双折射吸收非线性介质薄膜中倍频的产生

颜国君⁺ 陈光德 伍叶龙 杨建清

(西安交通大学理学院应用物理系,西安 710049) (2007年3月3日收到2007年5月22日收到修改稿)

从二次谐波电场满足的波动方程出发,考虑到介质对二次谐波的吸收以及把完全边界条件应用于基频波和二 次谐波在介质的入射面和出射面之间的反射效应,推导出了单光轴非线性薄膜介质中的二次谐波输出功率的计算 式.结果表明:当采用复折射率的概念时,可以把非线性无吸收介质的二次谐波输出功率计算式应用到非线性吸收 介质二次谐波输出功率计算式中去.

关键词:非线性,倍频,二次谐波功率 PACC:4265K

1.引 言

材料的光学非线性在波长转换和集成光学中有 着广阔的应用前景^[12].实验上高精度地给出非线性 介质的非线性光学极化系数具有重要的意义,在实 验上测量非线性介质的二阶非线性光学极化系数的 一般方法是:测量出不同入射角下的非线性介质输 出的二次谐波功率,然后利用理论给出的二次谐波 输出功率与入射角的关系[3]对实验数据进行拟合, 从而确定出非线性介质的二阶非线性光学极化系 数,因此理论上合理地给出二次谐波输出功率与入 射角之间的关系式对实验拟合出二阶非线性光学极 化系数就非常重要,理论上最早给出二次谐波输出 功率与入射角关系式的为 Bloembergen 等人^[4],然而 Bloembergen 给出的公式太复杂^[3],以至用起来很困 难 而且该公式没能反应出光在薄膜介质中的多次 反射 ;由 JK 基于 Maker-Fringes 给出的薄膜二次谐波 输出功率与入射角的关系式[3]虽考虑了光在薄膜介 质中的多次反射^{5]},但仅适应于无吸收的各向同性 的介质,该公式没有考虑材料对基频波和二次谐波 的吸收效应,也不适用于双折射介质,而且使用的边 界条件为近似边界条件 ;Warren 等^{5]}根据完全边界 条件分别给出了各向同性介质、吸收介质和双折射 介质对应的二次谐波输出功率与入射角的关系式, 然而该理论未能同时考虑介质的双折射和吸收 作用.

本文从二次谐波满足的麦克斯韦方程出发,考 虑介质对二次谐波的吸收、基频波和二次谐波在介 质的入射面和出射面之间的多次反射效应,应用完 全边界条件,推导出了单光轴非线性薄膜介质中的 二次谐波输出功率的计算式.结果表明:当采用复折 射率的概念时,可以把非线性无吸收薄膜介质中的 二次谐波输出功率计算式应用到非线性吸收介质薄 膜的二次谐波输出功率计算式中去.

2. 理 论

2.1. 倍频场非线性波动方程

根据光的电磁理论 非磁性、均匀电介质中倍频 光电场服从的波动方程为

$$\nabla \times \nabla \times \boldsymbol{E}_{2} + \mu_{0} \sigma \boldsymbol{I} \frac{\partial \boldsymbol{E}_{2}}{\partial t} + \mu_{0} \varepsilon_{0} \boldsymbol{\varepsilon}_{2} \frac{\partial^{2} \boldsymbol{E}_{2}}{\partial t^{2}}$$
$$= -\mu_{0} \frac{\partial^{2} \boldsymbol{P}_{2}^{\text{NL}}}{\partial t^{2}} , \qquad (1)$$

式中, σ 为介质电导率, μ_0 为真空磁导率,I为单位 矩阵, P^{NL} 是非线性极化强度, ε_2 是介质的介电张 量.把 $E_2 = E_2(\mathbf{r})e^{-i\omega_2 t}$, $P_2^{\text{NL}} = \varepsilon_0 P_2 e^{2(k_1 \cdot \mathbf{r} - \omega_1 t)}$ 代入 (1)式(其中 $\omega_2 = 2\omega_1$, $P_2 \equiv |E_1|^2 \chi$: $e_1 e_1$, E_1 为基 频光在非线性介质入射点处的电场大小),同时引入 有效介电张量 $\varepsilon'_2(\varepsilon'_2 = i\sigma I/\omega_2 + \varepsilon_2$,其实分量用来

