瞬态热传导问题的复变量重构核粒子法*

陈 丽^{1 2)} 程玉民^{1)}*

上海大学上海市应用数学和力学研究所,上海 200072)
 长安大学理学院工程力学系,西安 710064)
 (2008年1月5日收到,2008年3月31日收到修改稿)

在重构核粒子法的基础上,引入复变量,讨论了复变量重构核粒子法.复变量重构核粒子法的优点是在构造形 函数时采用一维基函数建立二维问题的修正函数.然后,将复变量重构核粒子法应用于瞬态热传导问题的求解,结 合瞬态热传导问题的 Galerkin 积分弱形式,采用罚函数法引入本质边界条件,建立了瞬态热传导问题的复变量重构 核粒子法,推导了相应的计算公式.与传统的重构核粒子法相比,复变量重构核粒子法具有计算量小、精度高的优 点.最后通过数值算例证明了该方法的有效性.

关键词:重构核粒子法,复变量重构核粒子法,修正函数,瞬态热传导问题 PACC:0200,0260,4630C

1.引 言

无网格方法是一种新的求解偏微分方程边值问 题的数值方法,也是目前计算力学领域的研究热点 之一[1],与传统的基于网格的数值方法,如有限元、 边界元法等不同 ,无网格方法采用基于点的近似构 造近似函数 从而避免了网格的初始划分和重构,在 处理大变形、裂纹扩展及动态不连续边界等问题时 具有较为明显的优势.目前发展的无网格方法有无 单元 Galerkin 法(element-free Galerkin method, EFG)^{2]},重构核粒子法(reproducing kernel particle method, RKPM)^{3]}, Hp-clouds 无网格方法^[4],有限点 法(the finite point method, FPM)^{5,6},无网格局部 Petrov-Galerkin 方法(meshless local Petrov-Galerkin method, MLPG)⁷¹, 无网格配点法(meshless point collocation method, PCM)⁸¹,小波粒子方法(wavelet particle method, WPM)⁹,无网格有限元法(meshless finite element method, MFEM)^{10]},复变量无网格方 法[11-13],无网格流形方法[14,15]以及边界积分方程的 无网格方法^{16-21]}等.

重构核粒子法是在光滑粒子法的基础上发展起 来的 ,是无网格方法中较为重要的逼近函数形成方 法.光滑粒子法作为最早出现的无网格方法,主要是 处理无限域问题.但对于有限域问题,因为边界上不 能满足相容性条件,导致计算精度低,稳定性差.为 了克服光滑粒子法的不足,美国西北大学的 Liu 等 人^[3]于 1995 年提出了重构核粒子方法,其核心思想 是在光滑粒子法的权函数构造中引入一个修正函数 来满足边界上的相容性条件,从而完全消除了光滑 粒子法所谓的不稳定性.

重构核粒子法与传统的数值方法相比具有形函 数构造不需要网格、光滑性好、计算精度高等优点, 但是计算量大.针对目前重构核粒子法形成的无网 格法配点过多、计算量大等问题,文献 22 叶提出了 复变量重构核粒子法(complex variable reproducing kernel particle method, CVRKPM).复变量重构核粒子 法的优点是在形函数的构造中采用一维基函数建立 二维问题的修正函数,与传统的重构核粒子法相比, 提高了计算效率,减少了计算量.

瞬态热传导问题,即瞬态温度场问题,场量随时 间变化.由于结构的形状以及变温条件的复杂性,依 靠传统的解析方法要精确地确定温度场往往是不可 能的,有限元法是目前解决该类问题的主要工具.近 年来,随着无网格方法研究热潮的不断掀起,无网格 方法正以其独特优势在热传导问题的研究当中得到

^{*}国家自然科学基金(批准号:10571118)和上海市重点学科建设项目(批准号:Y0103)资助的课题.

[†] 通讯联系人. E-mail:ymcheng@shu.edu.cn;ymcheng@sh163.net

其中

广泛应用.但是目前研究较多的是稳态热传导问题, 对于瞬态热传导问题的研究还比较少.鉴于此,本文 将复变量重构核粒子法应用于求解瞬态热传导问 题,对时间域的离散采用传统的两点差分法,空间域 的离散采用复变量重构核粒子法,结合控制方程的 等效积分弱形式,采用罚函数法引入本质边界条件, 推导了相应的离散方程,建立了瞬态热传导问题的 复变量重构核粒子法.最后通过数值算例,验证了本 文方法的有效性.

2. 复变量重构核粒子法的形函数

设 $\overline{u}(z)$ 是在平面区域 Ω 上定义的连续可导的 复变函数 在复变量重构核粒子法中 ,逼近函数构造 过程中的关键步骤是 ,通过修正核函数 $\overline{w}_h(z-z')$ 来构造函数 $\overline{u}(z)$ 的逼近函数 $\overline{u}^h(z)$ 即

$$\overline{u}^{h}(z) = u_{1}^{h}(z) + iu_{2}^{h}(z)$$

$$= \int_{\Omega} \overline{u}(z') \cdot \overline{w}_{h}(z - z') \cdot dz',$$

$$z = x_{1} + ix_{2} \in \Omega, \qquad (1)$$

式中 $\overline{w}_{h}(z-z')$ 为修正核函数,

 $\overline{w}_{h}(z - z') = C(z; z - z') \cdot w_{h}(z - z'), (2)$ 其中 $w_{h}(z - z')$ 是具有紧支特性的权函数, C(z; z - z')称为修正函数.修正函数一般可表示为完备多项 式基函数的线性组合,即

$$C(z;z-z') = \sum_{i=0}^{m} p_i(z-z') \cdot b_i(z)$$

= $p^{\mathrm{T}}(z-z')b(z), z \in \Omega$, (3)
 $p^{\mathrm{T}}(z-z') = (p_0(z-z'), p_1(z-z'), ..., p_m(z-z'))$, (4)

