并不是很匹配 ,但是 Yb³⁺ 的²F_{5/2}↔ ${}^{2}F_{7/2}$ 与 Ho³⁺ 的⁵ I₈ \leftrightarrow ⁵ I₆ , ⁵ I₆ \leftrightarrow ⁵ F₃ 的能隙不大 相应的 声子辅助能量转移概率大 因此通过 Yb3+ 与 Ho3+ 离 子的两步能量传递最终将 Ho^{3+} 离子激发至⁵ F_3 , F_4 等高能级 实现粒子数积累.

图 5 75TeO₂-20ZnO(4.2 - x)La₂O₃-0.4Er₂O₃-0.4Ho₂O₃-xYb₂O₃ (x = 0-4) 系列玻璃在 975 nm LD 抽运下的上转换荧光

图 6 Er³⁺和 Ho³⁺交叉弛豫作用

3.3. Er³⁺ / Ho³⁺ /Yb³⁺ 三掺碲酸盐玻璃的上转换光 谱及上转换机理

图 5 为 975 nm 激光抽运下 75TeO₂-20ZnO(4.2 - x)La₂O₃-0.4Er₂O₃-0.4Ho₂O₃-x Yb₂O₃(x = 0-4)三 掺 EHY 系列样品的上转换荧光光谱图,结合 HY 和 EY 系列样品的上转换荧光光谱性质(见图 3),可以 看出 EHY 系列样品在 500-700 nm 波段没有出现新 的荧光峰,两处上转换荧光波长依然位于 548 nm 和 660 nm 附近,峰值波长位置基本没有发生移动,但形 状出现了变化,可以断定 548 nm 绿光和 660 nm 红光 主要是 Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, Ho^{3+} : ${}^{5}F_{4}$ (${}^{5}S_{2}$) $\rightarrow {}^{5}I_{8}$ 和 Er^{3+} : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, Ho^{3+} : ${}^{5}F_{4}$ (${}^{5}S_{2}$) $\rightarrow {}^{5}I_{8}$ 和 Er³⁺ : ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, Ho^{3+} : ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ 跃迁共同作用的结 果,导致在红光和绿光波段产生了叠加效应,从上转 换荧光相对强度数值来看,EHY 系列样品的上转换 强度高于 HY 共掺系列玻璃,与 EY 共掺系列玻璃强 度近似,根据前面分析的 Er^{3+} 和 Ho^{3+} 与 Yb^{3+} 共掺下

的上转换机理分析以及图 5 中不含 Yb, O_3 的 Er^{3+} / Ho³⁺ 共掺样品极弱的上转换荧光的结果可推断当 Er³⁺ / Ho³⁺ /Yb³⁺ 三种离子共掺时 ,Yb³⁺ 离子起了敏 化主导作用,当Yb³⁺离子引入Er³⁺/Ho³⁺共掺的系 统时,一部分 Yb³⁺ 离子与 Er³⁺ 离子相互作用,一部 分 Yb³⁺ 离子与 Ho³⁺ 离子相互作用 同时 Er³⁺ 离子与 Ho³⁺离子也存在能量转移作用^[12].从表 2 中列出的 该系列三掺样品中绿光和红光上转换荧光相对强度 以及两者比值数值变化可以看出 样品中红光和绿 光随着 Yb³⁺离子浓度增加而增强,直到 Yb,O,浓度 为4 mol%时绿光、红光还没有出现浓度淬灭现象。 但当 Yb, O, 浓度大于 0.8 mol % 时,绿光与红光强度 比值下降,说明红光增加的幅度大于绿光,从高掺杂 Yb, O, 浓度(>1.6 mol%)的样品的 548 nm 绿光和 660 nm 处红光的形状与 HY 系列样品相似,可以断 定绿光、红光的增强主要由于 Ho^{3+} 的⁵ F₄(⁵S₇)和⁵ F₅ 能级上的粒子数积累加剧 ,导致 Ho³⁺ 的⁵F₄(⁵S₂)→ ⁵Ⅰ。和⁵F5→⁵Ⅰ。跃迁概率增大.其原因有两个方面:一 是 Ho³⁺ /Yb³⁺ 共掺玻璃在高 Yb, O, 掺杂浓度下 Yb³⁺ →Ho³⁺ 能量传递效率高于 Er³⁺/Yb³⁺ 共掺玻璃中 Yb³⁺→Er³⁺能量传递效率,使得 Ho³⁺的⁵F₄(⁵S₂)和 ⁵F,能级上的粒子数积累速率增加;二是 Er³⁺与 Ho³⁺之间可能存在以下交叉弛豫能量传递过程:

