大气湍流对斜程传输准单色高斯-谢尔 光束空间相干性的影响*

王 4^{12} , 王向朝¹²) 曾爱军¹) 杨 μ^{12}

1)(中国科学院上海光学精密机械研究所,上海 201800)
 2)(中国科学院研究生院,北京 100049)
 (2007年5月13日收到 2007年5月23日收到修改稿)

由湍流大气中斜程传输时准单色高斯-谢尔(GSM)光束互相干函数的解析式导出了该光束的复相干度.然后, 利用表征光束空间相干性的横向相干长度,研究了斜程传输时大气湍流对准单色 GSM 光束空间相干性的影响.研 究结果表明:1)当传输路径偏离水平方向较大(即 $\theta \leq 88^\circ$)时,准单色 GSM 光束横向相干长度随传输距离均为先迅 速增加,后缓慢增加,最后基本保持不变.2)当传输路径接近水平方向(即 $\theta \geq 89^\circ$)时,准单色 GSM 光束横向相干长 度随传输距离均为先增大,达到一个最大值后开始下降并持续减小.3)空间相干性不同的准单色 GSM 光束在湍流 大气中传输一定距离后空间相干性趋于相同.最后,对以上结果在物理上给予了解释.

关键词:大气光学,空间相干性,高斯-谢尔光束,斜程传输 PACC:9265,4200

1.引 言

研究激光光束在湍流大气中的传输,在激光雷 达、激光卫星通讯、激光制导与激光预警等11领域有 重要意义 20 世纪 90 年代初 Wu 等^[23]发现:部分空 间相干光较完全空间相干光受大气湍流影响小 此 后.作为最简单又最易实现的部分空间相干光—— 高斯-谢尔(GSM)光束受到广泛关注^{4-15]}.然而,以 上工作均限于对水平传输(即大气折射率结构参量 C_{1}^{2} 为常数)GSM 光束的研究.由于在激光卫星通 讯、激光制导与激光预警等领域,常涉及激光光束斜 程传输^{1,16} (大气折射率结构参量 C_{x}^{2} 随高度变化), 所以研究 GSM 光束斜程传输时的特性很有意义,本 文以准单色 GSM 光束为研究对象,首先由湍流大气 中斜程传输时准单色高斯-谢尔光束互相干函数的 解析式导出了该光束的复相干度.然后 利用表征光 束空间相干性的横向相干长度,研究了斜程传输时 大气湍流对准单色 GSM 光束空间相干性的影响.

2. 斜程传输时准单色 GSM 光束的复相 干度

设光束沿 z 轴从 z = 0 处平面(光源平面)向 z > 0 半空间传输.斜程传输时(z 轴正方向为传播方 向), z 处平面内准单色 GSM 光束的互相干函 数为^[17]

$$\begin{aligned}
 \Gamma(\rho_{1},\rho_{2},z;\tau) \\
 = \frac{\pi\Delta\omega_{\rm H}\exp\left[-(\Delta\omega_{\rm H}+i\overline{\omega})|\tau|\right]}{\overline{\Delta^{2}(z)}} \\
 \times \exp\left[-\frac{(\rho_{1}+\rho_{2})^{2}}{8\sigma_{\rm s}^{2}\Delta^{2}(z)}\right] \\
 \times \exp\left\{-\left[\frac{1}{2\delta^{2}}\frac{1}{\overline{\Delta^{2}(z)}}+\left(\overline{M}_{1}+\frac{\overline{M}_{2}+\overline{M}_{3}}{\overline{\Delta^{2}(z)}}\right)\right. \\
 -\frac{\overline{M}_{2}^{2}z^{2}}{2\overline{k}^{2}\sigma_{\rm s}^{2}}\frac{1}{\overline{\Delta^{2}(z)}}\right](\rho_{1}-\rho_{2})^{2}\right\} \\
 \times \exp\left[-\frac{i\overline{k}(\rho_{1}^{2}-\rho_{2}^{2})}{2\overline{k}(z)}\right], \quad (1)$$

其中

^{*}国家自然科学基金(批准号 150578051)和上海市科委国际合作计划项目(批准号 051107085)资助的课题.

