脉冲电容器用细电滞回线铁电陶瓷材料的研究

陈学锋¹⁾[†] 李华梅² 李东杰² 曹 菲¹ 董显林¹

1 () 中国科学院上海硅酸盐研究所,上海 200050)
2 () 中国工程物理研究院,绵阳 621900)
() 2007 年 9 月 3 日收到 2008 年 4 月 3 日收到修改稿)

采用低锆区的 PI($Z_{r_{0.42}}S_{n_{0.40}}T_{0.18}$)O₃(PZST42/40/18)铁电陶瓷为基,通过少量 La 和 Ba 取代 Pb 同时 Nb 取代 (Zr, Sn, Ti)复合取代的方法得到掺杂 PZST42/40/18 细电滞回线铁电陶瓷,其最大极化强度 $P_{max} \approx 20.66 \ \mu C/cm^2$,剩 余极化强度 $P_r \approx 0.55 \ \mu C/cm^2$,电滞回线包含面积 $S \approx 0.0298$ J/cm³,室温下相对介电常数虽然只有 2840,但储能密 度却达 0.319 J/cm³.反复充放电脉冲试验初步显示:单片掺杂 PZST42/40/18 铁电陶瓷样品的短路放电电流可达 2330A,反复充放电次数在 1000 次以上;释放的电荷随着充放电次数的增加按照二次指数公式衰减.这对掺杂 PZST42/40/18 细电滞回线铁电陶瓷用作脉冲电容器具有重要意义.

关键词:细电滞回线,铁电陶瓷,PZST,脉冲电容器 PACC:7700,7740,7780

1.引 言

在脉冲功率设备中,作为储能元件的电容器在 整个设备中占有很大的比重,是极为重要的关键部 件^[1].在某些应用领域,如核物理技术、电子束、加 速器、激光聚变等系统,脉冲功率装置要求脉冲电 容器不仅能承受至少数 kV 的工作电压,还要能产 生数 kA 的放电电流,但不需要很高充放电寿命(通 常为数千次即可).铁电陶瓷在这方面有相当的优 势.与高介电系数陶瓷相比,它时储能密度要高一 个数量级;与反铁电陶瓷相比,它可多次重复使 用.如果能进一步提高铁电陶瓷的最大极化强度 *P*_{max},降低剩余极化强度 *P*_r,减小电滞回线包含的 面积 *S*,即得到细电滞回线铁电陶瓷材料(slim-loop ferroelectric ceramics),那将大大提高其储能密度和 反复充放电寿命.

与其他铁电陶瓷材料相比,细电滞回线铁电陶 瓷材料具有以下特点^[2]:1)很小的剩余极化强度; 2)材料的电位移矢量与电场几乎成线性关系;3)很 大的介电常数.目前,国内外关于细电滞回线铁电 陶瓷材料的研究主要集中在 x Ph(Mg_{1/3} Nb_{2/3})O₃ (1 – x)PbTiO₃(x PMN(1 – x)PT) (Pb, Ba) Zr_{0.70} Ti_{0.30}) Bi_{0.02}O₃(PBZT)和(Pb,La)(Zr_{0.65}Ti_{0.35})O₃(PLZT). 美 国 Sandia 国家实验室,我国的西安交通大学、华南 理工大学等都曾进行过这方面的研究^[2-6].

Ph($Zr_{1-y-x}Sn_{y}Ti_{x}$)O₃(PZST100(1-y-x)/100y/ 100x) 三元系陶瓷具有丰富的相变, 可产生大的位 移和释放高的能量,在微位移驱动器、爆电换能等 方面具有广泛的应用前景,因而一直是研究的热 点. 目前国内外对 PZST 三元体系的研究主要集中 在低温铁电相(FERIT))反铁电相(AFE)附近的高锆 区(1-y-x>0.5),研究重点主要是 Zr/Sn 或 Sn/Ti 比的改变、单独的 A 位取代 La 或 La 与 Ba 或 La 与 Sr 取代 Pb)或单独的 B 位取代(Nb 取代(Zr, Sn, Ti)对 PZST 陶瓷电性能的影响^{7-12]}.研究表明: PZST 中单独掺入 Nb 有助干降低矫顽场和提高电阻 率^{7]} 而 La 和 Ba 的掺入则可调节电滞回线的面积 大小和最大极化强度的高低[8-12]. 目前,尚未见 Nb La 和 Ba 复合取代 PZST 及其细电滞回线铁电陶 瓷材料的报道.从 PZST 的三元相图^{13]}可看出 ,Zr/ Sn/Ti = 42/40/18 处在低温铁电相(Frunt)和反铁电相 (A_T)的交界区 (往其中掺入一定量的 La³⁺ 可得到比 较细的电滞回线但回线有点陡^{14]}.本文在此基础 上,采用复合取代的方法——La和 Ba 取代 Pb 同时 Nb 取代 Zr, Sn, Ti) 通过调整 La, Ba 和 Nb 的掺入

