薄膜厚度对 La_{1.85}Sr_{0.15}CuO₄ 薄膜结构 和超导电性的影响*

祖 敏† 张鹰子 闻海虎

(中国科学院物理研究所超导国家重点实验室,北京 100190) (2008年4月22日收到2008年5月12日收到修改稿)

使用直流同轴磁控溅射法 在 SrTiO₃(STO) 対底上成功制备出 c 取向的 La_{LSS} Sr_{0.15} CuO₄(LSCO) 超导薄膜.通过电输运测量系统和 X 射线衍射仪研究了薄膜厚度对 LSCO(x = 0.15)薄膜电学性质和晶体结构的影响.实验证明随着 膜厚增加 (006) 衍射峰的半高宽(Full Width at Half Maximum ,FWHM) 逐渐减小 ,薄膜的取向性增强 ,与此同时 ,薄膜 的超导转变温度 T_c 逐渐提高.

关键词:La_{1.85}Sr_{0.15}CuO₄ 薄膜,超导电性,晶体结构 PACC:7475,7470L,6100

1.引 言

自从 1986 年发现高温超导体以来,科学界对 La_{2-x}Sr_xCuO₄ 单晶和薄膜展开了大量研究工作,这 是由于其简单的晶体结构,并且载流子浓度可在很 宽的范围内被调制¹¹.这些研究中一个重要课题是 制备出高质量的 *c* 取向 LSCO 薄膜,因为具有平滑 表面和良好电学性质的 LSCO 薄膜有望投入到实际 应用中.

选择合适的衬底是获得高质量薄膜的关键,衬 底对薄膜的电学性质有重大影响^{2—41}. LSCO 薄膜的 制备是在较高的温度下进行的,这要求衬底和薄膜 直接没有或很少扩散,而且晶格常数要求与薄膜相 匹配. LSCO 属于赝四方结构,a = b = 3.784Å, c =13.212Å,我们使用(100)取向的 SrTiO₃(STO)基片, STO 属于立方结构,a = 3.905Å,晶格失配度仅为 3.2% 基片为薄膜提供张应力^[21].薄膜厚度也会对 薄膜电学性质产生重要影响^[5,6]. 膜厚与 LSCO 薄膜 电学性质之间的联系由 Kao 等^[51]在实验中观察到. Kao 等使用离轴磁控溅射法在 STO(100)基片上制备 了一系列厚度的 LSCO 薄膜,实验结果表明,当薄膜 厚度从 200 nm 增加至 800 nm 时,薄膜的 T_c 从 23 K 左右提高至 33 K 左右. Cieplak 等⁶¹用脉冲激光沉积 法在 SrLaAlO₄(SLAO)基片上制备 LSCO 薄膜,随着 膜厚增加,薄膜 T_c 逐渐增大至一个最大值 T_c^{max} ,当 膜厚为 40 nm 时, T_c 可达到 T_c^{max} 的 80%. Cieplak 等 实验表明生长在 STO 基片上的 LSCO 薄膜,其 T_c 也 随着膜厚增加至一个最大值.

膜厚也对薄膜的晶体结构有一定影响^{7 81}. Dam 等⁷¹使用脉冲激光沉积法在 STO 基片上制备 YBa₂Cu₃O₇₋₈(YBCO)薄膜,测量了不同厚度 YBCO 薄 膜(005)衍射峰的摇摆曲线,结果显示(005)峰摇摆 曲线的半高宽 FWHM 随膜厚增加而减小. Cieplak 等^{[81}使用脉冲激光沉积法在 SLAO 基片上制备出一 系列 LSCO 薄膜,测量了 LSCO(008)衍射峰的半高 宽 实验结果显示 c 值与(008)峰的 FWHM 存在线 性关系,作者认为,对于 c 值比较大的薄膜,其 FWHM 也比较小,薄膜与基片间的应力逐渐被释放, 而对于 c 值比较小的薄膜,无应力释放.

我们通过直流同轴磁控溅射法,在STO衬底上 成功制备出一系列厚度的La_{1.85}Sr_{0.15}CuO₄超导薄膜. 从 X 射线衍射(X-ray Diffraction,XRD)实验结果可 知,薄膜沿 *c* 方向生长,呈现四方相,具有良好的面 内取向性.研究了膜厚对LSCO薄膜电学性质和晶 体结构的影响.实验结果表明,随着膜厚增加,薄膜

^{*}国家重点基础研究发展计划(973)项目(批准号 2006CB601000 ,2006CB921802)资助的课题.

[†] E-mail :zumin@ssc.iphy.ac.cn

超导转变温度逐渐提高,薄膜(006)衍射峰摇摆曲线 的半高宽FWHM逐渐减小,说明薄膜的取向性 增强.