[†] E-mail ;yanguojun138@stu.xjtu.edu.cn

确定光波矢的方向,而其虚分量表示光的衰减,

$$\boldsymbol{\varepsilon}'_{m} = \varepsilon_{0} \begin{pmatrix} n^{2}_{mo} & 0 & 0 \\ 0 & n^{2}_{mo} & 0 \\ 0 & 0 & n^{2}_{mo} \end{pmatrix}$$
),化简(1)式得
 $\nabla \times \nabla \times E_{2}(\boldsymbol{r}) - \mu_{2}\omega_{2}^{2}\boldsymbol{\varepsilon}'_{2}E_{2}(\boldsymbol{r})$
 $= \omega_{2}^{2}\mu_{0}\varepsilon_{0}\boldsymbol{P}_{2}e^{2ik_{1}\cdot\boldsymbol{r}}$, (2)

该方程的解具有平面波的形式.当 $P_2 = 0$ 时,方程 (2)为齐次方程,故方程(2)的解由齐次方程的通解 与其相应的特解所组成,具有以下形式^[2]:

 $E_2(\mathbf{r}) = \mathbf{e}_b \exp(2i\mathbf{k}_1 \cdot \mathbf{r}) + \mathbf{e}_f \exp(i\mathbf{k}_2 \cdot \mathbf{r}) (3)$ 其中 \mathbf{e}_b 项为方程的特解项 ; \mathbf{e}_f 项为方程的通解项. \mathbf{k}_1 为基频光在介质中的波矢 ; \mathbf{k}_2 为二次谐波对应的波矢.

2.2. 方程的特解(设二次谐波以 p 偏振状态输出)

把方程的特解项代入方程(2),由此可以求出 e_b的值.

设光沿 x-z 平面入射,其中 z 轴方向为非线性 介质的光轴且为非线性介质的表面法线,入射角为 θ,光传播模型如图 1 所示(图示基频光入射为 p 偏 振状态入射 对 s 偏振的入射可以作同样的分析).

图 1 光在薄膜介质中传播模型图

图中 x-z 平面为入射面 , $k_1 = (\omega_1/c) (\sin\theta_10, \cos\theta)$ 为基频光波矢 , q'_2 为非线性介质入射表面反射的二 次谐波波矢^[1] , k_2^{f} , k_2^{b} 和 k_2^{r} 分别为非线性介质中产 生的二次谐波自由波波矢、束缚波波矢和反射波波 矢 , k_2 为基底中的二次谐波波矢 , θ_m (m = 1, 2)为折 射角 ,L 为样品的厚度.在非线性介质薄膜中 ,波矢 在图示坐标系中可表示为

$$k_{2}^{\mathrm{b}} = 2k_{1} = \frac{2\omega_{1}n(\omega_{1},\theta_{1})}{c} (\sin\theta_{1} \ \beta \ \cos\theta_{1})$$
$$= 2k_{1}(\sin\theta_{1} \ \beta \ \cos\theta_{1}),$$

$$k_{2}^{f} = k_{2} (\sin\theta_{2} \ \ \rho \ \cos\theta_{2})$$

$$= \frac{\omega_{2} \ n (\omega_{2} \ \ \theta_{2})}{c} (\sin\theta_{2} \ \ \rho \ \cos\theta_{2}),$$

$$k_{2}^{r} = k_{2} (\sin\theta_{2} \ \ \rho \ , - \cos\theta_{2})$$

$$= \frac{\omega_{2} \ n (\omega_{2} \ \ \theta_{2})}{c} (\sin\theta_{2} \ \ \rho \ , - \cos\theta_{2}),$$

式中的折射率指数 $n(\omega_2, \theta_2), n(\omega_1, \theta_1)$ 的计算式 如下:

$$\frac{1}{n^2(\omega_m,\theta_m)} = \left(\frac{\cos^2\theta_m}{n_{mo}^2} + \frac{\sin^2\theta_m}{n_{me}^2}\right) , \quad (4)$$

而 θ_1, θ_2 的值可由(4)式和电磁波边界连续条件的 相位匹配条件^[6]

Ref $n(\omega_m, \theta_m)$)· $\sin\theta_m = \sin\theta$ (5) 联立解得 (5)式中的 Re 表示取实部.对应 s 偏振输入, θ_1 的计算如下:

Ref.
$$n_{10}$$
 $\sin \theta_1 = \sin \theta$.

