斜程大气湍流中漫射目标的散射特性*

韦宏艳† 吴振森 彭 辉

(西安电子科技大学理学院,西安 710071) (2007年11月1日收到 2008年5月11日收到修改稿)

根据推广的惠更斯-菲涅尔原理及 ITU-R 大气结构常数模型(2001年国际电信联盟提出的随高度变化的大气结构常数模型),考虑了大气湍流对激光从发射机到目标和从目标到接收机双程路径的影响,研究了大气湍流中漫射目标的激光波束散射问题,导出了考虑对数振幅起伏和相位占优情况下在斜程大气湍流中传输时激光波束散射场的互相关函数、强度协方差和强度方差的计算公式,并给出了数值计算结果.数值分析了波长、接收机高度和传播距离对强度协方差和归一化强度方差的影响.

关键词:激光散射,斜程湍流,强度方差,强度协方差 PACC:9420B,4225F,4725

1.引 言

大气湍流对目标激光波束散射影响的研究 在 随机介质中的波传播和散射、目标跟踪及特征的提 取与定标、遥感、激光雷达成像和信噪比分析有着广 泛的应用.早在 20 世纪 50 年代后期, Tatarski^[1]采用 Rvtov 近似法并引入现代湍流的统计理论获得了相 当的成功 成为现今处理弱起伏条件下在湍流介质 中波传播的经典理论,在此基础上,人们又发展了基 于抛物型方程求解的强起伏理论^{23]}.随后一些学者 又利用推广的惠更斯-菲涅尔原理,研究水平路径 下 双程湍流大气中的漫射目标对光波散射特性的 影响4-63及部分相干光束在湍流大气中的传输特 性^[7-9].本文根据推广的惠更斯-菲涅尔原理及 ITU-R大气结构常数模型^{10]}同时考虑对数振幅起伏和 相位占优情况下,讨论激光波束双程折叠式斜程传 输时大气湍流对漫射目标散射波场的互相关函数。 强度方差及强度协方差的影响.

2. 斜程大气湍流中漫射目标的散射场

假设源场的初始分布表示为[4]

 $u_{0}(\mathbf{r}) = \bar{u}_{0} \exp\left[-\frac{r^{2}}{2\alpha_{0}^{2}} - \frac{ik_{0}r^{2}}{2F}\right], \quad (1)$

其中 $_{\alpha_0}$ 为波束特征半径 $_{,k_0}$ 为自由空间波数 $_{,F}$ 为 波前曲率半径 $_{,oc}$ 用推广的惠更斯-菲涅尔原理^[4] , 可得目标上任一点的复振幅

$$u_{i}(\boldsymbol{\rho}) = \frac{k_{0} e^{ik_{0}L}}{2\pi i L} \int d\boldsymbol{r} u_{0}(\boldsymbol{r})$$
$$\times \exp\left[\frac{ik_{0} + \boldsymbol{\rho} - \boldsymbol{r} +^{2}}{2L} + \psi_{1}(\boldsymbol{\rho},\boldsymbol{r})\right] (2)$$

其中 ,*L* 是目标到波源的距离 ,*H* 是目标到接收机的 垂直距离 ,其几何示意图如图 1 所示 . ϕ_1 (ρ ,*r*)是湍 流介质中从发射孔径的点(0,*r*)传播到目标上点 (*L*, ρ)时球面波复相位的随机扰动 ,可写为

$$\psi_{1}(\boldsymbol{\rho},\boldsymbol{r}) = \chi(\boldsymbol{\rho},\boldsymbol{r}) + \mathrm{i}S(\boldsymbol{\rho},\boldsymbol{r}), \quad (3)$$

图 1 湍流大气中激光波束斜程双程传播图

其中 χ 和 s 分别是由于大气湍流引起的对数振幅 和相位起伏.

把经过目标散射后的场 $u_{a}(\rho)$ 看作初始场,再

^{*}国家自然科学基金(批准号 160771038)资助的课题.

