卟啉和钌二元体的超快能量转移*

沈 涵¹) 刘 杰²) 陈志峰¹) 黄锦汪²) 沈 勇²) 王 惠¹¹, 计亮年¹²)

1)(中山大学光电材料与技术国家重点实验室,广州 510275)

2)(中山大学化学与化工学院/生物无机与合成教育部重点实验室,广州 510275)

(2008年4月2日收到2008年5月19日收到修改稿)

采用超快时间分辨的荧光光谱技术测量了一种由柔性链连接的卟啉-钌二元体分子内的能量转移动力学过程.通过在钌的吸收峰(~453 nm)对二元体进行光激发,实验上观测到了从钌基团到卟啉基团的超快能量转移过程(~400ps).而在卟啉的吸收峰(~400 nm)对二元体进行光激发,实验上没有观测到从卟啉基团到钌基团的能量转移.采用 Förster 理论对二元体系能量转移过程的产生机理进行了分析 结果表明,钌和卟啉之间的能量转移来源于基于光谱重叠的偶极-偶极相互作用.

关键词:卟啉-钌二元体,能量转移,超快激光光谱技术 PACC:8240,3420K

1.引 言

光致能量转移和电荷转移过程广泛存在于自然 界中,通过对这些过程的研究,我们可以对自然光合 作用有一个更好的了解,在此基础上设计高效率、高 单色性的超分子发光器件[1,2].近年来,通过合成多 组分化合物 对能量转移和电荷转移过程进行模拟 和研究成为一个热门的课题,引起了国内外的广泛 关注^[3-9],卟啉和钌以及它们的衍生物,由于具有独 特的光敏特性 通常作为这类研究的构筑分子 而到 目前为止,大部分的研究都着重于由刚性共轭链连 接的二元分子体系[10-13],但由于这类二元体系存在 合成较困难、刚性的连接体吸收给体能量而使得体 系内的能量转移变得复杂等缺点[14].近年来,有关 由柔性链连接的二元体系的研究也引起国际上的关 注^[15].本文报道一种由四个碳-碳单键形成的柔性 链所连接的卟啉-钌二元体内的能量转移过程研究. 首先采用时间分辨荧光光谱技术对二元体的超快能 量转移过程进行了实时测量,对实验结果采用 Förster 能量转移理论进行了分析,结果表明,二元体 内的能量转移来源于两基团之间的偶极-偶极相互 作用 理论上计算了能量转移的时间常数 与实验结 果较好地符合.

2. 实验方法

卟啉-钌二元体由中山大学化学系制备,其分子 结构如图1所示.实验中所用样品均为溶液样品(溶 剂为二氯甲烷),浓度为2μM(1M=1 mol/L).

瞬态荧光光谱测量光路如图 2 所示,光源是一 台 Nd: YAG 激光器(PL2143),其发出的激光经 OPA (PG401SH/DFG2-10)变成波长为 453 nm(对应钌的 吸收峰)的激光脉冲,其重复频率为10Hz,脉宽为 22 ps 单脉冲能量为 160 µJ.样品发出的荧光由一组 大口径透镜收集后,经一台反射式单色仪(WDF)由 条纹相机(HammatsuC1587,分辨率:25 ps)和 CCD (C4742-95)记录.另一台激光光源是美国光谱物理 公司(Spectra Physics)生产的 Hurricane,其产生波长 为 800 nm 的激光(如图 2 中虚线框内所示) 经倍频 晶体 BBO 产生波长为 400 nm(对应卟啉的吸收峰) 的激光脉冲,其重复频率为1 kHz,脉宽为130 fs,平 均功率为 17.5 µW. 样品发出的荧光由一组大口径 透镜收集 经一台光谱仪(HammatsuC5094)后由条纹 相机 (HammatsuC6860 分辨率 200 fs)和 CCD C4742-95)记录.

^{*} 国家自然科学基金(批准号 160478013, 20571089, 90608012)和国家重点基础研究发展计划(973)项目(批准号 2007CB815306)资助的课题.