 $\boldsymbol{b}^{\mathrm{T}}(z) = (b_0(z), b_1(z), \dots, b_m(z)), (5)$

其中 m 是完备多项式基的最高次数 , $p_i(z - z')$ 是基函数 , $b_i(z)$ 是对应的未知系数 . 一般情况下 ,对于二维问题 ,完备多项式基函数通常取如下形式 :

线性基

二次基

$$p^{\mathrm{T}} = (1, z - z').$$
 (6)

$$\boldsymbol{p}^{\mathrm{T}} = (1, z - z') (z - z')^{2}. \quad (7)$$

对应于(1)式,采用梯形积分法则得到复变量重 构核近似的离散形式,即

$$\overline{u}^{h}(z) = \sum_{I=1}^{n} \overline{u}(z_{I}) \cdot \overline{w}_{h}(z - z_{I}) \cdot \Delta V_{I}$$

 $= \sum_{I=1}^{n} d(z; z - z_{I}) \cdot w_{h}(z - z_{I}) \cdot \Delta V_{I} \cdot \vec{u}(z_{I}), (8)$ 其中 z_{I} 为点 z影响域内的节点 ,n为点 z影响域内的节点总数.

$$\vec{u}(z_1) = u_1(z_1) + iu_2(z_1),$$
 (9)

 ΔV_I 是与节点 I 有关的区域度量,有

$$\sum_{I=1}^{n} \Delta V_I = \Omega , \qquad (10)$$

其中 n_i 为域内所布节点总数.

(8)式可用矩阵形式表示为

$$\overline{u}^{h}(z) = C(z)W(z)V \cdot \overline{u} , \qquad (11)$$

$$\overline{\boldsymbol{u}} = (\overline{u}(z_{1}), \overline{u}(z_{2}), \dots, \overline{u}(z_{n}))^{\mathrm{T}} = \boldsymbol{Q}\boldsymbol{u}, \qquad (12) \\
\boldsymbol{u} = (u_{1}(z_{1}), u_{2}(z_{1}), u_{1}(z_{2}), u_{2}(z_{2}), \dots, u_{1}(z_{n}), u_{2}(z_{n}))^{\mathrm{T}}, \qquad (13) \\
\boldsymbol{Q} = \begin{bmatrix} 1 & \mathrm{i} & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \mathrm{i} & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \mathrm{i} & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \mathrm{i} & \dots & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & \ddots & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & 1 & \mathrm{i} \end{bmatrix}_{n \times 2n}, \qquad (14)$$

$$W(z) = \begin{bmatrix} u(z - z_1) & 0 & \dots & 0 \\ 0 & u(z - z_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u(z - z_n) \end{bmatrix},$$
(15)

$$\boldsymbol{V} = \begin{bmatrix} \Delta V_1 & 0 & \cdots & 0 \\ 0 & \Delta V_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Delta V_n \end{bmatrix}, \quad (16)$$

令

$$C_{I}(z) = O(z; z - z_{I})$$

= $p^{T}(z - z_{I})b(z)$, (17)

则

$$C(z) = (C_1(z), C_2(z), \dots, C_n(z))$$

= $b^{T}(z)P$, (18)

其中

$$\boldsymbol{P} = \begin{bmatrix} p_1(z - z_1) & p_1(z - z_2) & \dots & p_1(z - z_n) \\ p_2(z - z_1) & p_2(z - z_2) & \dots & p_2(z - z_n) \\ | & | & \ddots & | \\ p_m(z - z_1) & p_m(z - z_2) & \dots & p_m(z - z_n) \end{bmatrix},$$
(19)

 $b^{T}(z) = (b_{0}(z), b_{2}(z), \dots, b_{m}(z)), (20)$ 这里系数 b(z)根据逼近函数的重构条件来确 定^[22],即

$$M(z) \cdot b(z) = H , \qquad (21)$$

其中

$$M(z) = \sum_{I=1}^{n} p(z - z_{I}) \cdot p^{\mathsf{T}}(z - z_{I})$$
$$\times w_{h}(z - z_{I}) \cdot \Delta V_{I}, \qquad (22)$$

$$\mathbf{H} = (1 \ \mathcal{D} \ \dots \ \mathcal{D}), \qquad (23)$$

$$\boldsymbol{b}(z) = \boldsymbol{M}^{-1}(z) \cdot \boldsymbol{H}. \tag{24}$$

这样,逼近函数 $\overline{u}^{h}(z)$ 的表达式为

$$\overline{u}^{h}(z) = \boldsymbol{\Phi}(z)\overline{u}$$
$$= \sum_{l=1}^{n} \boldsymbol{\Phi}_{l}(z)\overline{u}(z_{l}), \qquad (25)$$

其中 $\Phi(z)$ 为形函数向量,

$$\boldsymbol{\Phi}(z) = (\Phi_1(z), \Phi_2(z), \dots, \Phi_n(z))$$
$$= \boldsymbol{C}(z) \cdot \boldsymbol{W}(z) \cdot \boldsymbol{V}, \qquad (26)$$

则有

$$u_{1}^{h}(z) = \operatorname{Re}\left[\Phi(z)\overline{u} \right]$$
$$= \operatorname{Re}\left[\sum_{l=1}^{n} \Phi_{l}(z)\overline{u}(z_{l}) \right], \quad (27)$$

$$u_{2}^{h}(z) = \operatorname{In}\left[\Phi(z)\overline{u} \right]$$
$$= \operatorname{In}\left[\sum_{i=1}^{n} \Phi_{i}(z)\overline{u}(z_{i}) \right]. \quad (28)$$

