CO 在 Pu(100) 表面吸附的研究

罗文华 蒙大桥 李 赣 陈虎翅

(表面物理与化学国家重点实验室 綿阳 6219007) (2007年3月11日收到 2007年4月17日收到修改稿)

采用密度泛函理论 DFT 研究了 CO 分子在 Pu(100)面上的吸附. 计算结果表明 :CO 在 Pu(100)表面的 C 端吸 附比 O 端吸附更为有利 属于强化学吸附. CO 吸附态的稳定性为穴位倾斜 > 穴位垂直 > 桥位 > 顶位. CO 分子与 表面 Pu 原子的相互作用主要源于 CO 分子的杂化轨道和 Pu 原子的杂化轨道的贡献. 穴位倾斜吸附的 CO 分子的 离解能垒较小(0.280 eV) 表明在较低温度下 ,CO 分子在 Pu(100)表面会发生离解吸附 离解的 C ,O 原子将占据能 量最低的穴位.

关键词:密度泛函理论,Pu(100),CO,分子和离解吸附 PACC:3450D,7115M,6845D,7320A

1.引 言

钚具有活泼的化学性质 很容易与环境气氛中 氢、氧、水汽和 CO 等活性气体反应而发生腐蚀. 活 性气体在钚表面的吸附是发生氢化、氧化腐蚀的必 要过程 因此研究活性气体在钚表面的吸附对于深 入理解钚的腐蚀机理具有重要意义, 但是, 钚的高 活性使得气体的吸附时间很短,与氢化和氧化过程 很难区分 因此实验上难以对吸附过程进行详尽地 追踪和表征,有鉴于此,开展这方面的理论研究十 分必要,近年来也有一些文献报道, Eriksson 等人利 用薄膜线性 Muffin-Tin 轨道(FLMTO)研究了钚上化 学吸附的氢和氧的电子结构¹¹,Huda 等人利用基于 密度泛函理论(DFT)的 Dmol³程序先后研究了氢、氧 原子以及氢、氧分子在 δ-钚表面的吸附行为^[2—5]. 但迄今为止,有关 CO 在钚表面的吸附研究尚未见 报道 因此本文利用 Materials Studio 4.0 软件包中的 Dmol³程序,计算研究了 CO 在 Pu (100)面上的吸附 和离解,以期获得 CO 在 Pu (100)面上的优选吸附 态、CO 与 Pu 原子相互作用的本质、离解的过渡态和 活化能等重要信息. 需要说明的是 "Dmol³ 程序忽略 了自旋-轨道耦合效应 但这不会影响本文的主要结 论 因为我们关注的化学吸附能和活化能与总能量 的差值有关,并且预计自旋-轨道耦合对 Pu(100)和 CO/Pu(100)体系总能量的影响能够相互抵消.

2. 计算方法和模型

2.1. 计算方法

Dmol³程序采用的方法是密度泛函理论框架下 的第一性原理数值计算方法^[6]. 计算时电子交换相 关作用采用广义梯度近似(GGA)中的 revised Perdew-Burke-Emzerhof(RPBE)交换关联势描述;Pu 原子内 层电子的相对论效应采用 DFT semi-core pseudopotential (DSPP)予以考虑,价电子波函数采用 双数值基加极化函数(DNP)展开,它相当于 Gaussian 程序中的 6-31G ** ,C和 0 原子采用全电子基组;由 于 Pu 是开壳层体系,使用自旋非限制波函数求解 Kohn-Sham 方程;布里渊区积分的 Monkhorst-Pack 网 络参数设为 $4 \times 4 \times 1$,实空间截止半径为 0.50 nm;结 构优化以能量、位移和力收敛为判据,收敛阈值分别 为 1×10^{-5} Ha , 5×10^{-4} nm 和 2×10^{-2} Ha/nm;全部计 算在 SGI Altix 350 多处理器的工作站上完成.