把特解项 $E_2(\mathbf{r}) = \mathbf{e}_b \exp(2i\mathbf{k}_1 \cdot \mathbf{r})$ 代入方程 (2),对应于二次谐波 p 偏振状态输出时,由 $E_{2y} = 0$ $\frac{\partial E_2(\mathbf{r})}{\partial y} = 0$ 可得 $n_1^2(\omega_1, \theta_1)\cos^2\theta_1 e_{bx} - n_1^2(\omega_1, \theta_1)\cos\theta_1\sin\theta_1 e_{bz}$ $- n_{2o}^2 e_{bx} = P_{2x}$ (在 x 投影方向), (6) $- n_1^2(\omega_1, \theta_1)\cos\theta_1\sin\theta_1 e_{bx} + n_1^2(\omega_1, \theta_1)\sin^2\theta_1 e_{bz}$ $- n_{2e}^2 e_{bz} = P_{2z}$ (在 z 投影方向). (7) 由(6)式和(7)式解得 e_{bx} , e_{bz} 和 e_b 的值分别为

$$e_{bx} = \frac{n^{2}(\omega_{2}, \theta_{1})}{n^{2}(\omega_{1}, \theta_{1}) - n^{2}(\omega_{2}, \theta_{1})} \times \left(\frac{1}{n_{20}^{2}}P_{2x} - \frac{k_{bx}(k_{b} \cdot P_{2})}{\omega_{2}^{2}n_{20}^{2}n_{2e}^{2}/c^{2}}\right), \quad (8)$$

$$e_{\rm bz} = \frac{n^2(\omega_2, \theta_1)}{n^2(\omega_1, \theta_1) - n^2(\omega_2, \theta_1)} \times \left(\frac{1}{n_{2e}^2} P_{2z} - \frac{k_{\rm bz}(k_{\rm b} \cdot P_2)}{\omega_2^2 n_{2o}^2 n_{2e}^2 / c^2}\right), \quad (9)$$

$$\boldsymbol{e}_{\mathrm{b}} = \frac{n^{2}(\omega_{2}, \beta_{1})}{n^{2}(\omega_{1}, \beta_{1}) - n^{2}(\omega_{2}, \beta_{1})} \times \left(\frac{\varepsilon_{0}}{\boldsymbol{\varepsilon}'}\boldsymbol{P}_{2} - \frac{\boldsymbol{k}_{\mathrm{b}}(\boldsymbol{k}_{\mathrm{b}} \cdot \boldsymbol{P}_{2})}{\omega_{2}^{2}n_{20}^{2}n_{2e}^{2}/c^{2}}\right), \quad (10)$$

式中 n²(ω₂, θ₁)的定义为

$$\frac{1}{n^2(\omega_2,\theta_1)} = \left(\frac{\cos^2\theta_1}{n_{2o}^2} + \frac{\sin^2\theta_1}{n_{2e}^2}\right).$$

2.3. 边界条件 ,方程的通解项 $e_{\rm f}$

方程的通解由具体的边界条件确定.求特解时

已给出了各个波矢和折射角的值和方向,下面确定 各电场方向.

对单光轴晶体,当入射光沿非光轴方向入射时, 便产生双折射,此时二次谐波的电场方向 e_2 和电位 移矢量 D_2 方向不重合, D_2 方向与二次谐波波矢 k_2 的方向垂直,而非线性介质中 E_m 方向由 $\epsilon'_m E_m = D_m$ $= \frac{n^2(\omega_2, \theta_2)}{\mu_0 c^2} k_m \times (E_m \times k_m)$ 确定, D_2 , k_2 , e_2 的方 向关系如图 2 所示.类似于求 θ_m ,写成分量的形式 化简得

$$Re(n_{mo}^{2})\cos(\theta_{m} - \gamma_{m})$$

$$= Re(n^{2}(\omega_{m}, \theta_{m}))\cos\gamma_{m}\cos\theta_{m}, \quad (11)$$

$$Re(n_{me}^{2})\sin(\theta_{m} - \gamma_{m})$$

$$= Re(n^{2}(\omega_{m}, \theta_{m}))\cos\gamma_{m}\sin\theta_{m}. \quad (12)$$

图 2 D₂, k₂, e₂的方向关系

$$\cos\gamma_{m} = \sqrt{\frac{\operatorname{Re}^{2}(n^{2}(\omega_{m},\theta_{m}))}{\operatorname{Re}^{2}(n^{2}_{mo})}} \cos\theta_{m}^{2} + \frac{\operatorname{Re}^{2}(n^{2}(\omega_{m},\theta_{m}))}{\operatorname{Re}^{2}(n^{2}_{me})} \sin\theta_{m}^{2}.$$
(13)