复变量重构核粒子法的优点是其形成的二维问 题的无网格方法可取较少的节点 在同等精度下 相 比传统的重构核粒子法减小了计算量。因为对任一 节点来说 在确定其形函数及其导数时会涉及矩阵 求逆和多个矩阵的相乘 在同阶精度的条件下 采用 复变量重构核粒子法可使修正函数中所含的待定系 数减少 进而导致矩阵的阶数减小 从而减少了计算 量.比如对线性基,原来的基函数为 $p^{T} = (1, x_1 - x_2)$ $x'_1, x_2 - x'_2$),待定系数是3个现在的基函数为 p^{T} =(1,z-z'),待定系数是2个;对二次基,原来的基 函数为 $p^{T} = (1, x_1 - x'_1, x_2 - x'_2) (x_1 - x'_1) (x_1 - x'_1)$ x'_1 ($x_2 - x'_2$)($x_2 - x'_2$)) 待定系数是6个 现在的 基函数为 $p^{T} = (1, z - z')$) 待定系数是 3 个,同时,对任一场点来说,其影响域中所需的最小 配点(节点)数减少了,进而在整个求解域中所需选 取的节点数目大大减少,因此,同等布点数下,相比 传统的重构核粒子法提高了精度.

3. 瞬态热传导问题的复变量重构核粒 子法

在石油化工、动力、核能等许多领域,在变温条

件下工作的结构和部件,在启动或关闭过程中会产 生随时间变化的瞬态温度应力.这些温度应力经常 占有相当的比重,甚至成为设计和运行中的控制应 力.要计算瞬态温度应力首先要确定瞬态的温度场.

3.1. 瞬态热传导问题的基本方程

瞬态热传导问题的研究可以归结为求解抛物型 偏微分方程的定解问题.在二维问题中 瞬态温度场 的场变量 T(x₁,x₂,t)在直角坐标系中应满足的偏 微分方程为

$$\rho c \cdot \frac{\partial T}{\partial t} - \frac{\partial}{\partial x_1} \left(k_1 \frac{\partial T}{\partial x_1} \right) - \frac{\partial}{\partial x_2} \left(k_2 \frac{\partial T}{\partial x_2} \right) - Q = 0 ,$$

(在 Ω内). (29)
边界条件为

$$T = \overline{T} = 0, \quad (\overline{T}_1 \text{ 边界上}), \quad (30)$$

$$k_{1} \frac{\partial T}{\partial x_{1}} n_{1} - k_{2} \frac{\partial T}{\partial x_{2}} n_{2} - \overline{q} = 0 ,$$

$$(\underline{\alpha} \Gamma_{2} \underline{\partial} \underline{\beta} \underline{L}), \qquad (31)$$

$$k_1 \frac{\partial T}{\partial x_1} n_1 - k_2 \frac{\partial T}{\partial x_2} n_2 - h(T_a - T) = 0,$$

($\alpha \Gamma_3 \dot{\alpha} \beta \Sigma L$), (32)

其中 $T = T(x_1, x_2, t)$ 表示瞬态温度场, $t \in trial(t)$ ≥ 0), k_1 和 $k_2 \in trial k_2$ 是材料沿 x_1, x_2 方向的热传导系数, $\rho \in trial k_2 \in trial k_2$ 是材料的定压比热, $Q \in trial k_2$ 是 $p \in trial k_2$ 是材料的定压比热, $Q \in trial k_2$ $q = \overline{q}(\Gamma, t) \in \Gamma_2$ 边界上给定的热流密度, $h \in \Gamma_3$ 边界上的对流换热系数, 在自然对流条件下, $T_a = T_a(\Gamma, t) \in \Gamma_3$ 周围的介质温度, 在强迫对流条 件下, $T_a = T_a(\Gamma, t) \in trial k_2$ 题所在的域, $\Gamma \to \Omega$ 的边界, 应满足 $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ Γ_3 ; n_1 和 n_2 分别是边界 Γ 的外法线方向余弦.

初始条件为

$$T = T_0$$
 (当 $t = 0$), (33)
其中 T_0 为给定的初始温度.

3.2. 瞬态热传导问题的积分弱形式

在某一瞬时状态,可以把 $T \ n \frac{\partial T}{\partial t}$ 看作只是空间坐标的确定函数,这样,瞬时温度场问题就转变为椭圆型方程的边值问题,与其等价的泛函为

$$\begin{split} \Pi &= \int_{\Omega} \left[T \left(\rho c \, \frac{\partial T}{\partial t} - Q \right) \right] \mathrm{d}\Omega \\ &+ \int_{\Omega} \left[\frac{1}{2} \, k_1 \left(\frac{\partial T}{\partial x_1} \right)^2 + \frac{1}{2} \, k_2 \left(\frac{\partial T}{\partial x_2} \right)^2 \right] \mathrm{d}\Omega \end{split}$$

$$+ \int_{\Gamma_2} T \cdot \overline{q} \cdot d\Gamma + \int_{\Gamma_3} h\left(\frac{T^2}{2} - T \cdot T_a\right) \cdot d\Gamma (34)$$

使泛函 Π 的变分等于零的场函数正是满足问题的 控制微分方程 29 和边界条件(31)(32)的解答.但 是要求选择场函数 T 时,必须已经满足本质边界条 件(30),即在 Γ_1 边界上满足 $T - \overline{T} = 0.$ 实际上 Π 是 未知场函数 T 必须满足附加条件式(30)的泛函.本 文采用罚函数法引入本质边界条件(30),构造另外 一个修正泛函 Π^*

$$\Pi^* = \Pi + \frac{1}{2} \int_{\Gamma_1} (T - \overline{T}) \cdot \alpha \cdot (T - \overline{T}) d\Gamma (35)$$