[†] E-mail : why_ 1221@126.com

应用推广的惠更斯-菲涅尔原理^[4],可以写出接收机 处场的复振幅表达式为

$$u_{r}(\boldsymbol{p}) = \frac{k_{0} e^{ik_{0}L}}{2\pi i L} \int d\boldsymbol{\rho} u_{s}(\boldsymbol{\rho})$$
$$\times \exp\left[\frac{ik_{0} | \boldsymbol{p} - \boldsymbol{\rho}|^{2}}{2L} + \psi_{2}(\boldsymbol{p}, \boldsymbol{\rho})\right] .(4)$$

目标表面 *p* 处的入射场 *u*_i(*ρ*)和 *u*_i(*ρ*)之间的 关系可通过反射系数表示为

$$u_{s}(\boldsymbol{\rho}) = u_{i}(\boldsymbol{\rho})\mathcal{T}(\boldsymbol{\rho}), \qquad (5)$$

其中 $T(\rho)$ 通过它的幅度和相位反映了目标的反射 强度、表面形状和材料特征.对于纯漫射目标,其相 干分量 $T_{s}(\rho)=0.$ 其非相干分量 $T_{s}(\rho)$ 一般具有下 列统计特性:

$$T_{\rm d}(\boldsymbol{\rho}) = 0, \qquad (6)$$

$$T_{\rm d}(\boldsymbol{\rho}_1)T_{\rm d}(\boldsymbol{\rho}_2) = 0, \qquad (7)$$

$$T_{d}(\boldsymbol{\rho}_{1})T_{d}^{*}(\boldsymbol{\rho}_{2}) = \frac{\lambda^{2}R_{d}}{\pi}\delta(\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{2}), \quad (8)$$

$$T_{d}(\boldsymbol{\rho}_{1})T_{d}^{*}(\boldsymbol{\rho}_{2})T_{d}(\boldsymbol{\rho}_{3})T_{d}^{*}(\boldsymbol{\rho}_{4})$$
$$=\left(\frac{\lambda^{2}R_{d}}{\pi}\right)^{2}\left[\delta(\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{2})\delta(\boldsymbol{\rho}_{3}-\boldsymbol{\rho}_{4})$$

+ $\partial (\rho_1 - \rho_4) \partial (\rho_3 - \rho_2)$]. (9) (6)-(9)式表明空间相干入射波被纯漫射目标散射 后变成空间上完全非相干的散射波. R_d 是漫射平面 的等效平均反射率,各式成立的条件是入射波的横 向相关长度远大于目标粗糙表面的相关距离.

根据上述公式目标散射场的二阶和四阶矩可表 示为

$$u_{s}(\boldsymbol{\rho}_{1})u_{s}^{*}(\boldsymbol{\rho}_{2})$$

$$=\frac{\lambda^{2}R_{d}}{\pi}I_{i}(\boldsymbol{\rho}_{2})\delta(\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{2}), \quad (10)$$

$$u_{s}(\boldsymbol{\rho}_{1})u_{s}^{*}(\boldsymbol{\rho}_{2})u_{s}(\boldsymbol{\rho}_{3})u_{s}^{*}(\boldsymbol{\rho}_{4})$$

$$=\left(\frac{\lambda^{2}R_{d}}{\pi}\right)^{2}[I_{i}(\boldsymbol{\rho}_{1})I_{i}(\boldsymbol{\rho}_{3})$$

$$\times\delta(\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{3})\delta(\boldsymbol{\rho}_{3}-\boldsymbol{\rho}_{4})$$

$$+I_{i}(\boldsymbol{\rho}_{4})I_{i}(\boldsymbol{\rho}_{2})$$

$$\times\delta(\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{4})\delta(\boldsymbol{\rho}_{3}-\boldsymbol{\rho}_{2})], \quad (11)$$

其中 $I_i(\rho_m)$ 为在目标平面 $\rho_m(m = 1, 2, 3, 4)$ 处的入射波平均强度.

5. 互相关函数和强度协方差以及强度 方差

在接收平面目标散射场的互相关函数为

$$\Gamma(\boldsymbol{p}_{1},\boldsymbol{p}_{2}) = u_{r}(\boldsymbol{p}_{1})u_{r}^{*}(\boldsymbol{p}_{2})$$

$$= \left(\frac{k_{0}}{2\pi L}\right)^{2} \iint d\boldsymbol{\rho}_{1} d\boldsymbol{\rho}_{2} \quad u_{s}(\boldsymbol{\rho}_{1})u_{s}^{*}(\boldsymbol{\rho}_{2})$$

$$\times \exp\left[\frac{ik_{0}}{2L}(|\boldsymbol{p}_{1} - \boldsymbol{\rho}_{1}|)^{2} - |\boldsymbol{p}_{2} - \boldsymbol{\rho}_{2}|^{2}\right]$$

$$\times \exp\left[\frac{\psi_{2}(\boldsymbol{p}_{1},\boldsymbol{\rho}_{1})}{\psi_{2}(\boldsymbol{p}_{1},\boldsymbol{\rho}_{1})} + \psi_{2}^{*}(\boldsymbol{p}_{2},\boldsymbol{\rho}_{2})\right]. \quad (12)$$