2.2. 计算模型

δ-Pu 的晶体结构为面心立方(fec)结构 ,考虑到 计算精度和计算效率 ,吸附模型构建时 ,采用 p(2× 2)的 4 层 Pu 原子层晶(slab)来模拟 δ-Pu(100)面 ,Pu 原子的间距取实验值 ,表面上放置一个 CO 分子 ,即 模型中共含有 16 个 Pu 原子和 1 个 CO 分子 ,CO 分 子的覆盖度为 1/4. 相邻层晶间的真空层厚度取 1.5 nm,以确保相邻层晶间的相互作用足够小.图1给 出了构建的吸附模型.计算考虑了 CO 分子在 Pu (100)面上3种具有高对称性的吸附位(顶位、桥位、 穴位)上的4种可能的吸附态,以确定优选的吸附 态;考虑了 CO 以 C 端或 O 端键连方式在 Pu (100) 表面的吸附,以确定优选的吸附取向.在 CO/Pu 体 系的几何构型优化时 A 层 Pu 原子固定,只优化被 吸附的 CO 分子. 吸附能 *E*_{abs}定义为吸附前后各物质总能量的变化.其符号和大小可表示发生吸附的可能性和吸附的程度.

 $E_{abs} = E_{CO} + E_{P(100)} - E_{(CO/P(100))}$, (1) 其中 $E_{(CO/P(100))}$, $E_{P(100)}$ 和 E_{CO} 分别表示吸附后 CO/ Pu(100)体系的能量、吸附前 Pu(100)表面和 CO 分 子的能量 , E_{abs} 的正值表示吸附体系的稳定性.

图 1 CO 在 Pu(100)面上的吸附态 (a)顶上(b)桥间(c)穴位垂直(d)穴位倾斜

3. 计算结果与讨论

3.1.CO 在 Pu(100) 表面的吸附构型

表1给出了 CO/Pu (100)体系的计算结果.由表1可见,1)对于自由的 CO 分子,计算的 C—O 键的键长为 0.1136 nm,键能为 11.582 eV,与实验值⁷¹ 0.1128 nm 和 11.226 eV 符合得较好.2)对于 CO/金属吸附体系,可以将吸附能和 C—O 键长的大小作为 CO 吸附强度的判断标准,即吸附能越大、C—O 键长越大,则 CO 吸附强度越大.CO 以 O 端在顶位、桥位和穴位吸附的吸附能依次为 0.291 eV 0.288 eV 和 0.286 eV,C—O 键长依次为 0.1138 nm 0.1137 nm 和 0.1137 nm 表明 CO 的吸附强度依上述顺序逐渐减小.3 个吸附位下的吸附能都小于 40 kJmol⁻¹且

C-O 键长几乎没有变化 即便是最稳定的顶位吸附 能仅为 28.08 kImol⁻¹ 说明 CO 以 O 端在 Pu(100 表 面的吸附只是物理吸附.3)CO以C端在顶位、桥 位、穴位(垂直和倾斜)吸附的吸附能依次为 1.012 eV 1.077 eV 1.176 eV 和 1.371 eV ,C-O 键长依次 为 0.1161 nm 0.1177 nm 0.1198 nm 和 0.1372 nm 表 明 CO 吸附强度依上述顺序逐渐增加,穴位倾斜吸 附为最稳定的吸附态: 4 个吸附态的吸附能都明显 大于 40 kImol⁻¹ 即便是最不稳定的顶位吸附能也可 达到 97.64 kJmol⁻¹ 因此 CO 以 C 端在 Pu(100)面的 吸附为强化学吸附. 4)从吸附能上看,物理吸附的 O 端吸附是不能稳定存在的 因此化学吸附的 C 端 吸附应当是 CO/Pu(100)体系的稳定构型. 同时 A 种吸附态的吸附能差较小(< 0.4 eV),表明在有限 温度下,CO可能以4种吸附态并存的状态在Pu (100)面上吸附.

表 1 CO/Pu(100)体系几何和能量参数的优化值

吸附态		φ^{a} (°)	$r_{\rm C0}/\rm nm$	$r_{\rm Pu-C}$ ^{b)} /nm	$r_{\rm Pu-O}^{\rm b}$ /nm	$h_{\rm X-surf}$ c)/nm	$E_{\rm abs}/{\rm eV}$	
顶位	0端	0	0.1138	0.4646	0.3508	0.3508	0.291	
	C 端	0	0.1161	0.2437	0.3598	0.2437	1.012	
桥位	0 端	0	0.1137	0.5557	0.4483	0.4173	0.288	
	C 端	0	0.1177	0.2562	0.3547	0.1969	1.077	
穴位垂直	0 端	0	0.1137	0.5818	0.4797	0.4199	0.286	
	C 端	0	0.1198	0.2777	0.3579	0.1529	1.176	
穴位倾斜	C 端	56.47	0.1372	0.2383	0.2321	0.0776	1.371	
CO			0.1136					

a) φ 代表 C—O 键与表面法线矢量间的夹角 ; b)r 代表 C 或 O 原子与第一层 Pu 原子间最短距离 ; c)h 代表 C 或 O 原子与 Pu 表面间距离.