其中 α 为罚因子 ,是一极大正常数 ,一般可取值 10³—10⁵.在引入 Γ_1 上的边界条件后 ,原泛函 Π 的 有附加条件驻值问题转化为修正泛函 Π^* 的无附加 条件驻值问题 . Π^* 的驻值条件是它的一次变分等 于零 ,即

$$\delta \Pi^* = \delta \Pi + \int_{\Gamma_1} \delta (T - \overline{T}) \cdot \alpha \cdot (T - \overline{T}) d\Gamma = 0.$$
(36)

将(34) 式代入(36) 式可得瞬态温度场的积分弱 形式:

$$\int_{\Omega} \delta T \cdot \rho c \cdot \frac{\partial T}{\partial t} \cdot d\Omega$$

+ $\int_{\Omega} \delta (LT) \tilde{k} (LT) d\Omega$
- $\int_{\Omega} \delta T \cdot Q d\Omega - \int_{\Gamma_2} \delta T \cdot \overline{q} \cdot d\Gamma$
- $\int_{\Gamma_3} \delta T \cdot h(T_a - T) \cdot d\Gamma$
+ $\int_{\Gamma_1} \delta T \cdot \alpha \cdot T d\Gamma - \int_{\Gamma_1} \delta T \cdot \alpha \cdot \overline{T} d\Gamma = 0 (37)$

其中

$$\boldsymbol{L}(\cdot) = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \end{bmatrix} (\cdot), \qquad (38)$$

$$\tilde{\boldsymbol{k}} = \begin{bmatrix} k_1 & 0\\ 0 & k_2 \end{bmatrix}.$$
(39)

3.3. 瞬态热传导问题的复变量重构核粒子法的离 散方程

瞬态热传导问题与稳态热传导问题的主要差别 是场函数温度不仅是空间域 Ω 的函数 ,而且还是时 间域 t 的函数.但是时间和空间两种域并不耦合 ,因 此可以采用复变量重构核粒子法和有限差分法相结 合的方法进行求解 ,即在空间域内用复变量重构核 粒子方法、在时间域上用有限差分法进行求解.求解 从初始温度场开始,每隔一个时间步长,求解下一个 时刻的温度场,这样一步一步地向前推进,这种求解 过程称为步进积分(marching integration).复变量重 构核粒子法和有限差分法相结合可充分利用复变量 重构核粒子法在空间域和有限差分法在时间推进中 的优点.

首先将空间域 Ω 离散为 n_t 个节点,域内任意 场点在任意时刻 t 的温度采用其影响域内的节点温 度 $T_t = T(z_t, t)$ 来逼近.由于在任意时刻 T(z)和 T_t 都为标量,由复变量重构核粒子法的试函数表达式 (25)域内任意场点 $z = x_1 + ix_2$ 在任意时刻 t 的温 度可表示为

$$T(z,t) = \operatorname{Re}\left[\Phi(z)T(t) \right]$$
$$= \sum_{l=1}^{n} \operatorname{Re}\left[\Phi_{l}(z) \right] \cdot T_{l}(t)$$
$$= \sum_{l=1}^{n} \widetilde{\Phi}_{l}(z) \cdot T_{l}(t)$$
$$= \widetilde{\Phi}(z)T, \qquad (40)$$

其中 $\tilde{\boldsymbol{\Phi}}(z)$ 是形函数向量,只是空间域的函数,n是场点z影响域内的节点总数.

$$\widetilde{\boldsymbol{\Phi}}(z) = (\widetilde{\Phi}_1(z), \widetilde{\Phi}_2(z), \dots, \widetilde{\Phi}_n(z)), \quad (41)$$
$$\widetilde{\Phi}_n(z) = \operatorname{Re}[\Phi_n(z)], \quad (42)$$

$$T = (T_1(t), T_2(t), \dots, T_1(t))^{\mathrm{T}}, (43)$$

并且

$$\operatorname{Im}\left[\begin{array}{c} \boldsymbol{\Phi}(z)\boldsymbol{T}(t) \right] \\ = \sum_{l=1}^{n} \operatorname{Im}\left[\begin{array}{c} \Phi_{l}(z) \right] \cdot T_{l}(t) = 0 , (44) \\ \\ \frac{\partial T(z,t)}{\partial t} = \frac{\partial}{\partial t} \sum_{l=1}^{n} \widetilde{\Phi}_{l}(z) \cdot T_{l}(t) \\ \\ = \sum_{l=1}^{n} \widetilde{\Phi}_{l}(z) \cdot \frac{\partial T_{l}(t)}{\partial t} \\ \\ = \widetilde{\boldsymbol{\Phi}}(z) \dot{\boldsymbol{T}} , \qquad (45) \end{array} \right]$$

其中

$$\dot{\boldsymbol{T}} = \left(\frac{\partial T_{1}(t)}{\partial t}, \frac{\partial T_{2}(t)}{\partial t}, \dots, \frac{\partial T_{n}(t)}{\partial t}\right)^{T} (46)$$

$$L\mathcal{T}(z,t) = \sum_{I=1}^{n} \left[\frac{\partial}{\partial x_{1}}\right] \operatorname{Re}[\Phi_{I}(z)]T_{I}(t)$$

$$= \sum_{I=1}^{n} \boldsymbol{B}_{I}(z) \cdot T_{I}(t)$$

$$= \boldsymbol{B}(z) \cdot \boldsymbol{T}, \qquad (47)$$

$$B(z) = (B_{1}(z), B_{2}(z), \dots, B_{n}(z)), \quad (48)$$
$$B_{1}(z) = \begin{bmatrix} \operatorname{Re} \left[\Phi_{I, 1}(z) \right] \\ \operatorname{Re} \left[\Phi_{I, 2}(z) \right] \end{bmatrix}, \quad (49)$$