Ho³⁺ ⁵F₃ + Er³⁺ ⁴I_{11/2} → Ho³⁺ ⁵F₅ + Er³⁺ ⁴F_{9/2} ;(9) Ho³⁺ ⁵I₆ + Er³⁺ ⁴I₁₂₂ → Ho³⁺ ⁵F₅ + Er³⁺ ⁴I_{15/2} ;(10) Ho³⁺ ⁵I₆ + Er³⁺ ⁴I_{11/2} → Ho³⁺ ⁵F₄ + Er³⁺ ⁴I_{15/2} .(11) 如图 6 所示,由于(9)和(10)式的交叉弛豫作用

导致 Ho^{3+} 的⁵ F_5 能级的粒子数增加 ,上转换红光增强 ,由于(11)式的交叉弛豫作用导致 Ho^{3+} 的⁵ F_4 能

图 7 75TeO₂-20ZnO{ 3 - x)La₂O₃-0.4Ho₂O₃-1.6Yb₂O₃-xEr₂O₃ (x = 0.4—3.0)玻璃在 975 nm LD 抽运下的上转换荧光

级的粒子数增加导致绿光增强.

我们还研究了 Yb₂O₃ 和 Ho₂O₃ 浓度分别固定在 1.6 和 0.4 mol%情况下 引入不同掺杂浓度 Er, O, 下 样品上转换光谱.图 7 为 75TeO₂-20ZnO-(3 - x) La₂O₃-0.4Ho₂O₃-1.6Yb₂O₃-*x*Er₂O₃ (x = 0.4-3.2) HYE 系列玻璃在 975 nm LD 抽运下的上转换荧光光 谱图.结合表 2 数据和图 6 可以看出随着 Er^{3+} 离子 浓度增加红绿光上转换明显降低 但是绿光发射下 降幅度要大于红光,根据 Dexter 的理论^[13],能量传 递概率与敏化离子和受主离子之间的平均间距 R⁻⁶ 成正比,因此,当 Er³⁺离子浓度不断增加,更多的 Er³⁺" 抢夺 "Yb³⁺ 离子 Er³⁺ 与 Yb³⁺ 间距减小 两者之 间发生能量传递的概率急剧增加 使得 Er³⁺ 的高能 级向基态⁴I₁₅₂无辐射跃迁弛豫概率增加,相应的与 Yb³⁺离子的合作上转换概率减少 同时 Er³⁺ 向 Yb³⁺ 反向能量传递的概率也增加^[3]因此上转换强度相 应减小 这个原因占主导地位. 另外一方面是 Er³⁺ 与 Ho³⁺ 离子之间也发生较强的能量转移, 当 Er³⁺ 掺 杂浓度不断增加,Er³⁺ 与 Ho³⁺ 之间的距离减小,发 生交叉弛豫能量转移概率也相应增加,这种增加使 得绿光和红光的光谱形状更趋向于 HY 共掺系列上 转换发光特征 但是由于更多的 Yh³⁺ 在和 Fr³⁺ 相互 作用 使得最终的绿光和红光强度减弱.