假定大气湍流的折射率起伏引起的对数振幅起 伏 χ 和相位起伏 *S* 是高斯分布的,但它们互不相 关 则球面波的复相位 *n* 阶互相关函数^[11]可表示为

$$\exp\left[\psi(p_{1},\rho_{1}) + \psi_{2}^{*}(p_{2},\rho_{2}) + \dots + \psi(p_{2n-1},\rho_{2n-1}) + \psi_{2}^{*}(p_{2n},\rho_{2n})\right]$$

$$= \exp\left[-\frac{1}{2}\sum_{i=1}^{2n-1}\sum_{j=i+1}^{2n}(-1)^{j+j+1}D_{s}(i,j) + 2\sum_{i=1}^{2n-2}\sum_{j=1}^{n}C_{s}(i,2j+1)\right], \quad (13)$$

其中 D_s 和 C_x 分别是相位结构函数和对数振幅协方 差函数 在 Kolmogorov 湍流谱模型下其表达式见文 献 5].

把 13 武代入(12) 武 得

$$\Gamma(\boldsymbol{p}_{1} \boldsymbol{p}_{2}) = \left(\frac{k_{0}}{2\pi L}\right)^{2} \iint d\boldsymbol{\rho}_{1} d\boldsymbol{\rho}_{2} \boldsymbol{u}_{s}(\boldsymbol{\rho}_{1}) \boldsymbol{u}_{s}^{*}(\boldsymbol{\rho}_{2})$$

$$\times \exp\left[\frac{ik_{0}}{2L}(|\boldsymbol{p}_{1} - \boldsymbol{\rho}_{1}|^{2} - |\boldsymbol{p}_{2} - \boldsymbol{\rho}_{2}|^{2})\right]$$

$$\times \exp\left[-\frac{1}{2}D_{S12} + 2C_{Y13}\right] , \quad (14)$$

上式中对数振幅协方差和相位结构函数可表示为

$$C_{\chi^{13}} = 0.132\pi^2 Lk^2 \int_0^1 C_n^2 (tL) dt \int_0^\infty duu^{-8/3} \\ \times \sin^2 \left(\frac{u^2 t (1-t) L}{k} \right) \\ \times J_0 (u + (p_1 - p_3) t \\ + p(1-t) +), \qquad (15)$$
$$D_{S12} = 2.92k^2 \int_0^1 dt C_n^2 (tL) + (1-t) (p_1 - p_2) + \frac{5/3}{2} \\ = 2 \left(\frac{p_1 - p_2}{2} \right)^{5/3}. \qquad (16)$$

这里 $\rho_{\rm T}$ 为激光波束斜程传输时的相干函数 表示为

$$\rho_{\rm T} = \rho_{\rm TP} \left\{ \frac{\left(1 - \frac{L}{F}\right)^2 + \frac{L^2}{4k_0^2 \alpha_0^4} \left[1 + \frac{1}{3} \left(\frac{2\alpha_0}{\rho_{\rm TP}}\right)^2\right]}{1 - \frac{13}{3} \left(\frac{L}{F}\right) + \frac{11}{3} \left(\frac{L}{F}\right)^2 + \frac{L^2}{12k_0^2 \alpha_0^4} \left[1 + \frac{1}{4} \left(\frac{2\alpha_0}{\rho_{\rm TP}}\right)^2\right]} \right\},$$
(17)

其中 z 是从发射机处沿传输路径的距离 t = z/L, $\rho_{\text{TP}} = \begin{bmatrix} 1.46k^2 \int_0^L dz C_n^2 (tL) (1 - t)^{5/3} \end{bmatrix}^{3/5}$ 是斜程大气 湍流中平面波的相干长度 $C_n^2 (z)$ 是大气结构常数 模型 本文用 2001 年国际电信联盟提出的随高度变 化的 ITU-R 大气结构常数模型^[10] 表示为

$$C_n^2(h) = 8.148 \times 10^{-56} v_{\text{RMS}}^2 h^{10} e^{-h/1000}$$

+ 2.7 × 10⁻¹⁶ $e^{-h/1500}$ + $C_0 e^{-h/100}$,(18)

其中 $v_{\text{RMS}} = \sqrt{v_g^2 + 30.69 v_g + 348.91}$ 是垂直路径均方 根风速 , v_g 是近地面风速 , C_0 是地平面附近的大气 结构常数(其典型值为 1.7 × 10⁻¹⁴ m^{-2/3}).