将(40)(45)(47) 武代入(37) 武得到

$$\int_{\Omega} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \rho c \cdot [\widetilde{\boldsymbol{\Phi}}(z)\dot{T}] d\Omega$$

$$+ \int_{\Omega} \delta[\mathbf{B}(z)T]^{T} \widetilde{\mathbf{k}} [\mathbf{B}(z)T] d\Omega$$

$$- \int_{\Omega} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot Q d\Omega$$

$$- \int_{\Gamma_{2}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \overline{q} d\Gamma$$

$$- \int_{\Gamma_{3}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot h \cdot T_{a} d\Gamma$$

$$+ \int_{\Gamma_{3}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot h \cdot [\widetilde{\boldsymbol{\Phi}}(z)T] d\Gamma$$

$$+ \int_{\Gamma_{1}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \alpha \cdot [\widetilde{\boldsymbol{\Phi}}(z)T] d\Gamma$$

$$- \int_{\Gamma_{1}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \alpha \cdot [\widetilde{\boldsymbol{\Phi}}(z)T] d\Gamma$$

$$- \int_{\Gamma_{1}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \alpha \cdot \overline{T} d\Gamma = 0. \quad (50)$$

为了得到离散系统求解方程,下面分别对(50) 式的各项积分进行讨论:

第一项积分

$$\int_{\Omega} \delta[\widetilde{\boldsymbol{\Phi}}(z)\boldsymbol{T}] \cdot \rho c \cdot [\widetilde{\boldsymbol{\Phi}}(z)\dot{\boldsymbol{T}}] d\Omega$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} [\int_{\Omega} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot \rho c \cdot \widetilde{\boldsymbol{\Phi}}(z) d\Omega] \cdot \dot{\boldsymbol{T}}$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{C} \cdot \dot{\boldsymbol{T}}, \qquad (51)$$

其中 C 为热容矩阵 ,有

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n_t} \\ C_{21} & C_{22} & \cdots & C_{2n_t} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n_t 1} & C_{n_t 2} & \cdots & C_{n_t n_t} \end{bmatrix}, \quad (52)$$

$$C_{IJ} = \begin{bmatrix} \widetilde{\Phi}_{f}(z) \cdot \rho c \cdot \widetilde{\Phi}_{f}(z) d\Omega. \quad (53) \end{bmatrix}$$

$$C_{IJ} = \int_{\Omega} \Phi_{f}(z) \cdot \rho c \cdot \Phi_{f}(z) d\Omega.$$
(
第二项积分

$$\int_{\Omega} \delta [B(z)T]^{\mathsf{T}} \tilde{k} [B(z)T] d\Omega$$
$$= \delta T^{\mathsf{T}} [\int_{\Omega} B^{\mathsf{T}}(z) \cdot \tilde{k} \cdot B(z) d\Omega] \cdot T$$
$$= \delta T^{\mathsf{T}} \cdot K \cdot T , \qquad (54)$$

其中 K 为热传导矩阵 ,有

$$\boldsymbol{K} = \begin{bmatrix} K_{11} & K_{12} & \cdots & K_{1n_{t}} \\ K_{21} & K_{22} & \cdots & K_{2n_{t}} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n_{t}1} & K_{n_{t}1} & \cdots & K_{n_{t}n_{t}} \end{bmatrix}, \quad (55)$$

$$K_{IJ} = \int_{\Omega} \boldsymbol{B}_{I}^{\mathsf{T}}(z) \cdot \tilde{\boldsymbol{k}} \cdot \boldsymbol{B}_{J}(z) d\Omega. \qquad (56)$$

第三项积分

$$\int_{\Omega} \delta[\widetilde{\boldsymbol{\Phi}}(z)\boldsymbol{T}] \cdot Q d\Omega$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \int_{\Omega} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot Q d\Omega$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{F}^{(1)}, \qquad (57)$$

$$\boldsymbol{F}^{(1)} = (f_1^{(1)}, f_2^{(1)}, \dots, f_{n_i}^{(1)})^{\mathrm{T}}, \qquad (58)$$

$$f_{I}^{(1)} = \int_{\Omega} \widetilde{\Phi}_{I}(z) \cdot Q \,\mathrm{d}\Omega \,. \tag{59}$$

第四项积分

$$\int_{\Gamma_2} \delta [\widetilde{\boldsymbol{\Phi}} (z) \mathbf{T}] \cdot \overline{q} \, \mathrm{d}\Gamma$$
$$= \delta \mathbf{T}^{\mathrm{T}} \int_{\Gamma_2} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}} \cdot \overline{q} \, \mathrm{d}\Gamma$$
$$= \delta \mathbf{T}^{\mathrm{T}} \mathbf{F}^{(2)} , \qquad (60)$$

$$\boldsymbol{F}^{(2)} = (f_1^{(2)}, f_2^{(2)}, \dots, f_{n_l}^{(2)})^{\mathrm{T}}, \qquad (61)$$

$$f_I^{(2)} = \int_{\Omega} \widetilde{\Phi}_I(z) \cdot \overline{q} \,\mathrm{d}\Omega.$$
 (62)

第五项积分

$$\int_{\Gamma_3} \delta [\widetilde{\boldsymbol{\Phi}}(z) \boldsymbol{T}] \cdot \boldsymbol{h} \cdot \boldsymbol{T}_a \, \mathrm{d}\boldsymbol{\Gamma}$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \int_{\Gamma_3} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot \boldsymbol{h} \cdot \boldsymbol{T}_a \, \mathrm{d}\boldsymbol{\Gamma}$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \boldsymbol{F}^{(3)}, \qquad (63)$$

$$\boldsymbol{F}^{(3)} = (f_1^{(3)}, f_2^{(3)}, \dots, f_n^{(3)})^{\mathrm{T}}, \qquad (64)$$

$$f_{I}^{(3)} = \int_{\Gamma_{3}} \widetilde{\Phi}_{I}(z) \cdot h \cdot T_{a} d\Gamma , \qquad (65)$$

 $F^{(1)}$, $F^{(2)}$ 和 $F^{(3)}$ 分别为热源、给定热流和热交换引起的温度荷载列阵.