Er³⁺/Yb³⁺ 共掺,Ho³⁺/Yb³⁺ 共掺,和 Er³⁺/Yb³⁺/Ho³⁺ 三掺碲酸盐玻璃样品,在 975 nm LD 激发三种掺杂 系统玻璃中都观察到了红绿光上转换现象. Ho³⁺/ Yb³⁺ 共掺碲酸盐玻璃在 548 nm 和 662 nm 两个波段 上转换荧光分别由 Ho^{3+} $: F_4(^{5}S_2) \rightarrow I_8$ 和 $F_5 \rightarrow I_8$ 辐射跃迁产生. Er³⁺/Yb³⁺ 共掺碲酸盐玻璃样品在 525 nm 546 nm 和 657 nm 三处上转换荧光分别是由 于 Er^{3+} $: H_{11/2} \rightarrow {}^{4}I_{15/2}$ $: {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ 和 ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ 辐射跃 迁产生.在 Er³⁺ /Yb³⁺ 共掺和 Ho³⁺ /Yb³⁺ 共掺玻璃系 统中,Yb,O,掺杂浓度从0变化到4mol%时,Ho³⁺和 Er^{3+} 离子上转换强度随着 Yb^{3+} 离子的增加而增强, 没有出现浓度淬灭现象,在高掺杂Yb,O,浓度下, Yb³⁺→Ho³⁺能量传递效率高于 Yb³⁺→Ho³⁺. 碲酸盐 玻璃中 Er³⁺、Ho³⁺在与 Yb³⁺ 共掺系统中的绿红上转 换发光都是双光子过程,在 $Er^{3+}/Yb^{3+}/Ho^{3+}$ 三掺碲 酸盐玻璃样品两处上转换荧光位于 548 nm 和 660 nm ,主要是由于 Er³⁺ ⁴S_{3/2}→⁴I_{15/2} ,Ho³⁺ ⁵F₄(⁵S₂) →⁵ I₈ 和 Er³⁺ ⁴ F_{9/2}→⁴ I_{15/2} ,Ho³⁺ ⁵ F₅→⁵ I₈ 跃迁共同作 用的结果 导致在红光和绿光波段产生了叠加效应. Er³⁺/Yb³⁺/Ho³⁺三掺碲酸盐玻璃的上转换机理受 Er³⁺/Yb³⁺之间 .Ho³⁺/Yb³⁺之间 .Er³⁺/Ho³⁺之间三者 共同相互作用影响 .Er³⁺/Ho³⁺ 离子间存在的交叉弛 豫过程可增加 Ho³⁺ 离子在可见光范围的上转换 强度.

4.结 论

我们用高温熔融法制备了不同掺杂浓度比例的

- [1] Yang J H ,Dai S X Jiang Z H 2003 Progress in Physics. 23 284 (in Chinese)[杨建虎、戴世勋、姜中宏 2003 物理学进展 23 284]
- [2] Xu S Q , Wang G N , Zhang J J , Dai S X , Hu L L , Jiang Z H 2004 Acta. Phys. Sin. 53 1840 (in Chinese)[徐时清、汪国年、张军杰、戴世勋、胡丽丽、姜中宏 2004 物理学报 53 1840]
- [3] Yang Z M Zhang Q Y Liu Y H Jiang Z H 2005 Acta. Phys. Sin.
 54 2013 (in Chinese) [杨中民、张勤远、刘粤惠、姜中宏 2005 物理学报 54 2013]
- [4] Yang D L, Hou Y Y Zhao X, Liu G S, Lin H, Liu K, Pun E Y 2006 Acta. Phys. Sin. 55 4304 (in Chinese)[杨殿来、候嫣嫣、 赵 昕、刘贵山、林 海、刘 克、Pun Edwin Yue-Bun 2006 物 理学报 55 4304
- [5] Zhang X H , Liu Z W , Xiao S G 2005 Spectroscopy and Spectral

Analysis 25 660 (in Chinese) [张向华、刘政威、肖思国 2005 光 谱学与光谱分析 25 660]