通过漫射目标的反射,散射场是空间非相干的. 利用(10)(15)(16)式,其互相关函数式为

$$\Gamma_{d}(\boldsymbol{p}_{1},\boldsymbol{p}_{2}) = u_{i}(\boldsymbol{p}_{1})u_{r}^{*}(\boldsymbol{p}_{2})$$

$$= \frac{R_{d}}{\pi L^{2}} \int d\boldsymbol{\rho} \quad I_{i}(\boldsymbol{\rho})$$

$$\times \exp\left\{\frac{ik_{0}}{2L}\left[p_{1}^{2} - p_{2}^{2} - 2\boldsymbol{\rho} \cdot \boldsymbol{p}_{d}\right] - \left(\frac{p_{d}}{\rho_{T}}\right)^{5/3} + 2C_{\chi^{13}}\right\}.$$
(19)

这里差分坐标 $p_d = |p_1 - p_2|$,对于理想漫射面 $R_d = 4\pi^2/k_0\lambda^2$, $I_i(\rho)$ 为目标平面 ρ 点入射波的平均强度 , 根据 (2)和 13 武并利用傅里叶-贝塞尔公式可得

$$I_{i}(\boldsymbol{\rho}) = \left(\frac{k_{0} + u_{0} + \alpha_{0}}{\sqrt{2}L}\right)^{2} \int_{0}^{\infty} r \, \mathrm{d}r J_{0}\left(\frac{k_{0}}{L}\rho r\right)$$
$$\times \exp\left\{-\left[\frac{1}{4\alpha_{0}^{2}} + \left(\frac{\alpha_{0} k_{0}}{2L}\right)^{2} \left(1 - \frac{L}{F}\right)^{2}\right] r^{2} - \left(\frac{r}{\rho_{T}}\right)^{5/3} + 2C_{\chi 13}\right\}, \qquad (20)$$

其中 $r = |\mathbf{r}_1 - \mathbf{r}_2|$.代入(19)式得激光波束双程折叠 式斜程传输在接收机处的互相关函数为

$$\Gamma_{d}(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}) = R_{d} \left(\frac{|\bar{u}_{0}| | |\alpha_{0}|}{L}\right)^{2} \\ \times \exp\left\{-\left[\frac{1}{4\alpha_{0}^{2}} + \left(\frac{\alpha_{0} k_{0}}{2L}\right)^{2} \left(1 - \frac{L}{F}\right)^{2}\right] p_{d}^{2} \\ + \frac{ik_{0}}{2L} \left(p_{1}^{2} - p_{2}^{2}\right) - 2\left(\frac{p_{d}}{\rho_{T}}\right)^{5/3} \\ + 4C_{\chi^{13}}\right\}.$$
(21)

图 2 分别给出了聚焦波束和准直波束入射时, 在不同入射波束特征半径下的互相关函数.从图中 可以看出,随着波束特征半径的减小,聚焦波束的互 相关函数迅速下降,而准直波束正好相反,总体上准 直波束比聚焦波束下降要快的多.

图 3 分别给出了聚焦波束和准直波束入射时,在 不同传输距离下的互相关函数,从图中可以看出,随 着传输距离的减小,聚焦波束与准直波束的互相关函 数随之下降,准直波束比聚焦波束下降要快得多.

图 2 不同入射波束特征半径聚焦和准直波束的互相关函数随 p 的变化关系

图 3 不同传输距离下聚焦和准直波束的互相关函数随 p 的变 化关系

在接收平面上强度协方差的定义如下^[12]: $C_1(p_1,p_2) = (p_1)(p_2) - (p_1) (p_2).$ (22)