第六项积分

$$\int_{\Gamma_{3}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot h \cdot [\widetilde{\boldsymbol{\Phi}}(z)T] d\Gamma$$
$$= \delta T^{\mathrm{T}} \int_{\Gamma_{3}} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot h \cdot \widetilde{\boldsymbol{\Phi}}(z) d\Gamma]T$$
$$= \delta T^{\mathrm{T}} \cdot H \cdot T , \qquad (66)$$

其中

$$\boldsymbol{H} = \begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1n_t} \\ H_{21} & H_{22} & \cdots & H_{2n_t} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n_t 1} & H_{n_t 2} & \cdots & H_{n_t n_t} \end{bmatrix}, \quad (67)$$

$$H_{IJ} = \int_{\Gamma_3} \widetilde{\Phi}_{f}(z) \cdot h \cdot \widetilde{\Phi}_{f}(z) d\Gamma.$$
 (68)

第七项积分

$$\int_{\Gamma_{1}} \delta[\widetilde{\boldsymbol{\Phi}}(z)T] \cdot \alpha \cdot [\widetilde{\boldsymbol{\Phi}}(z)T] d\Gamma$$
$$= \delta T^{\mathrm{T}} [\int_{\Gamma_{1}} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot \alpha \cdot \widetilde{\boldsymbol{\Phi}}(z) d\Gamma] T$$
$$= \delta T^{\mathrm{T}} \cdot K^{\alpha} \cdot T, \qquad (69)$$

其中

$$\boldsymbol{K}^{\alpha} = \begin{bmatrix} K_{11}^{\alpha} & K_{12}^{\alpha} & \dots & K_{1n_{t}}^{\alpha} \\ K_{21}^{\alpha} & K_{22}^{\alpha} & \dots & K_{2n_{t}}^{\alpha} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n_{t}1}^{\alpha} & K_{n_{t}2}^{\alpha} & \dots & K_{n_{t}n_{t}}^{\alpha} \end{bmatrix}, \quad (70)$$
$$K_{IJ}^{\alpha} = \int_{\Gamma_{1}} \widetilde{\Phi}_{I}(z) \cdot \alpha \cdot \widetilde{\Phi}_{J}(z) \mathrm{d}\Gamma. \quad (71)$$

第八项积分

$$\int_{\Gamma_{1}} \delta[\widetilde{\boldsymbol{\Phi}}(z)\boldsymbol{T}] \cdot \alpha \cdot \overline{T} d\Gamma$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \int_{\Gamma_{1}} \widetilde{\boldsymbol{\Phi}}^{\mathrm{T}}(z) \cdot \alpha \cdot \overline{T} d\Gamma$$
$$= \delta \boldsymbol{T}^{\mathrm{T}} \boldsymbol{F}^{\alpha} , \qquad (72)$$

$$\boldsymbol{F}^{\alpha} = (f_{1}^{\alpha}, f_{2}^{\alpha}, \dots, f_{n_{t}}^{\alpha})^{t}, \qquad (73)$$

$$f_{I}^{\alpha} = \int_{\Gamma_{1}} \widetilde{\Phi}_{I}(z) \cdot \alpha \cdot \overline{T} d\Gamma.$$
 (74)

将(51)(54)(57)(60)(63)(66)(69)和(72)武代入(50)武,经整理得到

$$\partial T^{\mathrm{T}} \cdot (C\dot{T} + KT + HT + K^{\alpha}T)$$

$$-F^{(1)} - F^{(2)} - F^{(3)} - F^{a} = 0$$
, (75)
由 δT^{T} 的任意性,可得最终的线性常微分方程组

$$C\dot{T} + \overline{K}T = \overline{F} , \qquad (76)$$

$$\overline{K} = K + H + K^{\alpha} , \qquad (77)$$

$$\overline{F} = F^{(1)} + F^{(2)} + F^{(3)} + F^{\alpha}. \quad (78)$$

至此,已将时间域和空间域的偏微分方程问题 在空间域内离散为 n_i 个节点温度 T(t)的常微分方 程的初值问题.

以上即为瞬态热传导问题的复变量重构核粒 子法。

4. 时间积分方案

方程 76)是一组以时间 t 为独立变量的线性常 微分方程组.对常微分方程组采用数值积分方法求 解 ,即将时间域离散化 ,用在离散的时间点上满足条 件的方程组代替在时间域上处处满足该条件的方程 组.取一个时间单元 Δt 利用差分法建立 $T_{t+\Delta t}$ 和 T_t 之间的递推关系 ,本文对时间域的离散采用传统的 两点差分法.