根据图 1 写出二次谐波电场和磁场在图示 1、 $|| 和 || || 区的表达式. 1 区为空气区 此时 <math>E_2(r)$ 中无 e_b 但由于在空气与非线性介质界面处产生了二次 谐波反射 所以存在 e_f 故 $E_3(r)$ 和 $H_2(r)$ 分别为

$$E_{2}(\mathbf{r}) = Re_{1} \exp\left(i\mathbf{q}_{2} \cdot \left(\mathbf{r} + \frac{L}{2}z\right)\right), \quad (14)$$

$$H_{2}(\mathbf{r}) = -\frac{i}{\mu_{0}\omega_{2}} \nabla \times E_{2}(\mathbf{r})$$

$$= \frac{R}{\mu_{0}c} \exp\left(i\mathbf{q}_{2} \cdot \left(\mathbf{r} + \frac{L}{2}z\right)\right)\mathbf{y}, \quad (15)$$

式中对 p 偏振输入 $e_1 = (-\cos\theta \ \Omega, -\sin\theta)$,对 s 偏振输入, $e_1 = (0, 1, 0)$, y 为 y 轴的方向矢量, $q_2 = \frac{2\omega}{c} (\sin\theta \ \Omega, -\cos\theta)$.

[[区为非线性介质区 ,此时 $E_2(r)$ 既有 e_b ,又 有 e_f .同时由于非线性介质与基底界面的反射 , e_f 中既有前向项 ,又有反射项 ,故 $E_2(r)$ 和 $H_2(r)$ 分 别为

$$E_{2}(\mathbf{r}) = \mathbf{e}_{b} \exp(2i\mathbf{k}_{1} \cdot \mathbf{r}) + A\mathbf{e}_{\parallel} \exp(i\mathbf{k}_{2} \cdot \mathbf{r}) + B\mathbf{e}_{\parallel}^{r} \exp(i\mathbf{k}_{2}^{r} \cdot \mathbf{r}), \qquad (16)$$

$$H_{2}(\mathbf{r}) = -\frac{1}{\mu_{0}\omega_{2}} \nabla \times E_{2}(\mathbf{r})$$
$$= -\frac{i}{\mu_{0}\omega_{2}} \left(\mathbf{x} \frac{\partial}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial}{\partial \mathbf{y}} + \mathbf{z} \frac{\partial}{\partial \mathbf{z}} \right)$$
$$\times (\mathbf{x}E_{2x}(\mathbf{r}) + \mathbf{y}E_{2y}(\mathbf{r}) + \mathbf{z}E_{2z}(\mathbf{r}))$$

$$= \frac{1}{\mu_0 \omega_2} \boldsymbol{H}_{\mathrm{b}, y} \exp(2\mathrm{i}\boldsymbol{k}_1 \cdot \boldsymbol{r}) + \frac{n(\omega_2 \boldsymbol{\theta}_2)}{\mu_0 c} \cos\gamma_2 [A \exp(\mathrm{i}\boldsymbol{k}_2 \cdot \boldsymbol{r}) + B \exp(\mathrm{i}\boldsymbol{k}_2^{\mathrm{r}} \cdot \boldsymbol{r})]\boldsymbol{y}, \qquad (17)$$