[†] 通讯联系人. E-mail: hannaiwanghua@yahoo.com.cn

$$\frac{1}{\delta^2} = \frac{1}{4\sigma_s^2} + \frac{1}{\sigma_g^2} , \qquad (2)$$

$$\overline{\Delta^2}(z) = 1 + \left(\frac{z}{\overline{k}\sigma_{\rm S}\delta}\right)^2 + \frac{2\overline{M}_3 z^2}{\overline{k}^2 \sigma_{\rm S}^2}, \qquad (3)$$

$$\overline{R}(z) = \frac{\overline{k}^2 \sigma_{\rm s}^2 \overline{\Delta^2}(z) z}{\overline{k}^2 \sigma_{\rm s}^2 \overline{\Delta^2}(z) + \overline{M}_2 z^2 - \overline{k}^2 \sigma_{\rm s}^2}, \qquad (4)$$

$$\overline{M}_{1} = \frac{1}{2} \overline{B}_{0} B_{1} , \qquad (5)$$

$$\bar{M}_2 = \frac{1}{2}\bar{B}_0 B_2 , \qquad (6)$$

$$\overline{M}_{3} = \frac{1}{2} \overline{B}_{0} B_{3} , \qquad (7)$$

$$\overline{B_0} = 2\pi^2 \overline{k}^2 \sec\theta \int_0^\infty 0.033\kappa^3$$

$$\times \exp\left(-\kappa^2/\kappa_m^2\right) \left(\kappa^2 + \frac{1}{L_0^2}\right)^{-11/6} d\kappa , (8)$$

$$B_{1} = \int_{h_{0}}^{H} C_{n}^{2} (h) (1 - \xi)^{2} dh , \qquad (9)$$

$$B_2 = 2 \int_{h_0}^{H} C_n^2 (h) (1 - \xi) \xi dh , \qquad (10)$$

$$B_{3} = \int_{h_{0}}^{H} C_{n}^{2} (h) \xi^{2} dh , \qquad (11)$$

式中 Γ (ρ_1 , ρ_2 ,z; τ)为 z处平面内准单色 GSM 光束 的互相干函数, ρ_1 , ρ_2 为 z处平面内的横向坐标矢 量, τ 为时间延迟, σ_s , σ_g 为光源参量, ω 为光源频谱 分布的中心频率 $\Delta \omega_{\rm H}$ 为频率半峰半宽(HWHM),k为中心波数,-表示该表达式中的 k 由 k 替代, $\xi =$

 $\frac{h - h_0}{H - h_0}$, h_0 为接收器距离地面高度,H为光源距离 地面高度(即下行传输 downlink)对于接收器距离 地面高度为 H,光源距离地面高度为 h_0 , $\xi = 1 - \frac{h - h_0}{H - h_0}$ (即上行传输 uplink)), θ 为传输路径与竖直 方向夹角, C_n^2 (h)为随高度 h 变化的 H-V湍流廓线 模型中的折射率结构参量,且

$$C_n^2(h) = 0.00594(v/27)^2(10^{-5}h)^0 \exp(-h/1000) + 2.7 \times 10^{-16} \exp(-h/1500) + C_n^2(0) \exp(-h/100), \quad (12)^2$$

式中 v 为风速的方均根 ,单位为 m/s ,h 的单位为 m , C_n^2 (0)为地面上 C_n^2 的值 ,单位为 m^{-2/3}.应用最广泛 的一种廓线模型为 $H - V_{5/7}$ 湍流廓线模型^[1],对应的 参量值为 v = 21 m/s , C_n^2 (0)=1.7×10⁻¹⁴ m^{-2/3}.

在 z 处平面内的复相干度为^[18]

$$\begin{array}{l}
\gamma(\rho_{1},\rho_{2},z;\tau) \\
= \frac{\Gamma(\rho_{1},\rho_{2},z;\tau)}{\Gamma^{1/2}(\rho_{1},\rho_{2},z;0)\Gamma^{1/2}(\rho_{2},\rho_{2},z;0)}.$$
(13)

客(1) 可优 λ (13) 元 并对 γ 求模得

$$| \chi(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z; \tau) |$$

$$= \exp\left[-\Delta\omega_{\mathrm{H}} | \tau | \right]$$

$$\times \exp\left\{ -\left[\frac{1}{2\delta^{2} \overline{\Delta^{2}}(z)} + \left(\overline{M}_{1} + \frac{\overline{M}_{2} + \overline{M}_{3}}{\overline{\Delta^{2}}(z)} \right) - \frac{\overline{M}_{2}^{2} z^{2}}{2\overline{k}^{2} \sigma_{\mathrm{S}}^{2} \overline{\Delta^{2}}(z)} \right] (\boldsymbol{\rho}_{1} - \boldsymbol{\rho}_{2})^{\mathrm{S}} \right\}.$$
(14)

3. 斜程传输时大气湍流对准单色 GSM 光束空间相干性的影响

仿照 Mandel 与 Wolf 的做法^[18],定义准单色 GSM 光束的横向相干长度 L_{sc} 为| γ |的有效宽度,即 当| γ |由它的最大值下降到最大值的 1/e 时,对应的 z处平面内两点间的距离 | $\rho_1 - \rho_2$ |.所以,由(14) 式得

$$L_{\rm SC} = \left[\frac{1}{2\delta^2 \, \overline{\Delta^2}(z)} + \left(\overline{M}_1 + \frac{\overline{M}_2 + \overline{M}_3}{\overline{\Delta^2}(z)} \right) - \frac{\overline{M}_2^2 z^2}{2\overline{k}^2 \sigma_8^2 \, \overline{\Delta^2}(z)} \right]^{-1/2}.$$
 (15)

由 | γ | 的物理含义^[18]可知,光束的横向相干长度 L_{sc} 越大表示光束的空间相干性越强(横向相干面积 越大).