[†] E-mail:stswh@mail.sysu.edu.cn

NH N

HN

图 1 卟啉和钌二元体的分子结构

图 2 实验基本光路图

3. 实验结果分析

3.1. 吸收光谱分析

图 3 显示了钌配合物分子和卟啉单体分子以及

卟啉-钌二元体的吸收光谱图. 钌配合物在 453 nm 存在较宽的吸收峰(对应于钌配合物的金属到配体 的电荷跃迁(MLCT))^{3,16,17]}.卟啉单体在 417 nm 有 一个很强的吸收(对应于卟啉的 Soret 带特征吸收); 在 500—650 nm 之间存在 4 个小峰(对应于卟啉的 Q 带特征吸收)^{3]}.二元体的吸收光谱为卟啉单体和钌

图 3 卟啉单体分子(a), 钌配合物分子(b), 和卟啉-钌二元体(c)的吸收光谱

配合物吸收的线性叠加表明,光激发前二元体系中 两基团之间不存在明显的电荷相互作用.

3.2. 稳态荧光光谱分析

图 4(a)和(b)分别显示了卟啉单体分子和钌配 合物单体分子的稳态荧光光谱图.卟啉单体分子在 650 nm 附近有一个很强的发光峰,在 710 nm 附近有 一个较弱的发光峰.钌配合物分子在 575 nm 附近有 一个较宽的发光峰.图 4(c)显示了在 400 nm 波长激 发下二元体的稳态荧光光谱,它与图 4(a)所示的卟 啉单体分子的稳态荧光光谱完全一致,表明激发卟 啉基团后,没有发生从卟啉到钌的能量转移过程.因 此,二元体的发光主要来源于卟啉基团.图4(d)显 示了在453 nm 波长激发下二元体的稳态荧光光谱, 如图所示,在575 nm和650 nm存在两个较强的发光 峰,其中575 nm附近较宽的发光峰来源于钌基团的 发光,而650 nm和710nm处的发光峰来源于卟啉基 团的发光.图4(d)中插图为卟啉和钌配合物分子的共 混物的发光光谱,与(d)进行比较可以看出,卟啉的发 光应来源于二元体内从钌到卟啉的能量转移.

图 4 (a) 小啉单体分子、(b) 钌配合物分子、(c) 400 nm 和(d) 453 nm 激发下卟啉-钌二元体及 453 nm 激发下 卟啉和钌共混物(比例为 1:1)的稳态荧光光谱(插图)

由于卟啉和钌是通过非共轭的柔性链连接的, 因此,不可能通过连接链进行 Dexter 型能量转 移^[18].而由于钌与卟啉之间存在光谱重叠(如图 3 和4所示),它可导致卟啉和钌之间的偶极-偶极相 互作用,由此可发生 Förster 能量转移.根据 Förster 能量转移理论^[19],能量转移速率 k_{et} 的表达式 如下:

$$k_{\rm et} = \frac{1}{\tau_{\rm D}} \left(\frac{R_0}{R}\right)^6 , \qquad (1)$$

其中, $\tau_{\rm D}$ 为孤立给体的荧光寿命($\tau_{\rm D} \approx 340 \text{ ns}^{201}$); *R*为给体与受体的距离; R_0 为 Förster 能量转移的临 界半径:

$$R_0^6 = \frac{9000 \ln(10) \phi_D \kappa^2}{128 \pi^6 n^4 N} \int_0^\infty d\nu \frac{f_D(\nu) \epsilon_A(\nu)}{\nu^4} , \quad (2)$$