式中 $\boldsymbol{e}_{\parallel} = (\cos(\theta_2 - \gamma_2), 0, -\sin(\theta_2 - \gamma_2)), \boldsymbol{e}_{\parallel}^r =$ ($-\cos(\theta_2 - \gamma_2), 0, -\sin(\theta_2 - \gamma_2)), \boldsymbol{H}_{by} = \boldsymbol{k}_b \times \boldsymbol{e}_b$. 化简利用了 $k_{2z}\boldsymbol{e}_{\parallel,x} - k_{2x}\boldsymbol{e}_{\parallel,z} = k_2\cos\gamma_2, k_{2z}^r\boldsymbol{e}_{\parallel,x}^r - k_{2x}^r\boldsymbol{e}_{\parallel,z}^r = k_2\cos\gamma_m$ ($2k_{1z}\boldsymbol{e}_{bx} - 2k_{1x}\boldsymbol{e}_{bz}$) $\boldsymbol{y} = \boldsymbol{k}_b \times \boldsymbol{e}_b$ 和 对 p 偏振光入射时有 $\boldsymbol{E}_{2y}(\boldsymbol{r}) = 0$ 和 $\frac{\partial \boldsymbol{E}_2(\boldsymbol{r})}{\partial \boldsymbol{y}} = 0$.

Ⅲ区为基底区.不考虑Ⅲ区中的非线性效应(例如)基底为中心对称的晶体,无二阶非线性效应),且 认为基底为各向同性均匀介质,故 $E_2(r)$ 中无 e_b 项,但存在由非线性介质透射出的二次谐波.该区 $E_2(r)$ 和 $H_2(r)$ 为

$$\boldsymbol{E}_{2}(\boldsymbol{r}) = T\boldsymbol{e}_{|||} \exp\left(i\boldsymbol{k}_{2,|||} \cdot \left(\boldsymbol{r} - \frac{L}{2}\boldsymbol{z}\right)\right) , \qquad (18)$$

$$H_{2}(\mathbf{r}) = \frac{Tn(\omega_{2}, \beta_{2}^{\mathrm{sub}})}{\mu_{0}c} \exp\left(\mathrm{i}\mathbf{k}_{2,\mathrm{III}} \cdot \left(\mathbf{r} - \frac{L}{2}z\right)\right)\mathbf{y} ,$$
(19)

式中 $n(\omega_2, \theta_2^{\text{sub}})$ 为基底相应的折射率, $k_{2,\parallel}$, = $\frac{n(\omega_2, \theta_2^{\text{sub}})\omega_2}{c}(\sin\theta_2^{\text{sub}}, 0, \cos\theta_2^{\text{sub}})$, 而 θ_2^{sub} 由 Snell 定 律 $n(\omega_2, \theta_2^{\text{sub}})\sin\theta_2^{\text{sub}} = \sin\theta$ 确定, $e_{\parallel} = (\cos\theta_2^{\text{sub}}, 0, \cos\theta_2^{\text{sub}})$ $-\sin\theta_2^{\text{sub}}$).

由 *E*₂ 和 *H*₂ 在边界的连续条件 在 I — II 区边 界(*z* = − *L*/2 处)有

$$-R\cos\theta = e_{bx}\exp(-i\psi_{1}) + \cos(\theta_{2} - \gamma_{2})$$

$$\times [A\exp(-i\psi_{2}) - B\exp(i\psi_{2})](20)$$

$$R = h_{b,y}\exp(-i\psi_{1})c/\omega_{2} + n(\omega_{2},\theta_{2})$$

$$\times \cos\gamma_{2}[A\exp(-i\psi_{2})]$$

$$+ B\exp(i\psi_{2})], \qquad (21)$$

式中
$$\psi_1 \ \psi_2 \ \beta \ b \ \psi_1 = k_1 \cos \theta_1 L \ \psi_2 = k_2 \cos \theta_2 L/2.$$

在 [] — []] 边界处有
 $T \cos \theta_2^{\text{sub}} = e_{\text{bx}} \exp(i\psi_1) + \cos(\theta_2 - \gamma_2)$
 $\times [A \exp(i\psi_2) - B \exp(-i\psi_2)], (22)$
 $Tn(\omega_2 \ \theta_2^{\text{sub}}) = h_{\text{by}} \exp(i\psi_1)c/\omega_2 + n(\omega_2 \ \theta_2)$
 $\times \cos \gamma_2 [A \exp(i\psi_2) + B \exp(-i\psi_2)].$ (23)
由方程(20)—(23)解出 T 并化简可得

