GaAs 极化电子源激活的 yo-yo 过程研究*

李 倩 郝 亮 庞文宁*

(清华大学物理系极化物理实验室,北京 100084) (2006年12月21日收到 2007年3月11日收到修改稿)

通过对 GaAs 晶体产生极化电子束流的实验过程研究 ,着重对 yo-yo 过程中不同的实验参数对产生极化束流以 及束流稳定情况的影响进行了分析 ,为获得稳定而持久的极化电流提供了有力的实验支持 ,并讨论了极化电流强 度的可控性.

关键词:GaAs 晶体,极化电子束,yo-yo 过程,激活 PACC:3580,6114R

1.引 言

极化电子束作为碰撞激发过程中的入射探针, 对研究其自旋相关效应起着关键性作用。而 GaAs 极化电子源是获得极化电子束的理想装置.在20 世纪 70 年代中期13, GaAs 极化电子源的研制成功, 促进了极化电子束在碰撞实验中的应用,并在各个 学科中受到人们广泛的关注.清华大学极化物理实 验室 研制了自旋极化电子碰撞谱仪^[2]. GaAs 源产 生的极化电子束流 将通过静电半球偏转器、电子光 学传输透镜到达反应点, 束流在传输过程的调试往 往需要很长时间,并且受到传输效率的影响,最终能 够到达反应点的束流约为总束流的 25%,因此极化 电子束的持续时间,以及稳定强度是实验能否顺利 进行的关键,我们通过多次实验探究,对影响激发 束流的参数进行讨论,总结出一套简单有效的实验 方法 获得稳定且完全满足实验需要的束流强度 达 到国际同类设备先进水平。

2. 实验原理

GaAs 晶体能产生极化电子的关键在于其价带结构.其价带能量最高点和导带能量最低点分别为 p 态和 s 态.如图 1 所示^[1].导带和价带最小能量差 在 Brillouin 区的中心 Γ 点,带隙宽度为 E_{g} = 1.52

eV. 由于自旋-轨道相互作用使价带的 6 重简并分 裂成四重简并的 P_{3/2}和两重简并的 P_{1/2}能级,其能量 差为 $\Delta = 0.34 \text{ eV}^{[3]}$. 图 1(b)中 ,用量子数 m_i 将其 简并态标出,圆圈中的数字代表其相对跃迁概率. 当我们用 $E_g \leq h\nu \leq E_g + \Delta$ 能量的激光入射 GaAs 晶 体表面时,只能使 P₃₀能级的电子发生跃迁,而 P₁₀ 能级的电子则不会发生跃迁. 根据光选择定则原 理,当激光为左旋圆偏振光(σ⁺)时,Δm_i = +1(图1 (b)实线所示),此时导带上自旋向上的电子数为自 旋向下的电子数的 3 倍,由此得到导带上电子的极 化度理论值为 $P = (N^{\uparrow} - N^{\downarrow})(N^{\uparrow} + N^{\downarrow}) =$ - 50% 同理,当用右旋偏振光(σ⁻)入射时,导带上 电子的极化度理论值为 50%. 实际上,极化电子在 光激发过程产生之后,还要经过运输和逃逸过程,才 能到达 GaAs 晶体的表面,这个过程存在对电子的去 极化效应 因此能够得到的电子极化度要小于理论值。

要使跃迁的电子能够发射到真空形成自由电 子,还需要经过约+4 eV的真空能级.通过一定的 方法使 GaAs 晶体的电子亲和势(导带能级和真空能 级之差)降低至零甚至负值,即由正电子亲和势变为 负电子亲和势.

如图 2 所示,为了获得负电子亲和势,在实验中 先在超洁净的 GaAs 晶体表面镀一层 Cs,使其电子 亲和势将为接近零值,然后再引入 O₂ 使得电子亲和 势变为负值.此时导带电子能量高于真空能级,有 利于跃迁电子发射到真空中形成自由电子.

^{*} 国家自然科学基金(批准号:10134010,10574079)资助的课题.