取插值公式:

 $\theta \left(\frac{\partial T}{\partial t}\right)_{t+\Delta t} + (1 - \theta) \left(\frac{\partial T}{\partial t}\right)_{t} = \frac{T_{t+\Delta t} - T_{t}}{\Delta t} (79)$

由(76)式推导出 $\left(\frac{\partial T}{\partial t}\right)_{t+\Delta t}$ 和 $\left(\frac{\partial T}{\partial t}\right)_{t}$ 分别代入(79) 式,可得到通用两点时间差分公式

$$\left(\frac{\boldsymbol{C}}{\Delta t} + \boldsymbol{\theta} \overline{\boldsymbol{K}}_{t+\Delta t}\right) \boldsymbol{T}_{t+\Delta t}$$

$$= \left[\frac{\boldsymbol{C}}{\Delta t} - (1 - \theta \, \bar{\boldsymbol{X}}_{t}] \boldsymbol{T}_{t} + \theta \bar{\boldsymbol{F}}_{t+\Delta t} + (1 - \theta \, \bar{\boldsymbol{F}}_{t} \, (80)\right]$$

其中 θ 是可以自由选择的时间加权系数,不同的取 值对应不同的时间差分格式 : $\theta = 0$ 为显示格式(向 前差分格式),即 Euler 法; $\theta = 0.5$ 为中心差分格式, 即 C-N (Crank-Nicolson)格式; $\theta = \frac{2}{3}$ 为 Galerkin 格式; $\theta = 1$ 为全隐格式,即向后差分格式.

以上讨论的是一个时间单元 △t,对于整个时间 域,可以划分成若干时间单元,由逐步递推求得时间 域内各瞬时的场函数 *T*(t)值.

瞬态温度场的控制微分方程是抛物型方程,在 用有限差分法处理时间域时存在一个稳定性的问题,这是步进积分的特点.不同的差分格式对稳定性 会产生不同的反应.中心差分格式具有二阶时间精 度 稳定时解的精度高,但在初始阶段容易发生振 荡相对误差大,对后面时刻的计算精度造成影响. 向后差分格式没有振荡但稳定后精度只有一阶. Galerkin 差分格式虽然在初始阶段也存在振荡,但相 比中心差分格式振荡较小,而且稳定后的计算精度 较向后差分格式要高.一般减小步长 △t 能使抛物 型方程求解的稳定性和精度提高.本文从稳定性和 计算精度两方面综合考虑,采用 Galerkin 差分格式.

5. 数值算例

下面利用本文建立的瞬态热传导问题的复变量

6053

重构核粒子法,分别对两个瞬态温度场问题进行了 数值求解。

5.1.矩形域上的瞬态温度场

考虑一个矩形域上的瞬态温度场,其控制方程 和边界条件分别为

$$\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x_1^2} - \frac{\partial^2 T}{\partial x_2^2} = 0 ,$$

$$x_1 \in [0, 1], x_2 \in [0, 1].$$

边界条件为

 $T(0, x_2, t) = e^{-2t} \sin x_2,$ $T(1, x_2, t) = e^{-2t} \sin(1 + x_2),$ $T(x_1, 0, t) = e^{-2t} \sin x_1,$ $T(x_1, 1, t) = e^{-2t} \sin(1 + x_1),$

初始条件为

 $I(x_1, x_2) = sin(x_1 + x_2), t = 0,$ 该温度场的解析解为

 $T(x_1, x_2, t) = \sin(x_1 + x_2) \cdot e^{-2t}$

如图 1 所示,在矩形区域 Ω 内均匀布置了 13× 13 个节点.通过对计算结果分析,罚因子取值 α = 10³—10⁵ 时计算结果较好,本算例取 α = 1.0×10³; 形函数的构造中修正函数采用线性基;取时间步长 Δt = 0.001 s.图 2 和图 3 分别给出了 t = 0.1 s 和 t = 0.2 s 时刻矩形区域内 x_1 = 0.5 处温度解析解和本 文方法所得数值解的对比结果.可以看出,本文提出 的复变量重构核粒子法的计算结果和解析解吻合很 好,说明了本文方法是有效的.

图 2 x₁ = 0.5 处 t = 0.1 s 温度解析解与本文数值解的比较

图 3 $x_1 = 0.5$ 处 t = 0.2 s 温度解析解与本文数值解的比较

5.2. 瞬态温度场中的长方柱体

如图 4 所示,一个长为 20 mm 高为 10 mm 的长方 柱体,单位厚度,按平面问题处理.物体均匀初温 $T_0 = 20 \,^{\circ}$ 然后放入温度为 $T_r = 100 \,^{\circ}$ 的介质中加 热 上下边界面为绝热面,左右边界面的换热系数 $h = 1600 \,^{\circ}$ (m²·°C), $x_1 \,^{\circ}$ 和 $x_2 \,^{\circ}$ 方向的导热系数相同, 即 $k_1 = k_2 = 16 \,^{\circ}$ (m·°C),容积比热容 $\rho c = 10^{\circ}$

 $\int m^3 \cdot C$)内热源强度 Q = 0 W/m³.计算加热过程进行到 1 s 2 s 3 s 时刻的温度场.

如图 4 所示,在矩形区域 Ω 内均匀布置了 20× 10 个节点,形函数的构造中修正函数采用线性基; 取时间步长 $\Delta t = 0.1$ s.由于结构和荷载的对称性, 所以只需确定 x_2 轴一侧的温度分布情况.并且从边 界条件看出,当 x_1 坐标相等时,温度值也是相等的, 所以在表1中只给出了具有代表性的三个点 A(0), 0),B(55),C(100)在1s,2s,3s时刻的瞬时温 度精确解和采用复变量重构核粒子法(CVRKPM), 重构核粒子法(RKPM),有限元法(FEM)所得的数值 解的对比结果.从计算结果可以看出,复变量重构核 粒子法的计算结果比有限元法的计算结果误差要小 得多,并且比传统的重构核粒子法具有更高的精度, 到t=3s时已经和解析解非常接近,说明了本文方 法的有效性和优越性.