$$T = \frac{n^{2}(\omega_{1}, \theta_{1})\cos^{2}\theta_{1} - n^{2}(\omega_{2}, \theta_{2})\cos^{2}\theta_{2}}{n^{2}(\omega_{1}, \theta_{1}) - n^{2}(\omega_{2}, \theta_{1})} \frac{n^{2}(\omega_{2}, \theta_{1})}{n^{2}_{2o}} \frac{2\pi L}{\lambda} \frac{1}{\exp(-2i\psi_{2}) + r_{af}r_{fs}\exp(2i\psi_{2})} \times \frac{2it_{fs}}{2n(\omega_{2}, \theta_{2})\cos\gamma_{2}\cos(\theta_{2} - \gamma_{2})} \left\{ \frac{r_{af}\sin(\psi_{1} + \psi_{2})}{\psi_{1} + \psi_{2}} \exp(i\psi_{2})e_{2}^{r} \cdot P_{2} + \frac{\sin(\psi_{1} - \psi_{2})}{\psi_{1} - \psi_{2}}\exp(-i\psi_{2})e_{2} \cdot P_{2} \right\},$$
(24)

化简 T 时利用了恒等式

$$\exp(\psi_1 \pm 2\psi_2) = 2i \sin(\psi_1 \pm \psi_2) \exp(\pm i\psi_2) + \exp(-i\psi_1)$$

和近似等式

$$\begin{array}{l} n(\omega_1, \theta_1) \sin \vartheta_1 \approx \sin \vartheta \approx n(\omega_2, \theta_2) \sin \vartheta_2 , \\ \sin(\theta_2 - \gamma_2) \approx \frac{n^2(\omega_2, \theta_2)}{n_{22}^2} \cos \gamma_2 \sin \vartheta_2 . \end{array}$$

式中

$$r_{\rm af} = \frac{\cos\theta\cos\gamma_2 n(\omega_1\theta_2) - \cos(\theta_2 - \gamma_2)}{\cos\theta\cos\gamma_2 n(\omega_2_1\theta_2) + \cos(\theta_2 - \gamma_2)}$$

为空气-非线性介质界面的二次谐波反射系数,

 $r_{\rm fs} = \frac{n(\omega_2 \ \beta_2^{\rm sub})\cos(\theta_2 - \gamma_2) - \cos\theta_2^{\rm sub}n(\omega_2 \ \beta_2)\cos\gamma_2}{n(\omega_2 \ \beta_2^{\rm sub})\cos(\theta_2 - \gamma_2) + \cos\theta_2^{\rm sub}n(\omega_2 \ \beta_2)\cos\gamma_2}$ 为非线性介质-基底界面的二次谐波反射系数,

 $t_{\rm fs} = \frac{2n(\omega_2 \ \beta_2 \ \cos\gamma_2 \cos(\theta_2 - \gamma_2))}{n(\omega_2 \ \beta_2^{\rm sub} \ \cos(\theta_2 - \gamma_2) + \cos\theta_2^{\rm sub} \ n(\omega_2 \ \beta_2 \ \cos\gamma_2)}$ 为非线性介质-基底的二次谐波透射系数.

 $e_{2} \cdot P_{2} = e_{2} \cdot |E_{1}|^{2} (d : e_{1} e_{1}) = \frac{2}{\varepsilon_{0} cn(\omega_{1}, \theta_{1})} I_{1}$ $|t_{af}|^{2} d_{eff} . 式中 I_{1} 为基频光的入射强度 ;t_{af} 为空气-$

非线性介质的基频光透射系数,对 p 偏振光输入,p 偏振光输出:

$$t_{af} = \frac{2\cos\theta}{\cos(\theta_1 - \gamma_1) + n(\omega_1, \theta_1)\cos\gamma_1\cos\theta}$$

对 s 偏振光输入 p 偏振光输出

$$t_{af} = \frac{2\cos\theta}{\cos\theta_1 + n_{10}(\omega)\cos\theta};$$

$$d_{eff}$$
的定义为 $d_{eff} = e_2 \cdot (d : e_1 e_1). 同样对 e_2^r \cdot P_2 有$

$$e_2^r \cdot P_2 = e_2^r \cdot |E_1|^2 (d : e_1 e_1)$$

$$= \frac{2}{\varepsilon_0 cn(\omega_1, \theta_1)} I_1 + t_{af} |^2 d_{eff}^r,$$

 $d_{eff}^{r} = e_{2}^{r} \cdot (d : e_{1} e_{1}).$ 从基底透射出来的二次谐波功率 $P_{2\omega} \Rightarrow P_{2\omega} = |T|^{2}$ $|t_{sa}|^{2} A \epsilon_{0} c/2 , A 为基频光光束的横截面积, t_{sa} 为基$