图 1—7 为不同传输方向下,准单色 GSM 光束 横向相干长度 L_{sc}随传输距离的变化规律(光源距

图 1 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长度随传输距离的变化规律(参量取值: $\theta = 0^\circ \overline{\lambda} = 632.8 \text{ nm}, \sigma_s = 5 \text{ cm}$ (a) $\sigma_g = 2 \text{ nm}$ (b) $\sigma_g = 1 \text{ nm}$ (c) $\sigma_g = 0.1 \text{ nm}$)

图 2 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: $\theta = 30^\circ$,其余参量同图 1)

图 3 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: *θ* = 60°, 其余参量同图 1)

图 4 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: *θ* = 80°, 其余参量同图 1)

图 5 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: *θ* = 88° 其余参量同图 1)

图 6 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: *θ* = 89°, 其余参量同图 1)

图 7 准单色 GSM 光束在湍流大气中斜程传输时,横向相干长 度随传输距离的变化规律(参量取值: *θ* = 90°, 其余参量同图 1)

离地面高度为 $h_0 = 0$ m,接收器距离地面高度为 H $= z \cdot \cos \theta$). 由图中可以看出, 对于空间相干性不同 的三种光源(即 $\sigma_r = 2 \text{ mm}, \sigma_r = 1 \text{ mm} 与 \sigma_r = 0.1$ mm) 其横向相干长度随传输距离变化规律基本相 同:1)当传输路径与竖直方向夹角 $\theta \leq 88^{\circ}$ 时,准单 色 GSM 光束横向相干长度随传输距离均为先迅速 增加,后缓慢增加,最后基本保持不变,2)当传输路 径与竖直方向夹角 $\theta \ge 89^{\circ}$ 时 准单色 GSM 光束横向 相干长度随传输距离均为先增大,达到一个最大值 后开始下降并持续减小.3)空间相干性不同的三种 准单色 GSM 光束(即 $\sigma_g = 2 \text{ mm}$, $\sigma_g = 1 \text{ mm}$ 与 $\sigma_g =$ 0.1 mm 在湍流大气中传输一定距离后空间相干性 趋于相同(即图中三条曲线趋于粘合),从物理上可 以对以上现象作如下解释:准单色 GSM 光束横向相 干长度随传输距离变化的规律由两个因素决定,其 一,自由空间传输对准单色 GSM 光束横向相干长度 的影响.其二,大气湍流对准单色 GSM 光束横向相 干长度的影响,前者使准单色 GSM 光束横向相干长 度随传输距离增加而增大,而后者使之随传输距离 增加而减小.对于传输路径接近水平方向(即 $\theta \ge$ 89°的情况,当光束在湍流大气中传输距离较小时, 自由空间传输的影响占主导地位,所以准单色 GSM 光束横向相干长度随传输距离表现为先增加 当传 输距离增加到一定值时 二者的影响相当 而当传输 距离进一步增大时 后者的影响就超过了前者的影 响 从而使准单色 GSM 光束横向相干长度达到一个 最大值后开始减小,对于传输路径偏离水平方向较 大(即 θ ≤ 88°)的情况,由(12)式可知折射率结构参 量 C²(h) 随高度增大而减小,所以在很长一段传输 距离中自由空间传输的影响都比大气湍流的影响强 (从图 1—5 可看出,夹角 θ 越小,曲线拐点出现处所 对应的传输距离越大,所对应的横向相干长度 Lsc

极大值也越大),从而使横向相干长度随传输距离表 现为先迅速增加,后缓慢增加,最后基本保持不变. 横向相干长度最后随传输距离基本保持不变,是由 于斜程传输了相当长距离后,自由空间传输的影响 和大气湍流的影响基本相等.至于空间相干性不同 的三种准单色 GSM 光束在湍流大气中传输一定距 离后空间相干性趋于相同(即图中三条曲线趋于黏 合),是由于大气湍流对空间相干性较强的光束影响 较大,而对空间相干性较弱的光束影响较小.