该式石辺第一坝为强度相天函数

$$B_1(p_1,p_2) = I(p_1)I(p_2)$$

 $= u_1(p_1)u_1^*(p_1)u_1(p_2)u_1^*(p_2)$.
(23)
把(4)式代入(23)式,并利用(11)式和(13)式,

则经漫射目标散射后接收机平面上的激光波束强度 相关函数可表示为

$$B_{1}(p_{1},p_{2}) = \left(\frac{k_{0}}{2\pi L}\right)^{4} \iiint d\rho_{1}d\rho_{2}d\rho_{3}d\rho_{4}$$

$$\times u_{s}(\rho_{1})u_{s}^{*}(\rho_{2})u_{s}(\rho_{3})u_{s}^{*}(\rho_{4})$$

$$\times \exp\left\{\frac{ik_{0}}{2L}[|p_{1}-\rho_{1}|^{2}-|p_{1}-\rho_{2}|^{2} - |p_{2}-\rho_{4}|^{2}]\right\}$$

$$\times \exp\left[\psi_{2}(p_{1},\rho_{1})+\psi_{2}(p_{1},\rho_{2}) + \psi_{2}(p_{2},\rho_{3})+\psi_{2}(p_{2},\rho_{4})\right]$$

$$= \left(\frac{R_{d}}{\pi L^{2}}\right)^{2} \iint d\rho_{1}d\rho_{2} I_{i}(\rho_{1}) I_{i}(\rho_{2}) H_{1}$$

$$+ \left(\frac{R_{d}}{\pi L^{2}}\right)^{2} \iint d\rho_{1}d\rho_{2} I_{i}(\rho_{1}) I_{i}(\rho_{2})$$

$$\times \exp\left(\frac{ik_{0}\rho \cdot p_{d}}{L}\right) H_{2}, \quad (24)$$

其中 H_1 和 H_2 分别为

$$H_{1} = \exp \left\{ 4 C_{x} (\boldsymbol{p}_{d}, \boldsymbol{\rho}) \right]$$

$$H_{2} = \exp \left\{ -\rho_{T}^{5/3} \left[2p_{d}^{5/3} + 2\rho^{5/3} - \frac{8}{3} \int_{0}^{1} dt \mid \boldsymbol{p}_{d} t + (1 - t)\boldsymbol{\rho} \mid^{5/3} - \frac{8}{3} \int_{0}^{1} dt \mid \boldsymbol{p}_{d} t - (1 - t)\boldsymbol{\rho} \mid^{5/3} + 2 C_{x} (\boldsymbol{p}_{d}, -\boldsymbol{\rho}) + 2 C_{x} (\boldsymbol{p}_{d}, \boldsymbol{\rho}) \right\}.$$

$$(25)$$

则强度协方差可表示为

 $C_{1}(p_{1},p_{2}) = C_{11}(p_{1},p_{2}) + C_{12}(p_{1},p_{2}), (27)$ 其中

$$C_{II} = \left(\frac{R_{d}}{\pi L^{2}}\right)^{2} \iint d\boldsymbol{\rho}_{1} d\boldsymbol{\rho}_{2} [I_{i}(\boldsymbol{\rho}_{1}) I_{i}(\boldsymbol{\rho}_{2}) H_{1} - I_{i}(\boldsymbol{\rho}_{1}) I_{i}(\boldsymbol{\rho}_{2})], \quad (28)$$

$$C_{I2} = \left(\frac{R_{d}}{\pi L^{2}}\right)^{2} \iint d\boldsymbol{\rho}_{1} d\boldsymbol{\rho}_{2} \quad I_{i}(\boldsymbol{\rho}_{1}) \quad I_{i}(\boldsymbol{\rho}_{2})$$

$$\times \exp\left(\frac{ik_{0}\boldsymbol{\rho}\cdot\boldsymbol{p}_{d}}{L}\right) H_{2}. \quad (29)$$

利用差分坐标和傅里叶-贝塞尔积分进行复杂 运算可得

$$C_{12} = \frac{I^2}{2\pi} \left(\frac{k_0}{L}\right)^2 \iint r_2 \mathrm{d}r_2 \mathrm{d}\boldsymbol{\rho}$$

$$\times \exp\left\{-\frac{r_2^2}{2\alpha_0^2} - 2\left(\frac{r_2}{\rho_{\rm T}}\right)^{5/3} - 2r_2^2\left[\frac{k_0\alpha_0}{2L}\left(1 - \frac{L}{F}\right)\right]^2\right\} \times \exp\left(\frac{{\rm i}k_0\boldsymbol{\rho}\cdot\boldsymbol{p}_{\rm d}}{L}\right)J_0\left(\frac{k_0\rho r_2}{L}\right) \times H_2(\boldsymbol{p}_{\rm d}\cdot\boldsymbol{\rho}), \qquad (30)$$