量得到掺杂 PZST42/40/18 细电滞回线铁电陶瓷,并 将其与(Pb_{0.97} Ba_{0.03})_{0.85} La_{0.1}(Zr_{0.65} Ti_{0.35})O₃(PBLZT)细 电滞回线铁电陶瓷进行反复充放电对比脉冲试验, 研究影响短路放电电流和充放电次数的因素,促进 细电滞回线陶瓷在脉冲电容器上的实际应用.

2.实验

掺杂 PZST42/40/18 陶瓷以 Pł(Zr_{0.42} Ti_{0.18} Sn_{0.40})O₃ 为 基本配方,一定量的 La 和 Ba 取代 Pb,同时少量的 Nb 取代(Zr, Sn, Ti). PBLZT 陶瓷的组成为(Pb_{0.97} Ba_{0.03})_{0.85} La_{0.1} (Zr_{0.65} Ti_{0.35})O₃. 使用高纯的 Pb₃O₄ , ZrO₂ ,TiO₂ ,SnO₂ ,La₂O₃ ,BaCO₃ 和 Nb₂O₅ 为原料,采 用传统的电子陶瓷制备工艺——固相法制备掺杂 PZST42/40/18 和 PBLZT 细电滞回线铁电陶瓷试样.

电滞回线借助 aix ACCT TF Analyzer 2000 铁电 测试仪配 TReK Model 663A 高压电源测量,测试频 率为 10 Hz. 采用 HP 4284A 介电温谱测试系统测量 样品的介电温谱曲线,测试温度从 20℃到 350℃, 测试频率从 100 Hz 到 1 MHz. 通过电流法测量的电 压-时间(*U-t*)放电曲线来计算样品的储能密度,测 量原理如图 1 所示.利用中国工程物理研究院的反 复充放电测量设备测量样品在脉冲下的反复充放电 次数,测量原理如图 2 所示,高压真空开关控制系 统的充放电并记录下充放电次数,放电电流通过电 磁环采集并记录在示波器上.利用电子探针仪 (JXA-8100)对样品的断面进行观察.

图 1 电流法测量放电曲线的原理图

3. 结果与讨论

3.1. 细电滞回线铁电陶瓷的铁电介电性能

图 3 和图 4 分别是掺杂 PZST42/40/18 和 PBLZT 两种细电滞回线铁电陶瓷在 3500 V,10 Hz 下的电滞

图 2 反复充放电次数测量原理图

回线.两者的最大极化强度 P_{max} 、剩余极化强度 P_r 和由电滞回线计算得的包含面积 S 如表 1 所示.可以看出:与 PBLZT 细电滞回线铁电陶瓷相比,掺杂 PZST42/40/18 细电滞回线铁电陶瓷的 P_{max} 略小,但 其 P_r 也小并且其电滞回线有点下凹,这使得两者 在 3500 V 下的储能密度 u(即电滞回线与纵坐标包含的面积)相差不大,分别为 0.301 J/cm³ 和 0.295 J/cm³.但 PBLZT 细电滞回线铁电陶瓷的大一些,这将影响其作为脉冲电容器能量转换效率.计算得掺杂 PZST42/40/18 细电滞回线铁电陶瓷的能量转换效率 可达 90%,而 PBLZT 的只有 84%.