4.结 论

本文首先由湍流大气中斜程传输时准单色高 斯-谢尔(GSM)光束互相干函数的解析式导出了该 光束的复相干度,然后 利用表征光束空间相干性的 横向相干长度 研究了斜程传输时大气湍流对准单 色 GSM 光束空间相干性的影响.研究结果表明:1) 当传输路径偏离水平方向较大(即 $\theta \leq 88^\circ$)时,准单 色 GSM 光束横向相干长度随传输距离均为先迅速 增加,后缓慢增加,最后基本保持不变.2)当传输路 径接近水平方向(即 $\theta \ge 89^\circ$)时,准单色 GSM 光束横 向相干长度随传输距离均为先增大 达到一个最大值 后开始下降并持续减小.3 空间相干性不同的三种准 单色 GSM 光束在湍流大气中传输一定距离后空间相 干性趋于相同,由于激光光束的空间相干性是决定分 波面类干涉系统(例如光栅)/信噪比的主要因素之一 (在其他参量不变时,空间相干长度大则信噪比高), 所以 在激光预警等激光探测领域 如果激光光束传 输方向接近水平方向(即 $\theta \ge 89^\circ$)则不能采用分波面 类干涉系统,但是当传输路径偏离水平方向较大(即 *θ*≤88°时,由于激光光束的空间相干性随传输距离 单调增加 所以可以采用分波面类干涉系统

- [1] Andrews L C , Phillips R L 1998 Laser beam propagation through random media (SPIE optical Engineering Press , Bellingham , WA)
- [2] Wu J 1990 J. Mod. Opt. 37 671
- [3] Wu J , Boardman A D 1991 J. Mod. Opt. 38 1355
- [5] Dogariu A , Amarande S 2003 Opt . Lett . 28 10
- [6] Shirai T, Dogariu A, Wolf E 2003 J. Opt. Soc. Am. A 20 1094
- [7] Ricklin J C , Davidson F M 2002 J. Opt. Soc. Am. A 19 1794
- [8] Ricklin J C , Davidson F M 2003 J. Opt. Soc. Am. A 20 856
- [9] Korotkova O , Salem M , Wolf E 2004 Opt . Comm . 233 225

- [10] Korotkova O , Wolf E 2005 Opt . Comm . 246 35
- [11] Ji X L , Zhang E T , Lü B D 2006 Opt . Comm . 259 1
- [12] Lu W , Liu L R , Sun J F , Yang Q G 2007 Opt . Comm . 271 1
- [13] Wang H , Wang X Z , Zeng A J , Lu W Opt . Comm . 276 218
- [14] Ji X L, Xiao X, Lii B D 2004 Acta Phys. Sin. 53 3999 (in Chinese)[季小玲、肖 希、吕百达 2004 物理学报 53 3999]
- [15] Ji X L, Huang T X, Li B D 2005 Acta Phys. Sin. 55 978 (in Chinese] 季小玲、黄太星、吕百达 2005 物理学报 55 978]
- [16] Zhang Y X , Wang G G 2006 Chin . Opt . Lett . 4 559

[17] Wang H, Wang X Z, Zeng A J, Yang K 2007 Acta Opt. Sin. 27 1548 (in Chinese] 王 华、王向朝、曾爱军、杨 坤 2007 光学 学报 27 1548] [18] Mandel L, Wolf E 1995 Optical coherence and quantum optics (Cambridge : Cambridge University Press)

Effect of atmospheric turbulence on the spatial coherence of quasi-monochromatic Gaussian Schell-model beams propagating in the slant path *

Wang Hua^{1,2})[†] Wang Xiang-Zhao^{1,2}) Zeng Ai-Jun¹) Yang Kun^{1,2})

1) Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800, China)

2 X Graduate School of the Chinese Academy of Sciences, Beijing 100049, China)

(Received 13 May 2007; revised manuscript received 23 May 2007)

Abstract

By using the mutual coherence function of quasi-monochromatic Gaussian Schell-model (GSM) beams propagating in a slant path through the turbulent atmosphere, the complex degree of coherence of those beams is derived analytically. By employing the lateral coherence length (that can be derived from the complex degree of coherence) of quasi-monochromatic GSM beams to characterize their spatial coherence, the effect of atmospheric turbulence on the spatial coherence of the beams was studied. The result shows that (1) When $\theta \leq 88^{\circ}$, the lateral coherence length increases firstly and then keeps unchanged as the beam propagates in the turbulent atmosphere. (2) When $\theta \geq 89^{\circ}$, the lateral coherence length increases firstly and then reaches a maximum value after the beam propagates a certain distance in the turbulent atmosphere, then begins degrading and keeps decreasing with increasing distance. (3) Three beams with different lateral coherence lengths at the source plane (z = 0) will have almost the same lateral coherence length after they propagate a certain distance in the turbulent atmosphere. Lastly, a physical explanation was given to the results.

Keywords : atmospheric optics , spatial coherence , Gaussian Schell-model beams , propagating in the slant path PACC : 9265 , 4200

^{*} This work was supported by National Natural Science Foundation of China (Grant No. 60578051) and International Cooperation Program Project of Shanghai Municipal Science & Technology Commission (Grant No. 051107085).

[†] Corresponding author. E-mail : hannaiwanghua@yahoo.com.cn