表1 几种数值方法的计算结果比较

时间/s	点的位置	精确解/℃	CVRKPM		RKPM		FEM	
			计算结果/℃	相对误差/%	计算结果/℃	相对误差/%	计算结果/℃	相对误差/%
1.0	A	22.304	22.326	0.10	22.329	0.11	21.34	4.32
	В	27.456	27.35	0.39	27.342	0.42	26.342	4.06
	С	46.384	46.239	0.31	46.222	0.35	45.236	2.47
2.0	A	29.344	29.540	0.67	29.545	0.69	28.261	3.69
	В	35.776	35.65	0.35	35.641	0.38	34.641	3.17
	С	53.928	53.604	0.60	53.586	0.63	52.934	1.84
3.0	A	37.232	37.169	0.17	37.162	0.19	36.162	2.87
	В	42.944	42.86	0.20	42.849	0.22	41.849	2.55
	С	59.072	58.996	0.13	58.978	0.16	58.271	1.36

6. 结论与讨论

本文在重构核粒子法的基础上建立了复变量重 构核粒子法.该方法的优点是在形函数的构造中采 用一维基函数建立二维问题的修正函数,进而得到 了二维问题的逼近函数.将所建立的复变量重构核 粒子法应用于求解瞬态热传导问题,提出了瞬态热 传导问题的复变量重构核粒子法,并推导了相应的 计算公式.数值算例表明,在同样节点分布时,本文 方法比传统的重构核粒子法具有更高精度.通过经 典的瞬态温度场算例,和有限元法的计算结果进行 了比较,证实了复变量重构核粒子法具有计算精度 高和前处理简单的优势,是一种具有较大发展潜力 的新的数值计算方法.

本文只是将复变量重构核粒子法应用于瞬态温 度场 本文方法也可用于求解其他二维瞬态势问题.

- Belytschko T , Krongauz Y , Organ D , Fleming M , Krysl P 1996
 Comp. Meth. in Appl. Mech. and Engin. 139 3
- [2] Belytschko T, Lu Y Y, Gu L 1994 Int. J. Numer. Meth. Eng. 37 229
- [3] Liu W K , Jun S , Zhang Y F 1995 Int. J. Numer. Meth. Eng. 20 1081
- [4] Duarte C A, Oden J T 1996 Comp. Meth. in App. Mech. and Engin. 139 237
- [5] Onate E , Idelsohn S , Zienkiewicz O C 1996 Int. J. Numer. Meth. Eng. 39 3839
- [6] Cheng R J, Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)[程荣军、程玉民 2007 物理学报 56 5569]
- [7] Atluri S N , Zhu T 1998 Comput . Mech . 22 117

- [8] Aluru N R 2000 Int. J. Numer. Meth. Eng. 47 1083
- [9] Liu W K, Chen Y J 1995 Int. J. Numer. Meth. Fluids 21 901
- [10] Idelsohn S R, Onate E, Calvo N, Del Pin F 2003 Int. J. Numer. Meth. Eng. 58 893
- [11] Cheng Y M, Peng M J, Li J H 2005 Acta Mech. Sin. 37 719 (in Chinese)[程玉民、彭妙娟、李九红 2005 力学学报 37 719]
- [12] Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民、李九红 2005 物理学报 54 4463]
- [13] Cheng Y M, Li J H 2006 Science in China Series G Physics, Mechanics & Astronomy 49 46
- [14] Li S C, Cheng Y M 2004 Acta Mech. Sin. 36 496 (in Chinese) [李树忱、程玉民 2004 力学学报 36 496]
- [15] LiSC, ChengYM, LiSC 2006 Acta Phys. Sin. 55 4760 (in Chinese)[李树忱、程玉民、李术才 2006 物理学报 55 4760]

- [16] Zhu T, Zhang J D, Atluri S N 1998 Computat. Mech. 21 223
- [17] Kothnur V S, Mukherjee S, Mukherjee Y X 1999 Int. J. Solids Struc. 36 1129
- [18] Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民、陈美娟 2003 力学学报 35 181]
- [19] Cheng Y M, Peng M J 2005 Science in China Series G Physics, Mechanics & Astronomy 48 641
- [20] Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3215(in Chinese) [秦义校、程玉民 2006 物理学报 55 3215]
- [21] Dai B D, Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese) [戴保东、程玉民 2007 物理学报 56 597]
- [22] Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)[陈 丽、程玉民 2008 物理学报 57 1]

Complex variable reproducing kernel particle method for transient heat conduction problems *

Chen Li¹⁽²⁾ Cheng Yu-Min¹[†]

1 & Shanghai Institute of Applied Mathematics and Mechanics , Shanghai University , Shanghai 200072 , China)
 2 & Department of Mechanical Engineering , Chang 'an University , Xi 'an 710064 , China)
 (Received 5 January 2008 ; revised manuscript received 31 March 2008)

Abstract

On the basis of reproducing kernel particle method(RKPM), the complex variable reproducing kernel particle method (CVRKPM) is discussed. The advantage of the CVRKPM is that the correction function of a 2-D problem is formed with 1-D basis function when the shape function is obtained. Then , we apply the complex variable method to two-dimensional transient heat conduction problems. In combination with the Galerkin weak form of transient heat conduction problems , the penalty method is employed to enforce the essential boundary conditions , the CVRKPM for transient heat conduction problems is investigated and the corresponding formulae are obtained. Compared with the conventional RKPM , the CVRKPM introduced in this paper has a higher precision and a lower computation cost. Some examples given in this paper verify the effectivity of the proposed method.

Keywords: reproducing kernel particle method, complex variable reproducing kernel particle method, correction function, transient heat conduction problems
PACC: 0200, 0260, 4630C

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10571118) and the Shanghai Leading Academic Discipline Project of China (Grant No. Y0103).

[†] Corresponding author. E-mail ;ymcheng@shu.edu.cn; ymcheng@sh163.net