$$C_{\rm II} = \frac{I^2}{2\pi}\left(\frac{k_0}{L}\right)^2 \iint r_2 {\rm d}r_2 {\rm d}\boldsymbol{\rho} J_0\left(\frac{k_0\rho r_2}{L}\right) \times \left\{\exp\left[4C_x(\boldsymbol{\rho}\cdot\boldsymbol{p}_{\rm d})\right] - 1\right\} \times \exp\left\{-\frac{r_2^2}{2\alpha_0^2} - 2\left(\frac{r_2}{\rho_{\rm T}}\right)^{5/3} - 2r_2^2\left[\frac{k_0\alpha_0}{2L}\left(1 - \frac{L}{F}\right)\right]^2\right\}. \qquad (31)$$

当 $p_1 = p_2 = p$,从(26)式得 $H_2 = \exp[4C_x(\rho D)]$,则 相应的强度方差为

$$\sigma_{1}^{2} = I^{-2} \left(\frac{k_{0}}{L}\right)^{2} \iint r_{2} dr_{2} \rho d\rho$$

$$\times \left\{ \exp\left[4C_{x}(\rho \ \rho \ 0)\right] - 1 \right\} J_{0} \left(\frac{k_{0} \rho r_{2}}{L}\right)$$

$$\times \exp\left\{-2\left(\frac{r_{2}}{\rho_{T}}\right)^{5/3} - r_{2}^{2} \left[\frac{1}{2\alpha_{0}^{2}} + \frac{k_{0}^{2}\alpha_{0}^{2}}{2L^{2}}\left(1 - \frac{L}{F}\right)\right]^{2} \right\}. \quad (32)$$

考虑对数振幅起伏时的强度方差和 强度协方差函数

対于均匀湍流 重写归一化强度方差为

$$\sigma_1^2 = \left(\frac{k_0}{L}\right)^2 \int_0^{\infty} \int_0^{\infty} r dr \rho d\rho \{2 \exp[4C_x(\rho D)] - 1\}$$

 $\times J_0\left(\frac{k}{L}\rho r\right) f_2(\mathbf{r}_1)$ (33)

$$C_{\rm I}(p) = C_{\rm II}(p) + C_{\rm I2}(p),$$
 (34)

其中

$$C_{II}(\boldsymbol{p}) = I^{2} \frac{1}{2\pi} \left(\frac{k}{L}\right)^{2} \iiint r\rho d\theta dr d\rho$$

$$\times \exp\{I C_{\chi}(\boldsymbol{p}, \boldsymbol{p})] - 1\}$$

$$\times J_{0}\left(\frac{k}{L}\rho r\right) f_{2}(r), \qquad (35)$$

$$C_{II}(\boldsymbol{p}) = I^{2} \frac{1}{2\pi} \left(\frac{k}{L}\right)^{2} \exp\left[-2\left(\frac{p}{2}\right)^{5/3}\right]$$

$$\left\{ \begin{array}{l} \boldsymbol{p} \end{array} \right\} = I^{-2} \frac{1}{2\pi} \left(\frac{k}{L} \right) \exp \left[-2 \left(\frac{p}{\rho_{\mathrm{T}}} \right) \right] \\ \times \iiint r \rho \mathrm{d}\theta \mathrm{d}r \mathrm{d}\rho f_{\mathrm{I}} \left(\boldsymbol{\rho}, \boldsymbol{p} \right) \\ \times J_{0} \left(\frac{k}{L} \rho r \right) f_{2} \left(r \right),$$
 (36)

$$f_{1}(\boldsymbol{\rho},\boldsymbol{p}) = \exp\left\{i\frac{k}{L}\boldsymbol{\rho}\cdot\boldsymbol{p} - 2\left(\frac{p}{\rho_{T}}\right)^{5/3} + \frac{8}{3}\rho_{T}^{-5/3}\left[\int_{0}^{1}dt + \boldsymbol{p}t + (1 - t)\boldsymbol{\rho}\right]^{5/3} + \int_{0}^{1}dt + \boldsymbol{p}t - (1 - t)\boldsymbol{\rho}^{-5/3}\right] + 2C_{\chi}(\boldsymbol{\rho},\boldsymbol{p}) + 2C_{\chi}(\boldsymbol{\rho} - \boldsymbol{p})\right\}, \quad (37)$$

$$f_{2}(r) = \exp\left\{-r^{2}\left[\frac{1}{2\alpha_{0}^{2}} + 2\left(\frac{k_{0}\alpha_{0}}{2L}\right)^{2}\left(1 - \frac{L}{F}\right)^{2}\right] - 2\left(\frac{r}{\rho_{T}}\right)^{5/3}\right\}. \quad (38)$$