其中, $f_{\rm D}(\nu)$ 为标准化到单位面积的给体荧光光谱, 以 cm 为单位; $\epsilon_{\rm A}(\nu)$ 为十进制的摩尔消光系数表 示的受体吸收光谱,以 L/mol·cm = (M·cm)⁻¹为单 位; ν 表示以波数为单位(cm⁻¹)的频率;n 为溶剂的 折射率(n = 1.42);N 为阿弗加得罗常数; κ^2 是反映 电子偶极相对方向的常数,对于转动速率快于分子 能量转移速率的分子来说 κ^2 值为 2/3; $\phi_{\rm D}$ 是给予体 荧光量子产率($\phi_{\rm Ru} = 0.001^{[21]}$);重叠积分($J_{\rm DA}$)表 示光谱重叠的程度,计算得到重叠积分为

$$J_{\rm DA} = \int_{0}^{\infty} d\nu \frac{f_{\rm D}(\nu) \epsilon_{\rm A}(\nu)}{\nu^4} = 1.0113 \times 10^{-10} \,\mathrm{cm}^6 \,\mathrm{mol}^{-1} ,$$
(3)

将该值代入(2)式中,求得临界半径 R₀ = 49.43 Å.

为了得到二元体样品给体与受体的距离,我们 对二元体在溶液中的构象进行了分子动力学模拟. 模拟的参数如下:溶剂为三氯甲烷;力场采用 Amber9中的gaff,其中 Ru 的参数来源于文献[22]; 温度为 300 K,模拟时间 2.4 ns.模拟在 Amber9 软件 中进行.模拟结果表明钌到卟啉中心的平均距离为 R = 16 Å,其中最短的距离为 13.5 Å.利用(1)式可 以计算得出从钌到卟啉的能量转移时间 $\tau_{et} \approx k_{et}^{-1} \approx$ 391 ps.

为了从实验上进一步确定二元体内能量转移的

时间,我们测量了在激发波长分别为 453 nm 和 400 nm 下二元体的瞬态发光动力学过程(如图 5 所示).

当激发光波长为 453 nm 时,在初始时刻,钌基 团的发光明显强于卟啉的发光.而随着延迟时间的 增加,卟啉基团的发光逐渐增强,在 400ps 处,与图 4 插图中卟啉和钌配合物分子的共混物的发光光谱比 较,卟啉基团的发光已很明显,表明已有能量从钌基 团转移到卟啉基团.在延迟时间为 3 ns 时,卟啉的 发光已明显比钌的发光强.

当激发光波长为 400 nm 时,二元体的瞬态发光 光谱如图 5(a)所示,发光主要都来源于卟啉基团. 这可能是由于卟啉的发光谱带与钌的吸收谱带没有 发生光谱重叠(如图 3 和 4 所示).根据 Förster 理论, 不会发生基于偶极-偶极的相互作用而导致能量 转移.

图 5 (a) 激发光为 400 nm, (b) 激发光为 453 nm时, 卟啉-钌二元体的瞬态光谱图

4.结 论

本文采用超快时间分辨的荧光光谱技术,测量 了一种由柔性链连接的卟啉-钌二元体分子内的能 量转移动力学过程.通过在钌的吸收峰(~453 nm) 对二元体系进行光激发,实验上观测到了从钌基团 到卟啉基团的能量转移过程,能量转移时间(~400

- [1] Wang H, Shen Y, Zhang W, Chen Z F, Yu H C, Zhao F L, Huang J W, Lin W Z, Ji L N 2007 Phys. Rev. B 76 45207
- [2] Sun S J, Teng F, Xu Z, Zhang Y F, Hou Y B 2004 Acta Phys. Sin. 53 9394 (in Chinese) [孙世菊、滕 枫、徐 征、张延芬、 侯延冰 2004 物理学报 53 9394]
- [3] Brookfield R L , Ellul H , Harriman A , Porter G 1986 J. Chem. Soc. Faraday Trans. 2 219
- [4] Gurzadyan G G , Tran-Thi T H , Gustavsson T 1998 J. Chem. Phys. 108 385
- [5] Herz L M, Silva C, Friend R H, Phillips R T, Setayesh S, Becker S, Marsitsky D, Müllen K 2001 Phys. Rev. B 64 195203
- [6] Lyons B P 2003 J. Chem. Phys. 118 4707
- [7] Harriman A, Hissler M, Trompette O, Ziessel R 1999 J. Am. Chem. Soc. 121 2516
- [8] Prodi A, Indelli M T, Kleverlaan C J, Scandola F, Alessio E, Gianferrara T, Marzilli L G 1999 Chem. Eur. J. 5 2668
- [9] Toma H E , Araki K 2000 Coord . Chem . Rev . 196 307
- [10] Flamigni L, Armaroli N, Barigelletti F, Balzani V, Collin J P, Dalbavie J O, Heitz V, Sauvage J P 1997 J. Phys. Chem. B 101 5936
- [11] Chichak K, Branda N R 1999 Chem. Commun. 523 524