2. 实验方法

2.1.薄膜的制备

采用 JGP240 型高温超导薄膜溅射设备,以直流 同轴磁控溅射法在 SrTiO₃(100)衬底上制备 c 取向 的 La_{1.85} Sr_{0.15} CuO₄ 超导薄膜.靶材的制备方法如文献 [9]所述.实验过程中,本底真空度低于 1.0×10^{-4} Pa,工作气体为高纯(99.999%) 氩气与氧气,工作总 气压为 40 Pa,Ar 与 O₂ 气压分别为 34 Pa 和 6 Pa.基 片温度为 860℃,溅射结束后在原气氛中采用随炉 降温的退火方式降至室温.薄膜沉积时间分别为 5, 10,20,40,60,80,100,120 min.通过原子力显微镜 (Atomic Force Microscopy, AFM)对刻蚀出台阶的薄 膜进行膜厚测量,当溅射时间为 60 min 时,薄膜厚度 为 200 ± 10 nm.

2.2. 薄膜的表征

采用 MXP-AHF18 型 18 kW 全自动转靶 X 射线 衍射仪(CuKα, λ = 0.15405 nm)对生长在 STO(100) 基片上的 LSCO 薄膜进行了 θ —2 θ 和 ϕ 扫描,并对 薄膜的(006)衍射峰进行了摇摆曲线的测量.采用标 准四引线法测量薄膜的电阻,并以 273 K 时的电阻 值进行了归一化处理.

3. 实验结果与分析

3.1. 薄膜的结构

图 1 是 STO(100)衬底上 860℃ 温度下制备的 LSCO 薄膜的 XRI(θ —2 θ 扫描方式)谱图 ,薄膜沉积 时间为 60 min.由图 1 可以看出 除了 STO 衬底产生 的(m 0 0)强衍射峰外 ,其他衍射峰均来自 LSCO 薄 膜的(00 k)衍射^[8](其中 k = 2 A 6 8,10),没有二 次相导致的杂峰出现 ,说明薄膜的 c 方向垂直于衬 底表面.衍射峰的半高宽 FWHM 在 0.1—0.2°之间 , 说明薄膜呈现高度 c 取向生长.

为了研究基片平面内薄膜的外延生长情况,我

们对 LSCO 薄膜进行了 X 射线 Φ 扫描.图 2 是对 LSCO 薄膜 10 <u>11</u>)峰的 Φ 扫描结果,薄膜沉积时间 为 60 min.由图 2 可见,每个衍射峰相隔约 90°,说明 薄膜呈现四方相,表明薄膜具有良好的面内取向性.

图 1 860℃下制备 LSCO 薄膜的 X 射线衍射谱

图 2 LSCO 薄膜 10 11)峰的 Φ 扫描衍射图

为了研究膜厚对 LSCO 薄膜结构的影响,我们 测试了不同厚度薄膜(006)峰的摇摆曲线,结果如图 3 所示,并计算了该摇摆曲线半高宽 FWHM 的值,如 图 4 所示.由图 3 可知,不同厚度薄膜的摇摆曲线均 在 ω = 20.4 ((006)峰的衍射角)左右出现峰值,说 明铜氧面在不同厚度的薄膜中均以最大的概率平行 于基片表面生长.当薄膜较薄时(如溅射 5 min),薄 膜的摇摆曲线对称性差且半高宽大,说明薄膜中仍 有部分铜氧面与样品表面成一定夹角分布.由图 4 可知,延长薄膜溅射时间,膜厚增加(006)峰摇摆曲 线的半高宽呈减小趋势,说明薄膜沿 c 方向的取向 性随着膜厚的增加而增强.

图 3 不同溅射时间的 LSCO 薄膜(006)峰的摇摆曲线

图 4 LSCO 薄膜 006)峰摇摆曲线的半高宽与沉积时间的关系

3.2. 薄膜的电学性质

我们用四引线法测量了不同厚度 LSCO 薄膜样 品的电阻,如图 5 所示,计算所得薄膜的 T_c ,如图 6 所示.对于沉积时间为 5,10,20,40,60,80,100,120 min 的薄膜,在室温下(约 273 K)的电阻率分别为 104.5,85.6,75.6,68.2,54.3,53.0,43.6,39.6 $\mu\Omega \cdot m$. 由图 5 可知,当沉积时间为 5 min 时,薄膜呈现半导 体电性,这应该是由于当厚度太薄时,晶界周围的弱 连接效应引起 Cu-O 键间距和角度发生变化,可直接 降低薄膜的超导性¹⁰¹.当沉积时间大于 10 min 时, 薄膜逐渐呈现超导电性,并且由图 6 可知, T_c 随膜 厚增加逐渐提高.膜厚与薄膜超导转变温度之间的