[†] E-mail: pangwn@tsinghua.edu.cn

图 1 p型 GaAs 晶体的能级结构和光激发跃迁示意图

图 2 对 p 型 GaAs 晶体表面不同处理时的能带结构 (a) 洁净 GaAs 表面 (b) 表面 Cs 化的 GaAs 能级结构 (c) 表面进行 Cs-O 处理的能级结构

3. 实验过程

我们采用的是非应变 p 型 GaAs(100)面,其 Zn 掺杂浓度为 2.4×10¹⁸ cm⁻³,厚度为 0.6 mm. 在安装 晶片之前,先要对 GaAs 晶体进行严格的化学清洗. 在每次激活之前,还要对 GaAs 晶体进行热清洗,热 清洗有低温热清洗和高温热清洗两步.实验证明, 高温热清洗尤为重要.在低温热清洗时,用灯丝对 晶体进行加热,保持温度在 400℃左右. Cs 带加 2 A 的电流,Ag在 300℃预热. 然后进行高温热清洗.不 同的实验小组的高温热清洗方法都不相同^[4-6]. 我 们小组的方法是给灯丝通以 8.4 A 左右的电流,并 在 GaAs 光阴极与灯丝之间加 800 V 的高压,利用灯 丝的发射电子轰击晶片,使其温度在 600℃左右维 持 2—3 h 即可. 温度太低无法将晶片清洗干净,不 能激活 :而温度太高则会破坏 GaAs 的晶体结构,甚 至可以使其分解为 As 蒸气和 Ga 小液滴. 实验证 明,温度控制在 600—615℃较为理想.

高温热清洗后 將 Cs 带电流增加至 3A 并开始 降温,让 Cs 在降温过程中缓慢并且均匀地沉积在 GaAs 表面. 当降温至 55—60℃时,將 Cs 带电流加至 3.3 A,用激光照射 GaAs 晶体.我们采用中心波长 780 nm 的半导体激光器,其光子能量为 1.59 eV,正 好满足能够产生极化电子跃迁的条件.激光通过线 偏振片和 LCVR(液晶相位延迟器),变为左旋(或右 旋 /圆偏振光.此时已经开始有 nA 数量级的极化束 流形成.经过一段时间的等待(约几个小时),束流 逐渐增大到几百个 nA,然后达到其发射峰值,则可 以开始进行通 Cs 通 O₂ 互相配合的激活过程.

目前为止,根据供给 Cs 和 O₂ 的方法不同,一共 有三种激活过程:饱和过程,复合过程及 yo-yo 过程. 饱和过程,其要点是给系统持续通入 Cs 和 O₂,直至 达到最大发射束流为止;复和过程中,需要一直给系 统通 Cs,而经过周期性通断 O₂ 来获得最大发射束 流 iyo-yo 过程是在激活过程中,以交替方式通 Cs 断 O₂、通 O₂ 断 Cs 来得到最大发射束流. 经反复实验 尝试,yo-yo 过程是最适合我们的方法. 然而,由于 实验条件复杂,不同参数的设置对实验结果也有很 大影响.

实验开始的几个周期得到束流的极大值很小, 且极其不稳定. 经过 3—5 个周期以后,束流峰值逐 渐增加,最终可达到约 10—12 µA.为了获得最大且 稳定的极化束流,实验过程中 Cs 的喷射强度,通 Cs 通 O₂ 的时机掌握,以及最后激活过程完成之后束流 维持需要的条件都很重要.根据激活过程的实际情 况,合理的设定参数,提高实验的效率,在较短的时 间内得到所需要的极化束流也是很重要的.实验表 明多次激活过程的反复也有利于束流最后的稳定.

图 3 和图 4 均是在激活过程反复了十几次之后 的某次实验过程. 虚线是给 O_2 关 Cs,实线是给 Cs 关 O_2 . 激活之前的 Cs 沉淀等待时间并没有在图中 表现出来,而是从第一次通 O_2 的时刻作为开始. 其 中 ,图 3 所示的参数为 Cs 沉淀时间约 2 h,通 Cs 时, Cs 带加 3.6 A 的电流;每个循环尽量让激发束流下 降到 50%左右再进行切换. 图 4 所示参数为 Cs 沉 淀时间 10 h,通 Cs 时,Cs 带加 3.45 A 电流,并没有 刻意控制 Cs 和 O_2 的下降百分比.

4. 实验结果及讨论

我们将多次激活过程的实验参数以及所得结果 的对比,总结如下:

1. 束流的峰值强度主要在通 Cs 时上升,而通 O₂ 时上升较少,甚至有所下降. 而随着实验进行, 在通 Cs 时束流下降越来越少,需要的时间也越来越 长 相反,O₂ 可以使束流迅速下降,甚至可以完全抑 制束流. 而且,由于这个过程非常迅速,实际操作也 很难准确控制通 O₂ 时的束流下降百分比. 但是值 得注意的是,O₂ 虽然对束流的抑制作用虽然明显, 但对下一次通 Cs 时的束流峰值并没有太大影响. 也就是说,实验中,并不需要刻意控制通 O₂ 时束流 下降的百分比,在 60%—85%之间均可以得到良好 的实验效果.