由于 $f_2(\mathbf{r})$ 随 \mathbf{r} 的增大迅速下降 ,因而可认为 到达某一 A 值时 , $f_2(\mathbf{r})=0$,此时将 $f_2(\mathbf{r})$ 用零阶贝 塞尔函数展开 ,即

$$f_2(\mathbf{r}) = \sum_m b_m J_0\left(\frac{\lambda_m}{A}r\right) , \qquad (39)$$

$$b_{m} = \frac{2}{J_{1}^{2}(\lambda_{m})} \int_{0}^{1} r J_{0}(\lambda_{m}r) f_{2}(Ar\lambda_{m}) dr , (40)$$

其中 λ_m 是 $J_0(x)$ 的第 m 个零点 $J_1(\lambda_m)$ 为对应的 一阶贝塞尔函数.利用

$$\int_{0}^{\infty} r J_{0}(\alpha r) J_{0}(\beta r) dr = \frac{2\delta(\alpha - \beta)}{\alpha + \beta}, \quad (41)$$

则得到激光波束经过湍流大气斜程传输后强度方差 和强度协方差函数的计算公式

$$\sigma_{1}^{2} = \sum_{m} b_{m} \left\{ 2 \exp\left[4C_{x} \left(\frac{L\lambda_{m}}{k_{0}A} \right) \right] - 1 \right\}, \qquad (42)$$

$$C_{1} = \frac{I^{2}}{2\pi} \sum_{m} b_{m} \int d\theta \left\{ \exp\left[4C_{\chi} \left(\frac{L}{k} \cdot \frac{\lambda_{m}}{A} p \theta \right) \right] - 1 + \exp\left[-2\left(\frac{p}{\rho_{T}} \right)^{5/3} \right] f_{1} \left(\frac{L}{k} \cdot \frac{\lambda_{m}}{A} p \theta \right) \right\}. \qquad (43)$$

这里 $\theta \ge p$ 和 ρ 之间的夹角. 当大气结构常数 $C_n^2(h)$ 为一定值时可以退化到水平双程传输的 结果.

图 4 给出了考虑对数振幅起伏时,波长为 1.315 µm与 3.8 µm 的激光束在斜程湍流大气中传 输时的强度协方差函数随 p 的变化关系.从图中可 以看出波长越长,强度协方差衰减越慢,其他条件一 定时,传播距离越长,C(p)衰减越快.

图 5 给出了有、无目标的情况下和有目标时同 一高度不同传输距离归一化强度方差随对数振幅起 伏方差的变化情况.从图 5 可以看出,有目标存在的 情况下,考虑对数振幅起伏的影响后,中等湍流区的 归一化强度方差接近 1.3,此时散射场的相位是随 机的,由湍流引起的相位扰动对方差增加的影响并

图 4 强度协方差函数随 p 的变化

不大 然而对数振幅微扰不受此限制 ,是它的主要贡 献使 σ² , 变化超过了 1.但强湍流和弱湍流区它仍趋 于 1 ,因为到了强湍流区 ,对数振幅微扰达到饱和 , 此时由相位微扰引起的湍流扰动成主要部分 ,另外 在其他参数不变的情况下 ,波长越长 ,起伏方差越 小 ,反之亦然 .图 5 所得到的结果和文献 5 ,得到的 水平路径的结果的趋势是类似的 ,尤其在弱湍流区 和强湍流区 ,结果基本一致 .但文献 5 ,很考虑了相 位起伏 ,在中等湍流区算得的结果是不准确的 ,而本 文既考虑了相位起伏又考虑了振幅起伏 ,较文献 5] 的结果更准确 .

图 5 归一化强度方差随对数振幅起伏方差的变化

无目标时闪烁指数的表达式我们在文献 13 中 已经给出,本文研究的是斜程折叠式路径传输问题, 为了与有目标的闪烁指数做比较,在计算无目标闪 烁指数的时候,我们取传输距离为本文单程距离的 两倍.在其他条件相同的情况下,中等湍流区无目标 的闪烁指数比有目标时候的闪烁指数大.因为激光 波束被漫射目标散射后每一点都变成非相干的球面 波,文献 14 中给出,在相同情况下,球面波的闪烁 指数比激光波束的闪烁指数要小.从图 5 中还可以 看出,接收机高度相同情况下,传输距离越长归一化 强度方差越大.