- [6] Qiu J Shojiya M Kawamoto Y Kadono K 2000 J. Lumin. 86 23
- [7] Qiu J Shojiya M Kawamoto Y 1999 J. Appl. Phys. 86 909
- [8] Qiu J ,Kawamoto Y 2002 J. Appl. Phys. 91 954
- [9] Zou X ,Toratani H 1995 J. Non-Cryt. Solids 181 87
- [10] Strohhofer C ,Polman A 2001 Opt . Mater . 17 445
- [11] Lei J H Xiao S G Xan L Liu Z W 2005 Spectroscopy and Spectral Analysis 25 1382(in Chinese)[雷军辉、肖思国、闫 磊、刘政威 2005 光谱学与光谱分析 25 1382]
- [12] Zhang X ,Xu T ,Dai S ,Nie Q ,Shen X 2006 Journal of Alloys and Compounds (In Press)
- [13] Dexter D L 1953 J. Chem. Phys. 21 836

Upconversion luminescence in Yb³⁺ sensitized Er³⁺/Yb³⁺ - codoped tellurite glasses *

Dai Shi-Xun[†] Li Xu-Jie Nie Qiu-Hua Xu Tie-Feng Shen Xiang Wang Xun-Si

(College of Information Science and Engineering ,Ningbo University ,Ningbo 315211 ,China)

(Received 19 January 2007; revised manuscript received 4 March 2007)

Abstract

A series of $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}$ -codoped $\operatorname{Ho}^{3+}/\operatorname{Yb}^{3+}$ -codoped ,and $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}/\operatorname{Ho}^{3+}$ -triply doped tellurite glasses were prepared by high-temperature melting. Under 975 nm laser light excitation ,intense green and red upconversion luminescence was observed in all the three kinds of codoped tellurite glasses. The influence of Yb^{3+} ions on the upconversion emission properties of Er^{3+} and Ho^{3+} ions was investigated as well as the energy transfer efficiencies of $\operatorname{Yb}^{3+} \rightarrow \operatorname{Er}^{3+}$ and $\operatorname{Yb}^{3+} \rightarrow \operatorname{Ho}^{3+}$. Upconversion luminescence mechanisms of Er^{3+} and Ho^{3+} sensitized by Yb^{3+} in tellurite glasses were discussed. When the concentrations of Er^{3+} and Ho^{3+} ions were fixed at low values ,the intensity of green and red upcoversion emission in $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}/\operatorname{Ho}^{3+}$ -triply doped tellurite glasses increases with increasing $\operatorname{Yb}_2\operatorname{O}_3$ content , which are due to the interaction overlap of Er^{3+} $\operatorname{K}_{3/2} \rightarrow \operatorname{I}_{15/2}$ and $\operatorname{Ho}^{3+} \cdot \operatorname{S}_2({}^5\operatorname{F}_4) \rightarrow \operatorname{S}_8$ transitions , $\operatorname{Er}^{3+} \cdot \operatorname{K}_{9/2} \rightarrow \operatorname{I}_{15/2}$ and $\operatorname{Ho}^{3+} \cdot \operatorname{S}_{5} \rightarrow \operatorname{S}_1_8$ transitions ,respectively. In $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}/\operatorname{Ho}^{3+}$ triply doped tellurite glasses , the upconversion luminescence mechanisms were affected by the interaction energy transfers of $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}$, $\operatorname{Ho}^{3+}/\operatorname{Yb}^{3+}$ and $\operatorname{Er}^{3+}/\operatorname{Ho}^{3+}$. The cross-relaxation between Er^{3+} and Ho^{3+} enhances the upconversion emission intensities of Ho^{3+} in the visible region.

Keywords : $Er^{3+}/Yb^{3+}/Ho^{3+}$ -codoped , tellurite glasses , optical properties , upconversion PACC : 7855 , 7840 , 4255R

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60272034) and the Science and Technology Department of Zhejiang Province (Grant No. 2006C21082).

[†] E-mail :daishixun@nbu.edu.cn