底-空气界面的二次谐波透射系数,其计算式为(p 偏振光透射):

$$t_{\rm sa} = \frac{2n(\omega_2, \beta_2^{\rm sub})\cos\theta_2^{\rm sub}}{n(\omega_2, \beta_2^{\rm sub})\cos\theta + \cos\theta_2^{\rm sub}}.$$

这样把相应的各表达式代入 P₂。计算式,便可以 得到

$$P_{2\omega} = \left| \frac{n^{2} (\omega_{1} \ \theta_{1} \) \cos^{2} \theta_{1} - n^{2} (\omega_{2} \ \theta_{2} \) \cos^{2} \theta_{2}}{n^{2} (\omega_{1} \ \theta_{1} \) - n^{2} (\omega_{2} \ \theta_{2} \)} \right|^{2} \left| \frac{n(\omega_{2} \ \theta_{1} \)}{n_{2o}} \right|^{4} \left| \frac{t_{\text{fs}}}{n(\omega_{2} \ \theta_{2} \) \cos \gamma_{2} \cos \gamma_{2} \cos (\theta_{2} - \gamma_{2} \)} \right|^{2} \right|^{2} \\ \times \left| \frac{2\pi L}{\lambda} \right|^{2} \left| \frac{1}{\exp(-2i\psi_{2} \) - r_{\text{af}} r_{\text{fs}} \exp(2i\psi_{2} \)} \right|^{2} \left| \frac{2t_{\text{af}}^{4} t_{\text{sa}}^{2} P_{\omega}^{2}}{\varepsilon_{0} cn^{2} (\omega_{1} \ \theta_{1} \) A} \right|^{2} \\ \times \left| \frac{r_{\text{af}} \sin(\psi_{1} + \psi_{2} \)}{\psi_{1} + \psi_{2}} \exp(i\psi_{2} \) d_{\text{eff}} + \frac{\sin(\psi_{1} - \psi_{2} \)}{\psi_{1} - \psi_{2}} \exp(-i\psi_{2} \) d_{\text{eff}} \right|^{2}.$$
(25)

若考虑基频波和二次谐波在介质的入射面和出射面 之间的多次反射效应,此时(25)式应再乘上一个多 重反射校正因子 阶(0)³¹.

- 3. 结果的分析与讨论
- 3.1. 非线性介质为无吸收透明介质

此时 ε'_2 各分量为实数 ,故 $n(\omega_1, \theta_1), n(\omega_2, \theta_1)$

 θ_1), (ω_2, θ_2) , $n_{2_0}, \psi_{1,2}$, r_{af} , r_{fs} , t_{af} , t_{fs} 和 t_{sa} 都成为实数 对应的 $P_{2_{\omega}}$ 与 Warren^[3]给出的相应的 $P_{2_{\omega}}$ 相同.

3.2. 非线性介质为各向同性无吸收透明介质

此时 $n(\omega_1, \theta_1) = n(\omega_2, \theta_2) = n_2, \gamma_2 = 0, \cos \gamma_2$ = 1 $\cos(\theta_2 - \gamma_2) = \cos\theta_2, n^2(\omega_1, \theta_1) \cos^2\theta_1 - n^2(\omega_2, \theta_2) \cos^2\theta_2 = n^2(\omega_1, \theta_1) - n^2(\omega_2, \theta_2)$,对应的 $P_{2\omega}$ 的 计算式化简为 $P'_{2\omega}$:

$$P'_{2\omega} = \left| \frac{t_{\rm fs}}{n_2 \cos\theta_2} \right|^2 \left| \frac{2\pi L}{\lambda} \right|^2 \left| \frac{1}{\exp(-2i\psi_2) - r_{\rm af}r_{\rm fs}\exp(2i\psi_2)} \right|^2 \left| \frac{2t_{\rm af}^4 t_{\rm sa}^2 P_{\omega}^2}{\varepsilon_0 cn^2(\omega_1, \theta_1) A} \right| \\ \times \left| \frac{r_{\rm af}\sin(\psi_1 + \psi_2)}{\psi_1 + \psi_2} \exp(i\psi_2) d_{\rm eff} + \frac{\sin(\psi_1 - \psi_2)}{\psi_1 - \psi_2} \exp(-i\psi_2) d_{\rm eff} \right|^2.$$
(26)