图 5 不同溅射时间 $La_{2-x}Sr_xCuO_4(x = 0.15)$ 薄膜的电阻曲线

图 6 $La_{2-x}Sr_xCuO_4(x = 0.15)$ 薄膜 T_C 与溅射时间的关系

关系是有衬底与薄膜之间的晶格失配,即应力引起 的.由于本实验中 LSCO 薄膜与 STO 基片之间的晶 格失配度为 3.2%,存在一定张应力,随着膜厚增 加,应力能逐渐被释放,薄膜性质更接近块材性质, 因此超导电性得到提高.这与相关实验中所观察到 的现象和结果是一致的^{5.6]}.生长在 STO 基片上 LSCO 薄膜的 T_c 与膜厚的强烈依赖关系最先被 Kao 等观察到^[5],实验表明随膜厚减小,薄膜的 T_c 降 低.文献 6]中观察到厚膜的 T_c 更高,其应力应该 是被更多的释放.但是选择 SLAO 作基片时,膜厚与 T_c 的依赖关系被抑制,即 T_c 不随膜厚增加而显著 提高,因此作者认为膜厚与 T_c 的依赖关系取决于 薄膜与基片间的应力.同时由图 6 可以看出,薄膜的 T_c 均小于同组分块材的 T_c ,文献 2 叶的实验表明 铜氧面处于压应力状态时,有利于吸收空穴;而处于 张应力状态时,有利于吸收电子.因此LSCO作为空 穴型超导态,处于张应力状态会降低其超导电性.

4.结 论

采用直流同轴磁控溅射法,在 SrTiO₃ 衬底上成 功制备出 *c* 取向的 La_{1.85} Sr_{0.15} CuO₄ 超导薄膜.制备了

- [1] Chen L , Huang Y Z , Zhou F , Dong C , Che G C , Zhao Z X 2000 Chin . Phys . 9 624
- [2] Locquet J P , Perret J , Fompeyrine J , Machler E 1998 Nature 394 453
- [3] Locquet J P , Jaccard Y , Cretton A , Arrouy F , Williams E J , Arrouy F , Machler E , Schneider T , Fischer Ø , Martinoli P 1996 Phys. Rev. B 54 7481
- [4] Trofimov I E , Johnson L A , Ramanujachary K V , Guha S , Harrison M G , Greenblatt M , Cieplak M Z , Lindenfeld P 1994 Appl. Phys. Lett. 65 2481
- [5] Kao H L , Kwo J , Fleming R M , Hong M , Mannaerts J P 1991 Appl. Phys. Lett. 59 2748

一系列不同厚度的薄膜,研究了膜厚对薄膜晶体结构和电学性质的影响.实验结果显示,薄膜呈高度 *c* 取向生长.从(006)峰的摇摆曲线可知,随着膜厚增加,薄膜摇摆曲线的半高宽 FWHM 逐渐减小,薄膜的取向性增强.从电阻曲线可以看出,由于 STO 衬底向薄膜提高张应力,使得薄膜的 *T*_c 均小于同组分块材的 *T*_c.随着膜厚增加,薄膜与基片之间的张应力逐渐被释放,薄膜的 *T*_c得到提高.

- [6] Cieplak M Z , Berkowski M , Guha S , Cheng E , Vagelos A S , Rabinowitz D J , Wu B , Trofimov I E , Lindenfeld P 1994 Appl . Phys. Lett. 65 3383
- [7] Dam B, Huijbregtse J M, Rector J H 2002 Phys. Rev. B 65 064528
- [8] Cieplak M Z, Berkowski M, Abal 'oshev A, Guha S 2006 Supercond. Sci. Technol. 19 564
- [9] Zu M, Zhang Y Z, Wen H H 2007 Supercond. Sci. Technol. 20 676
- [10] Nguyen N , Choisnet J , Hervieu M , Raveau B 1981 J. Solid State Chem. 39 120

The effect of thickness on the structure and superconductivity of La_{1.85}Sr_{0.15}CuO₄ films *

Zu Min[†] Zhang Ying-Zi Wen Hai-Hu

 (National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China)
(Received 22 April 2008; revised manuscript received 12 May 2008)

Abstract

Highly *c*-oriented La_{1.85} Sr_{0.15} CuO₄(LSCO) films were successfully deposited on SrTiO₃(STO) substrates by on-axis magnetron sputtering. By using the standard four-probe technique and X-ray diffraction (XRD), we investigated the influence of film thickness on the structure and superconductivity of LSCO(x = 0.15) films. The experiment results show that the full-width at half maximum (FWHM) of the (006) rocking curve decreases with increasing film thickness, which indicates that the crystal qualities of films are improved. Meanwhile, the superconducting transition temperature is higher for the thicker films.

Keywords : $La_{1.85} Sr_{0.15} CuO_4$ film , superconductivity , crystal structure PACC : 7475 , 7470L , 6100

^{*} Project supported by the National Basic Research Program of China (Grant Nos. 2006CB601000 ,2006CB921802).

 $[\]ensuremath{^{\ddagger}}$ E-mail <code>:zumin@ssc.iphy.ac.cn</code>