图 3 掺杂 PZST42/40/18 铁电陶瓷的细电滞回线

表 1 掺杂 PZST42/40/18 和 PBLZT 细电滞回 线铁电陶瓷的铁电性能

样品	$P_{\rm max}$ ($\mu{\rm C/cm^2}$)	$P_{\rm r}$ (μ C/cm ²)	S/(J/cm ³)
掺杂 PZST42/40/18	20.66	0.55	0.0298
PBLZT	23.83	1.51	0.0485

材料表现出细电滞回线特性可能与其弛豫铁电

图 4 PBLZT 铁电陶瓷的细电滞回线

特征及其居里温度比较低有关. 无论是 0.9PMN-0.1PT^[15], PBZT^[6], PLZT^[6], 还是本文研究的掺杂 PZST42/40/18 和 PBIZT,均具有弛豫特性¹⁶]及居里 温度在 40℃到 80℃之间这些特征, 掺杂 PZST42/40/ 18和 PBLZT 铁电陶瓷的介电温谱如图 5 和图 6 所 示. 两种细电滞回线铁电陶瓷的介电常数随着温度 的降低表现出一定的弥散性,在1kHz下的介电峰 值温度略高于室温、分别约为46℃和68℃、电滞回 线变细的更本质原因可能是畴结构的变化。在 PZST 中 La^{3+} 的固溶会导致 A 和 B 空位的产生 从 而削弱具有铁电活性的、含 B 位离子的氧八面体间 的耦合^[11]; Ba^{2+} 的固溶,因 Ba^{2+} 离子的半径(1.34 nm)> Pb²⁺离子的半径(1.20 nm),会使邻近的、具 有铁电活性的含 B 位离子的氧八面体受到压挤 从 而使 B 位离子的可移动范围变小^[10];少量 Nb⁵⁺ 取 代 Zr, Sn, Ti)⁺则减少了具有铁电活性的氧八面 体的含量同时造成了 B 空位, 故一定量的 Ia^{3+} ,

图 5 掺杂 PZST42/40/18 铁电陶瓷的介电温谱图

Ba²⁺和 Nb⁵⁺的引入,都会使 PZST 内部原来的长程 有序被破坏导致铁电畴的尺寸变小,随着掺入量的 增大,畴结构从普通的微米畴依次演变成小的铁电 亚畴、絮状结构畴、纳米畴,不存在宏畴及传统意义 上的畴壁^{17]}.大量纳米畴形成后,材料就表现出典 型的弛豫特征,相变温度也随之降低.这些纳米微畴 分布于内部各处,相互间作用较小,容易被外加电场 定向,随着外加电场从零逐渐增大,纳米畴逐渐长 大发生微畴—宏畴转变^{5,181},但这种畴并不稳定,一 旦撤除外加场,宏畴又将回到纳米畴状态.在这一过 程中材料表现出低的剩余极化和大的能量转换.

图 6 PBLZT 铁电陶瓷的介电温谱图

3.2. 细电滞回线铁电陶瓷的储能密度

利用图 1 的原理测量掺杂 PZST42/40/18 和 PBLZT 两种细电滞回线铁电陶瓷在 3500 V 下的 *U-t* 放电曲线如图 7 所示,样品的有关性能参数及由 *U-t* 曲线计算的储能密度见表 2.

表 2 样品的性能参数及其储能密度

样品	直径/mm	厚度/mm	电容/nF	储能密度/
			(1 kHz)	(J/cm ³)
掺杂 PZST42/40/18	13.97	1.01	3.83	0.319
PBLZT	14.04	0.96	9.10	0.327

由于在室温下,掺杂 PZST42/40/18 样品的电容 只有 3.83 nF, 远小于 PBLZT 的 9.10 nF, 所以 PZST42/40/18 样品的放电时间要短于 PBLZT, 但两 者释放的能量密度相差不大,这与其在电场下电容 的变化情况有关,具体的变化规律及其本质还有待 更进一步的研究.利用 *U-t* 放电曲线计算的储能密 度稍大于利用电滞回线计算的储能密度,这可能与 其充电方式有关.利用电流法测量放电曲线是采用 直流充电,测量电滞回线是采用交流电,直流充电 的时间要长于交流充电,这更有利于陶瓷电容器储 存能量.