ps),而在卟啉的吸收峰(~400 nm)对二元体系进行 光激发,实验上没有观测从卟啉基团到钌基团的能 量转移;采用Förster理论对钌基团到卟啉基团的能 量转移过程进行了分析.结果表明,由钌到卟啉的能 量转移来源于两基团之间的偶极-偶极相互作用,理 论计算结果与实验较好地符合.研究结果对于设计 新型的生物纳米分子器件具有重要的意义.

- [12] Flamigni L, Barigelletti F, Armaroli N, Ventura B, Collin J P, Sauvage J P, Williams J A G 1999 Inorg. Chem. 38 661
- [13] Benniston A C, Chapman G M, Harriman A, Mehrabi M 2004 J. Phys. Chem. A 108 9026
- [14] Schlicke B , Belser P , De Cola L , Sabbioni E , Balzani V 1999 J. Am. Chem. Soc. 121 4207
- [15] Scharf C , Peter K , Bauer P , Jung C , Thelakkat M , Kohler J 2006 Chem. Phys. 328 403
- [16] Ravikumar M, Pandian R P, Chandrashekar T K 1999 J. Porphyrins Phthalocyanines 3 70
- [17] Liu J, Huang J W, Fu B, Zhao P, Yu H C, Ji L N 2007 Spectrochimica Acta A 67 391
- [18] Barigelletti F, Flamigni L 2000 Roy. Soc. Chem. 29 1
- [19] Förster T 1960 Radi. Res. Supp. 2 326
- [20] Shen H, Yu H J, Zhu W L, Chao H, Wang H, Ji L N 2007 Acta Opt. Sin. 27 1333 (in Chinese)[沈 涵、于会娟、朱伟玲、巢 晖、王 惠、计亮年 2007 光学学报 27 1333]
- [21] Kim D , Shin E J 2003 Bull . Kor . Chem . Soc . 24 1490
- [22] Brandt P, Norrby T, Akermark B, Norrby P O 1998 Inorg. Chem. 37 4120

Shen Han¹) Liu Jie²) Chen Zhi-Feng¹) Huang Jin-Wang²) Shen Yong²) Wang Hui^{1)†} Ji Liang-Nian^{1,2})

1) State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China)

2 🕽 Institute of Chemistry and Chemistry Engineering/Key Laboratory of the Ministry of Education for Synthetic Bioinorganic Chemistry ,

Sun Yat-Sen University, Guangzhou 510275, China)

(Received 2 April 2008; revised manuscript received 19 May 2008)

Abstract

The ultrafast energy transfer has been investigated in a porphyrin (TPP) and polypyridyl ruthenium ([I]) (Ru) hybrid, which is linked by a butyl chain by using time-resolved fluorescence spectroscopic technique. The experimental result shows that , when the excitation wavelength is at the absorption peak (~453 nm) of the Ru moiety ,an ultrafast energy transfer occurs from Ru to porphyrin moiety (~400ps). When the excitation wavelength (~400 nm) is at the absorption peak of the TPP moiety ,no energy transfer is detected from TPP to Ru. The origin of the energy transfer has been analyzed by using Förster theory. The theoretical result shows that the energy transfer is attributed to dipole-dipole interaction based on the spectra overlap.

Keywords : porphyrin-polypyridyl ruthenium ([]) hybrid , energy transfer , ultrafast laser technology **PACC** : 8240 , 3420K

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 60478013, 20571089, 90608012) and the State Key Development Program for Basic Research of China (Grant No. 2007CB815306).

[†] E-mail:stswh@mail.sysu.edu.cn