图 6 给出了不同高度情况下归一化强度方差随 对数振幅起伏方差的变化.从图中可以看出,波束传 输相同距离,接收机高度越高,其归一化强度方差越 小,也就是说波束斜程传输时,在一定的传输距离 内,接收机的高度越高,大气湍流的影响就越小,即

图 6 不同传播距离情况下归一化强度方差随对数振幅起伏方 差的变化

波束在斜程传输时受大气湍流的影响比水平传输时 要小得多.

5.结 论

从理论上考虑折叠式双程斜程湍流大气,推导 了激光波束斜程传输到目标处 经目标散射后 再传 输到接收机处的互相关函数、强度协方差和强度方 差 数值分析了大气湍流对以上统计量的影响,事实 上 若只考虑大气湍流对波的相位影响 归一化强度 方差为1场的分布和强度分布不受大气湍流的影 响。大气湍流导致的对数振幅起伏使强度方差在中 等湍流区大于1,同时也改变了在接收机处散射场 的分布和强度分布,但对于弱起伏和强湍流极限情 况 接收平面处归一化强度方差基本为1 而强度协 方差函数却随着不同湍流、波长和传播距离的变化 而变化,有关大气湍流中漫射目标光散射特性的实 验结果还比较少 因此有关的数值结果还有待于实 验验证.该研究对空间目标攻防对抗 强激光武器等 军事以及航空航天,遥感和环境检测等领域有广泛 的应用.

- Tatarskii V I 1961 Wave Propagation in a Turbulent Medium (New York : McGraw-Hill)
- [2] Soukoulis C M 1993 Phys. Rev. B 49 3800
- [3] Belen 'kii M S 1996 J. Opt. Soc. Am. 13 1078
- [4] Lee M H , Holmes J F , Kerr J R 1976 J. Opt. Soc. Am. 66 1164
- [5] Holmes J F , Lee M H , Kerr J R 1979 J. Opt. Soc. Am. 70 355
- [6] Andrews L C , Phillips R L , Miller W B 1997 Appl. Opt. 36 698
- [7] Ji X L, Xiao X, Lü B D 2004 Acta Phys. Sin. 53 3996 (in Chines) [季小玲、肖 希、吕百达 2004 物理学报 53 3996]
- [8] Huang Y B, Wang Y J 2006 Acta Phys. Sin. 55 6715 (in Chines) [黄印博、王英俭 2006 物理学报 55 6715]
- [9] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chines) [王

涛、蒲继雄 2007 物理学报 56 6754]

- [10] ITU-R. Document 3J/31-E 2001 Budapest Radio Communication Study Group Meeting 7
- [11] Yura H T 1972 Appl. Opt. 11 1399
- [12] Zhang Y X, Chi Z Y 2001 Optical Wave Propagation in the Atmosphere and Imaging (Being jing : National Defence Industry Publishing Company)
- [13] Wu Z S, Wei H Y, Yang R K, Guo L X 2007 J. Atmos. Environ. Opt. 2 321 (in Chinese)[吴振森、韦宏艳、杨瑞科、郭立新 2007 大气与环境光学学报 2 321]
- [14] Andrews L C , Phillips R L 1998 Laser Beam Propagation Through Random Media (Washington : SPIE Press)

Scattering from a diffuse target in the slant atmospheric turbulence *

Wei Hong-Yan[†] Wu Zhen-Sen Peng Hui

(School of Science, Xidian University, Xi'an 710071, China) (Received 1 November 2007; revised manuscript received 11 May 2008)

Abstract

Based on the extended Huygens-Fresnel principle and ITU-R atmospheric turbulence model (the altitude-dependent model proposed by International Telecommunication Union-Recommendation in 2001), the treatment includes the effect of the atmospheric turbulence both on the laser beam as it propagates to the target and on the scattered field as it propagates back to the receiver. The covariance function and variance of the scattering intensity are derived considering the fluctuations of the log-amplitude and phase , and the numerical results are presented. The influences of wavelength , receiver altitude and propagation distance on the covariance function and normalized variance of the scattering are discussed.

Keywords : laser scattering , turbulence on slant path , variance of intensity , covariance function of intensity PACC : 9420B , 4225F , 4725

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60771038).

[†] E-mail : why_ 1221@126.com