3.3. 细电滞回线铁电陶瓷的充放电性能

利用细电滞回线铁电陶瓷材料高储能密度特性 可获得大的短路放电电流,其测试原理如图 2 所示, 其短路放电回路可以近似地等效为 *RCL* 的串联回 路,为了得到脉冲大电流,一般设计较小的回路电阻 *R* 和电感*L*,回路参数一般满足 $R < 2\sqrt{\frac{L}{C}}$,放电电 流呈正弦振荡衰减状态,放电峰值电流与回路参数 之间的变化存在一定的规律性^[3],要得到大的短路 放电电流不仅要有高的电容,还需有相匹配的外接 负载.图 8 描述了掺杂 PZST42/40/18 细电滞回线铁 电陶瓷在 4.08 kV 直流电压下反复充放电时的短路 放电电流-时间(*L*t)曲线,虽然样品的尺寸只有 Φ 52×1 mm,但其短路放电电流可达约 2330A,这 大大有利于储能器件的高功率化和小型化.

图 8 掺杂 PZST42/40/18 铁电陶瓷的短路放电曲线

对掺杂 PZST42/40/18 和 PBLZT 两种细电滞回线 铁电陶瓷样品进行反复充放电脉冲试验.结果显示: 掺杂 PZST42/40/18 细电滞回线铁电陶瓷经过 1000 次反复充放电仍保持完好,而 PBLZT 细电滞回线铁 电陶瓷经过几次反复充放电后开裂.这可能与其晶 粒的大小有关.从掺杂 PZST42/40/18 和 PBLZT 两种 细电滞回线铁电陶瓷的断面电子探针照片(见图 9 (a)和(b))可以看出,PBLZT 细电滞回线铁电陶瓷 的晶粒略小.由于晶粒小,相互间结合得很牢固, 这将导致样品在反复充放电时由于电畴反复翻转产 生的内应力来不及释放.当内应力聚集到超过材料 本身所能承受的强度时,样品就会发生击穿开裂, 因此 PBLZT 细电滞回线铁电陶瓷的反复充放电寿 命不如掺杂 PZST42/40/18.

图 10 示出了 Φ 40 × 1 mm 的掺杂 PZST42/40/18 细电滞回线铁电陶瓷在 4.07 kV 下 10 次,100 次, 500 次和 1000 次反复充放电的 *I*-*t* 曲线,其峰值电 流、放电周期和释放的电荷见表 3. 由图表可见,随

图 9 掺杂 PZST42/40/18 和 PBLZT 两种铁电陶瓷的断面电子探针图 (a) 掺杂 PZST42/40/18;(b) PBLZT

+43.05858e^{-n/1018.11419}.按照这个公式,样品释放的 电荷随着充放电次数的增加开始衰减得快一些,在 经过几千次上万次的充放电后基本保持不变,释放 的电荷仍有开始的76%,这对延长脉冲电容器的充 放电寿命非常有利.

图 10 掺杂 PZST42/40/18 陶瓷经过不同充放电次数的 1-1 放电曲线 (a)--(d)的充放电依次为 10,100,500,1000 次

表 3 掺杂 PZST42/40/18 陶瓷经过不同充放电次数的有关	を参数
------------------------------------	-----

充放电次数	峰值电流/kA	周期/ns	释放的电荷/µC
10	1.825	500	230.49
100	1.888	481	221.48
500	1.865	450	203.46
1000	1.896	448	192.96

4.结 论

 利用 La 和 Ba 取代 Pb 同时 Nb 取代 Zr, Sn, Ti)复合取代的方法在低锆区的 PZST42/40/18 铁电 陶瓷上得到细电滞回线,其 3500 V,10 Hz 下的 P_{max} ≈ 20.50 μC/cm², P_r≈0.45 μC/cm², S≈0.0298 J/cm³.
2. 掺杂 PZST42/40/18 和 PBLZT 细电滞回线铁电陶

图 11 释放的电荷与充放电次数的拟合关系曲线

瓷在 3500 V/mm 下的储能密度分别为 0.319 J/cm3 和

0.327 J/cm³, 远高于普通高介电常数陶瓷(如 X7R 陶瓷). 这有利于脉冲电容器的高功率化和小型化.

3. 小晶粒不利于提高细电滞回线铁电陶瓷反 复充放电次数. 大晶粒的 PBLZT 细电滞回线铁电陶 瓷的反复充电次数不如小晶粒的掺杂 PZST42/40/18 细电滞回线铁电陶瓷.