3.2. Mulliken 电荷布居分析和态密度分析

CO吸附在 Pu(100)表面后 必然伴随着电荷在 各原子间的转移和电子结构的变化,因此吸附前后 的 Mulliken 电荷布居分析和态密度(DOS)分析可以 给出 CO 分子与 Pu(100) 表面相互作用的信息. 表 2 给出了 CO/Pu (100)体系的 Mulliken 电荷布居数,由 表 2 可见,1)比较吸附前后钚表层、次表层、第三层 和底层的 Mulliken 电荷布居数可以发现 表层 Pu 原 子的平均电荷变化很大,次表层和第三层的变化较 小 底层的变化很小 ,表明 CO 分子主要与表层 Pu 原子相互作用,同时也说明采用4层Pu原子层晶来 模拟 CO/Pu (100) 体系是合理的.2) 自由 CO 的 HOMO 是 5g 轨道,主要由 C 的 2s 轨道组成,LUMO 是 $2\pi^*$ 轨道,主要由 C 和 O 的 $2p_x$ 和 $2p_y$ 轨道组成. 一般认为 CO 在金属表面吸附时 CO 将 HOMO 中的 电子给予金属,形成 σ键,同时金属反馈电子给 CO 的 2π* 反键轨道 形成 π键 成键作用主要是金属的 反馈作用,即总的电子流向是从金属到 CO 的,CO 2π* 反键轨道得到的电子越多,则 C-O 键被削弱的 程度越大 相应的吸附强度越大, 顶位、桥位、穴位 垂直和穴位倾斜吸附态下 CO 分子的电荷分别为 -0.005,-0.102,-0.213,-0.462,表明电子从 Pu 原子向 CO 分子转移 ,CO 在 Pu (100)面上吸附强度 为穴位倾斜 > 穴位垂直 > 桥位 > 顶位,这与 3.1 节 由吸附能得出的结论是一致的. 从吸附构型来看, 顶位、桥位和穴位吸附时 C 原子的最近邻键连 Pu 原 子数分别为 1,2 和 4,这可能使得穴位吸附较顶位 和桥位吸附在电子转移数上和能量上更加有利.同 理 穴位倾斜吸附较垂直吸附缩短了最近邻 Pu-O 原 子间的距离 ,有利于 Pu ,0 原子的相互作用 ,因而更 加稳定。

图 2 给出了最稳定穴位倾斜分子吸附和离解吸 附(详见 3.3节)下,表层 Pu 原子和 CO 分子的局域 电子态密度(PDOS),为了对比说明,图中还给出了 CO 分子距钚表面 0.75 nm 下的局域电子态密度,在 此距离下近似认为 CO 分子与表面 Pu 原子不发生 相互作用.由图 2 可见,穴位倾斜吸附后 C2s,C2p, O2s,O2p,Pu5f,Pu6p,Pu6d,Pu7s 电子态密度曲线的 峰强度、位置及形状都发生明显的改变,在低能级处 主要是 O2s 轨道与 Pu6p 轨道间的重叠杂化,而在高 能级处 C2s,C2p,O2s,O2p 的杂化轨道与 Pu5f,Pu6d, Pu7s 杂化轨道相互重叠,这表明 CO 分子与表面 Pu 原子相互作用的本质是 CO 分子的杂化轨道与 Pu 的 5f fop fod 和 7s 杂化轨道相互作用而生成新的化 学键.