2. 在 yo-yo 过程中,Cs 的强度对结果有很大的 影响.强度太小,则实验效率过低;强度太大,虽然 提高了实验效率,但是由于 Cs 迅速抑制了晶片活 性,不利于获得最大的激发束流,且使束流稳定的维 持变得困难.如图 3 的实验结果,虽然能够达到较 大的束流峰值,但其稳定性不好,得到的束流在 12 h 之内降到了 2.7 μA,而在 30 h 以后就降到了 1 μA 左 右.在我们的实验中,Cs 带的电流控制在 3.40 A— 3.5 A 均可,而 3.45 A 是比较理想的强度.图 4 得到 的束流在有所下降后,可以稳定的维持几百个小时.

3. 激发束流的维持. 激活进行到后期,通 Cs 时 的束流到达峰值以后下降越来越缓慢,且下降幅度 越来越小,晶片的此次激活发射束流即将达到饱和, 继续通 Cs 通 O 则发现束流峰值逐渐下降. 此时,在 最后一循环通 O₂ 结束之后,应减小 Cs 的电流,使其 缓慢到达峰值. 束流到达峰值之后会缓慢下降,且 下降速度会越来越慢. 若束流持续下降,则只需要 再通 O₂ 进行 1—2 个循环即可. 在维持束流的阶 段,只需要微量的 Cs. 若提高 Cs 的电流,则束流会 有所上升,若再通 O₂ 则束流会迅速下降. 说明在一 个激活周期,束流达到饱和之后,只能通过提高 Cs 的强度来维持束流的稳定. 当束流完全消失以后, 则需要重新对晶片进行热清洗,重新整个激活过程.

4. 束流的极化度. 我们实验中采用普通 GaAs 晶片作为极化电子源的光阴极,该方法获得的极化 束流的极化度理论值为 50%,但是由于电子在逃逸 和传输过程中磁场等因素对其产生的去极化效应, 很难达到这一理论值. 由同一套实验设备,丁海兵 等人经由实验测量^[7],得到 30.8% ± 3.5% 的极化 度值.

此外,开始 yo-yo 过程之前的 Cs 积累过程也很 重要. 经过约 10 h 的 Cs 积累 然后开始 yo-yo 过程, 用以上的实验方法,我们得到了稳定的极化束流 :在 激活过程结束以后,维持 Cs 带 3.40 A 的电流不变, 束流强度不低于 3.5μ A 可以维持 240 h 以上;束流 强度不低于 2.5μ A 时可以维持 500 h 以上. 而提高 Cs 带电流后,束流强度还会随之增加. 实验中可以 根据需要,适当提高 Cs 带电流,在一定范围内得到 需要的束流强度.

- [1] Pierce D T, Meier F 1976 Phys Rev. B 13 5484
- [2] Ding H B, Pang W N, Liu Y B, Shang R C 2004 J. of At. and Mol. Phys. (Supplement) 201 (in Chinese)[丁海兵、庞文宁、刘 义保、尚仁成 2004 原子与分子物理学报(增刊)201]
- [3] Aspnes D E , Studna A A 1973 Phys. Rev. B 7 4605
- [4] Pierce D T, Celotta R J, Wang G C, Unertl W N, Galejs A, Kuyatt C E, Mielczarek S R 1980 Rev. Sci. Instrum. 51 478
- [5] Ranganathalah C , Robins J L , Yates A L , Macklin W C , Anderson R A , Williams J F 1990 J. of Elec. Spect. and Related Phen. 51 331
- [6] Ciccacci F, Rossi De S, Pelucchi E, Tagliaferri A 1997 Rev. Sci. Instrum. 68 1841
- [7] Ding H B , Pang W N , Liu Y B 2005 Chin . Phys. Lett. 22 2546

Progress in yo-yo process to produce polarized electrons from GaAs photocathode *

Li Qian Hao Liang Pang Wen-Ning

(Department of Physics, Tsinghua University, Beijing 100084, China) (Received 21 December 2006; revised manuscript received 11 March 2007)

Abstract

By studying the process of producing polarized electrons by the photoemission of GaAs, different experimental parameters on the generation and stability of the electron beam is discussed. A feasible way to generate stable beam of long duration is provided. There is also a discussion on producing polarized electron beam with controlled intensity.

 $\label{eq:Keywords:GaAs crystal , spin-polarized electron beam , yo-yo process , activation process \\ PACC: 3580 , 6114 R$

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10134010 10574079).