4. 随着充放电次数的增加,掺杂 PZST42/40/18 细电滞回线铁电陶瓷样品释放的电荷 Q 按照二次 指数公式 $Q = 176.8286 + 11.8803e^{-n/133.6231} + 43.05858e^{-n/1018.11419}衰减.$

- [1] Lin F C, Li J, Yao Z G 2003 Acta Armamentaria 24 416 (in Chinese)[林福昌、李 劲、姚宗干 2003 兵工学报 24 416]
- [2] Lysne P C 1978 J. Appl. Phys. 49 4296
- [3] Hoover B D , Tuttle B A , Olson W R , Goy D M , Brooks R A , King C F 1997 SAND 97-2295
- [4] Samara G V , Hansen L V 1998 SAND 98-2275
- [5] Wu J X, Zhuang Z Q 2000 Journal of Inorganic Materials 15 97 (in Chinese) [伍建新、庄志强 2000 无机材料学报 15 97]
- [6] Zhang B 2001 Master Thesis (Xi 'an : Xi 'an Jiaotong University) (in Chinese)[张 波 2001 硕士论文(西安:西安交通大学)]
- [7] Taylor G W 1967 J. Appl. Phys. 38 4697
- [8] Markowski K, Park S E, Yoshikawa S, Cross L E 1996 J. Am. Ceram. Soc. 79 3297
- [9] Park S E , Markowski K , Yoshikawa S , Cross L E 1997 J. Am. Ceram. Soc. 80 407

- [10] Liu P, Yang T Q, Xu Z et al 2000 Acta Phys. Sin. 49 1852(in Chinese)[刘 鹏、杨同青、徐 卓等 2000 物理学报 49 1852]
- [11] Liu P, Yao X 2002 Acta Phys. Sin. 51 1621(in Chinese) [刘 鹏、姚 熹 2002 物理学报 51 1621]
- [12] Feng Y J , Xu Z , Li H G , Yao X 2004 Ceramics International 30 1393
- [13] Jaffe B , Cook W R , Jaffe H 1971 Piezoelectric Ceramics (Academic Press , London , 1971)
- [14] Berlincourt D 1966 IEEE Trans. Son. 13 116
- [15] Wen X W 2006 Ph. D. Thesis (Shanghai : Shanghai Institute of Ceramics) in Chinese)[温晓炜 2006 博士论文(上海:上海硅 酸盐研究所)]
- [16] Thomas N W 1990 J. Phys. Chem. Solids. 51 1419
- [17] Dai X H , Xu Z , Li J F , Viehland D 1996 J. Appl. Phys. 79 2023
- [18] Yao X, Chen Z L, Cross L E 1983 J. Appl. Phys. 54 3399

Chen Xue-Feng¹)[†] Li Hua-Mei²) Li Dong-Jie²) Cao Fei¹) Dong Xian-Lin¹)

1 🕻 Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China)

2 X China Academy of Engineering Physics , Mianyang 621900 , China)

(Received 3 September 2007; revised manuscript received 3 April 2008)

Abstract

A slim-loop ferroelectric ceramic of Pb ($Zr_{0.42}Sn_{0.40}Ti_{0.18}$)O₃(PZST42/40/18) was prepared by partially replacing Pb with Ba and La , and replacing (Zr, Sn , Ti) with Nb in low zirconiumn. The saturation polarization (P_s), the remnant polarization (P_r) and the area of the hysteresis loop (S) were measured to be 20.66 μ C/cm², 0.55 μ C/cm² and 0.0298 J/cm³, respectively. Relative permittivity (ε) \approx 2840 can be reached in this ferroelectric ceramic at room temperature and frequency of 1 kHz, but the energy density (w) is 0.319 J/cm³. The results of the pulse charge-discharge measurements showed that a single piece of the PZST42/40/18 slim-loop ferroelectric ceramic can carry 2330 A and endures charge-discharge cycle over one thousand times. The released charge decreases with increasing cycle times according to second order exponential decay. These ferroelectric ceramics have potential for pulsed power capacitor applications.

Keywords : slim-loop hysteresis , ferroelectric ceramics , PZST , pulse capacitors **PACC** : 7700 , 7740 , 7780

[†] E-mail: xfchen@mail.sic.ac.cn