表 2 CO/Pu(100)体系的 Mulliken 电荷布居数

	ᆉᇟᄱᅔ	分子吸附				这条刀加刀刀斗
	ŦW的忿	顶位	桥位	穴位垂直	穴位倾斜	丙肼吸削
С	0.108	0.172	0.099	0.025	0.065	-0.130
0	-0.108	-0.177	-0.201	-0.238	-0.527	-0.710
CO	0	-0.005	-0.102	-0.213	-0.462	-0.840
第一日	-0.151	-0.156	-0.087	-0.070	- 0.092	0.081
	-0.151	-0.101	-0.108	-0.070	- 0.092	0.081
7 5 7 4	-0.151	-0.101	-0.087	-0.070	0.116	0.081
	-0.151	-0.146	-0.108	-0.070	0.116	0.081
	0.151	0.129	0.106	0.091	0.025	0.062
第一回	0.151	0.129	0.106	0.172	0.139	0.321
赤 —広	0.151	0.129	0.160	0.172	0.098	0.037
	0.151	0.129	0.160	0.130	0.271	0.314
第三层	0.151	0.144	0.147	0.131	0.125	0.105
	0.151	0.152	0.129	0.131	0.125	0.105
	0.151	0.152	0.147	0.131	0.130	0.105
	0.151	0.132	0.129	0.131	0.130	0.105
第四层	-0.151	-0.147	-0.147	-0.147	- 0.135	-0.145
	-0.151	-0.147	-0.147	-0.147	-0.141	-0.140
	-0.151	-0.147	-0.149	-0.147	- 0.140	-0.142
	-0.151	-0.147	-0.149	-0.154	- 0.211	- 0.213

图 2 CO 分子在 Pu(100) 表面分子和离解吸附的局域电子态密度

3.3. CO在 Pu(100) 表面的离解

分子吸附的 CO 与 Pu 发生反应的前提是 CO 分

子离解成为 C 原子和 O 原子 前面的计算表明穴位 倾斜吸附态下的 C-O 键被削弱的程度最大,易于断 裂和离解 因此我们研究了穴位倾斜吸附的 CO 在 Pu(100) 面的离解. 计算采用 Dmol³" TS Search "中的 "Complete LST/QST"方法搜索过渡态,采用基于 "NEB"算法的"TS Confirmation"确认过渡态是否直接 连接反应物和产物,即是否有中间体存在,计算的 前提是确定离解产物的结构,因此首先对孤立的 C 原子和 O 原子在 Pu (100)面上吸附构型进行了优 化 优化的几何和能量参数见表 3. 由表 3 可见 ,与 CO分子相似 C和 O原子在 Pu(100)面上吸附强度 依次为穴位 > 桥位 > 顶位,穴位为最稳定的吸附位, 对应的吸附能分别为 7.137 eV 和 7.394 eV ;从能量 上看 C O 原子与 Pu 原子的结合强度比 CO 分子与 Pu 原子的结合强度要大得多 ,且 0 原子较 C 原子与 Pu原子的结合强度要大。接下来将相邻的 C_O 原

子置于 Pu(100)面上进行结构优化,优化的 C,O 原 子分别占据相邻的穴位,其 h_{Csurf} 和 h_{Osurf} 分别为 0.0207 nm 和 0.0361 nm, r_{Ph-C} 和 r_{Ph-0} 分别为 0.2327 nm 和 0.2346 nm,接近孤立 C,O 原子的优化值, C—O键长为 0.3281 nm,较自由 CO 分子优化的 C— O 键长要大得多,说明 CO 的离解吸附基本上是原 子吸附的性质,计算的离解吸附能为 3.164 eV,比分 子吸附的能量要高得多.与之对应的是 Mulliken 电 荷布居数和态密度也发生了明显变化,由图 2 和表 2 可见,Pu 原子与 C,O 原子的相互作用表现出 Pu 的杂化轨道与相对独立的 C,O 原子轨道的相互作 用;Pu 原子向 C,O 原子转移的电子数也明显增大, 分别为 0.130 和 0.710,接近于孤立的 C,O 原子穴位 吸附时得到的电子数(0.128 和 0.705),这些变化可 能是引起吸附强度增大的主要原因.