3.3. 非线性介质为各向同性无吸收透明介质,且二次谐波在界面上的反射忽略不计

忽略界面上二次谐波的反射带来的误差小于 2%^[3] 此时的 $r_{af} = 0$, $r_{fs} = 0$,对应的 $P_{2\omega}$ 化简为 $P'_{2\omega}$:

$$P_{2\omega}'' = \left| \frac{t_{\rm fs}}{n_2 \cos\theta_2} \right|^2 \left| \frac{2\pi L}{\lambda} \right|^2 \left| \frac{2t_{\rm af}^2 t_{\rm sa}^2 P_{\omega}^2}{\varepsilon_0 \, cn^2 (\omega_1 \ \theta_1 \)A} \right| \\ \times \left| \frac{\sin(\psi_1 - \psi_2)}{\psi_1 - \psi_2} d_{\rm eff}^{\rm r} \right|^2.$$
(27)

图 3 为用上述不同计算式得到的 AIN 薄膜从基 底透射出来的 $P_{2\omega}$ 与入射角 θ 的关系曲线. 假设入 射的基频光为 1064 nm ,AIN 薄膜沉积在蓝宝石基底 上 膜厚 2 μ m. 图中实线为(27)式计算出的 $P'_{2\omega}$, "*"点为(26)式计算出的 $P'_{2\omega}$. 对比二者发现(27) 式计算出的 $P'_{2\omega}$ 与(26)式得到的 $P'_{2\omega}$ 非常接近,故计 算 $P_{2\omega}$ 时,可忽略二次谐波在界面的反射."○"为 (25)式计算出的 $P_{2\omega}$,从图中可以看出, $P_{2\omega}$ 值在 0.2—0.7 rad 区间内存在振荡现象,这与 Takashi Fujita^[7]和 Yeganeh^[8]等人的实验结果相一致.

图 3 用不同计算式得到的 AIN 薄膜的 $P_{2\omega} 与 \theta$ 的关系曲线

- [1] Liu X M 2000 Acta Phys. Sin. 49 538(in Chinese)[刘雪明 2000 物理学报 49 538]
- [2] Wang G, Duan MY, Cui Y P 2005 Acta Phys. Sin. 54 144 (in Chinese) [王 刚、端木云、崔一平 2005 物理学报 54 144]
- [3] Jerphagnon J , Kurtz S K 1970 J. Appl. Phys. 41 1667
- [4] Bloembergen N, Pershan P S 1962 Phys. Rev. 128 606
- [5] Warren N H , Michael Hayden L 1995 J. Opt. Soc. Am. B 12 416
- [6] Feng L , Yang X Q , Wang Y 2004 Electromagnetic field and

electromagnetic wave) (Beijing: Machine Industry Press) 148 (in Chinese) [冯 林、杨显清、王 园 2004 电磁场与电磁波(北京: 1.机械工业出版社出版) 第 148 页]

- [7] Takashi Fujita , Tatsuo Hasegawa , Masanobu Haraguchi 2000 Jpn . J .
 Appl . Phys. 39 2610
- [8] Yeganeh M S , Qi J , Culver J P , Yodh A G 1992 Phys. Rev. B 46 1603

Second-harmonic power generated in the absorbing and birefringent nonlinear medium

Yan Guo-Jun Chen Guang-De Wu Ye-Long Yang Jian-Qing

(Department of Applied Physics , Xi 'an Jiaotong University , Xi 'an 710049 , China)
 (Received 3 March 2007 ; revised manuscript received 22 May 2007)

Abstract

Considering the absorption of the nonlinear medium to the second-harmonic (SH) wave and using the complete boundary conditions for the reflections of the fundamental and SH waves at the input and output faces of the nonlinear medium, a formula for calculating the second-harmonic power generated in the absorbing and birefringent nonlinear medium was derived from the Maxwell's equation that the SH field E_2 satisfies. The result shows that the formula for calculating the second-harmonic power generated in the nonzero absorption medium can be used for calculating the second-harmonic power generated in the absorptive medium if the complex refractive index , instead of the ordinary refractive index is used.

Keywords : nonlinearity , double-frequency , second-harmonic power PACC : 4265K