表 3 孤立的 C 或 O/Pu (100)体系几何和能量参数的优化值

吸附态 —		С			0			
	$r_{\rm Pu-C}^{a}$ /nm	$h_{\text{C-surf}}$)/nm	$E_{\rm abs}/{\rm eV}$	$r_{\rm Pu-0}^{a}$ /nm	$h_{0-\mathrm{surf}}$ b)/nm	$E_{\rm abs}/{\rm eV}$		
顶位	0.1893	0.1893	3.649	0.1872	0.1872	6.040		
桥位	0.2094	0.1304	4.820	0.2100	0.1314	6.879		
穴位	0.2329	0.0236	7.137	0.2354	0.0414	7.394		

a)r代表 C 或 O 原子与第一层 Pu 原子间最短距离;b)h 代表 C 或 O 原子与 Pu 表面间距离.

"Complete LST/QST"方法搜索的过渡态的 r_{Ph-C} 和 r_{Ph-O} 分别为 0.2291 nm 和 0.2166 nm $,h_{C-surf}$ 和 h_{O-surf} 分别为 0.0334 nm 和 0.1401 nm ,C—O 键长为 0.1836 nm , φ 为 54.49°, 说明 C—O 键被进一步削弱.通过 Mulliken 电荷布居分析可知 ,CO 分子的电荷为 - 0.545, 说明在过渡态结构中 ,有较多的电子从 Pu 表面转移到 CO 分子中 ,使得 C—O 键得到活化 ,易 于断裂分解为 C 与 O 原子."TS Confirmation "计算的

图 3 穴位倾斜吸附的 CO分子在 Pu(100) 面离解的最低能量路径

最低能量路径(MEP)见图 3,计算结果说明反应物经 过渡态后将直接到达产物;计算的离解能垒较小,为 0.280 eV ,表明在较低温度下,CO 在 Pu(100)表面会 发生离解性吸附,倾斜分子吸附是离解吸附的预吸 附态,离解的 C,O 原子将占据能量最低的穴位,这 符合双原子分子在金属表面上的共振共价键离解机 理,该机理预示双原子分子在金属表面上的离解要 经过以倾斜吸附态存在的前体^[8].

4.结 论

采用密度泛函理论(DFT)研究了 CO 分子在 Pu (100)面上的分子和离解吸附.计算结果表明:CO 在 Pu(100)表面的 C 端吸附比 O 端吸附更为有利, 属于强化学吸附. CO 吸附态的稳定性为穴位倾斜 > 穴位垂直 > 桥位 > 顶位,穴位倾斜吸附态的吸附 能为 1.371 eV. CO 分子与表面 Pu 原子的相互作用 主要源于 CO 分子的杂化轨道和 Pu 原子的杂化轨 道的贡献. 穴位倾斜吸附的 CO 分子的离解能垒较

据能量最低的穴位,研究结果为更好地理解 CO 与 金属钚的相互作用提供了一定的基础.

- [1] Eriksson O, Cox L E 1991 Phys. Rev. B 43 4590
- [2] Huda M N , Ray A K 2005 Physica B 366 95
- [3] Huda M N , Ray A K 2004 Eur . Phys . J . B 40 337
- [4] Huda M N , Ray A K 2005 Eur . Phys . J . B 43 131
- [5] Huda M N , Ray A K 2004 Physica B 352 5
- [6] Delley B 1990 J. Chem. Phys. 92 508
- [7] Lide D R 1992 Florida : CRC Press
- [8] Pauling L 1984 J. Solid State Chem. 54 297

Density functional study of CO adsorption on Pu (100) surface

Luo Wen-Hua Meng Da-Qiao Li Gan Chen Hu-Chi

(National Key Laboratory for Surface Physics and Chemistry, Mianyang 6219007, China)
(Received 11 March 2007; revised manuscript received 17 April 2007)

Abstract

The adsorption of CO on Pu (100) surface were studied by the density functional theory (DFT). The calculation results show that the O-down adsorption is less stable than the C-down adsorption which is found to be a strong chemisorption. The stability of adsorption configuration of CO is hollow tilted > hollow vertical > bridge > on-top. The interaction between Pu atom and CO molecule results mainly from the contribution of hybridized molecular orbital of CO molecule and hybridized orbital of surface Pu atom. A small activation barrier of 0.280 eV is found for the dissociation of CO molecule in hollow tilted configuration , which indicates the dissociative adsorption of CO on Pu(100) surface at the lower temperature with dissociated C and O atoms favoring the hollow site of lowest energy.

Keywords : density functional theory , Pu (100) surface , carbon monoxide , molecular and dissociative adsorption PACC : 3450D , 7115M , 6845D , 7320A