³⁷Ar 测量系统的研制与能谱测量方法研究

向永春* 龚 建 李 伟 卞直上 郝樊华 王红侠 王 茜 熊宗华

(中国工程物理研究院核物理与化学研究所 綿阳 621900) (2006年12月30日收到 2007年2月10日收到修改稿)

建立了移动式³⁷ Ar 测量系统,采用1L的正比计数探测器和能谱分析方法对³⁷ Ar 的测量进行了研究,分析了计数管的坪长、坪斜和本底等特点,结果表明,相比传统的计数方法,采用电子能谱法测量³⁷ Ar 具有直观、坪长长、坪 斜小等优点,相比传统的总计数方法,采用峰本底的方法可以将本底降低约一个量级,从而降低³⁷ Ar 的探测下限, 并研究了工作气体中不同甲烷含量对³⁷ Ar 的测量能谱和计数管工作电压的影响,结果表明,加入 10% 的甲烷能够 较好的改善³⁷ Ar 的峰形,当甲烷含量大于 10% 时,峰形基本保持不变,而甲烷的含量较高时,达到坪区需要较高的 工作电压.

关键词:气体正比计数管,³⁷Ar,坪曲线,能谱法 PACC:2940C,2970F

1.引 言

在核试验中有大量中子产生,中子和周围介质中的钙发生⁴⁰ C₄(n, α)⁷ Ar^[1]反应产生大量³⁷ Ar, 因此通过对³⁷ Ar 的探测可以判断是否进行过地下核试验.目前³⁷ Ar 已被全面禁止核试验条约组织(the comprehensive nuclear-test-ban treaty organization,简称 CTBTO)确定为核查核素(CTBT/PC-10/1/Annex [], Appendix \mathbb{W}).³⁷ Ar 的探测包括取样、分离和测量三部分,因此能否对³⁷ Ar 进行高灵敏测量是决定这种核查方法是否可行的关键因素之一.

³⁷Ar 是惰性气体,在常温常压下本身很难变成 液体,且难以化合成化合物,即使变成化合物也很难 变成液体.而且³⁷Ar 在衰变过程中,发出能量降低的 X 射线(2.622 keV)和俄歇电子(2.380 keV),一般探 测设备无法满足以上要求.内充气正比计数管具有 很好的坪特性、稳定性好、灵敏度高(在灵敏体积内 β的探测效率为100%),探测能量低等优点,适合于 ³⁷Ar的测量.20世纪80年代核物理与化学研究所曾 采用内充气正比计数管测量³⁷Ar,但对³⁷Ar的测量采 用定标器的计数方法^[1],这种方法的工作量大,本底 较高,计数管体积较小(约300 ml),无法满足高灵敏 度的核查要求.

在国外,目前只有瑞士伯尔尼大学进行³⁷Ar的

测量^[2],但是探测设备位于地下实验室中,无法用于 核试验的现场视察.

针对以上问题,采用较大体积的正比计数管,建 立了可移动的³⁷ Ar 测量分系统,提出³⁷ Ar 的能谱测 量方法,并开展了大量有关³⁷ Ar 的能谱测量研究工 作.目前此³⁷ Ar 测量设备和测量方法作为移动式³⁷ Ar 探测系统的测量系统,得到全面禁止核试验条约组 织的认可.

2. 测量系统的组成

根据现场视察的要求,探测设备必须满足可移动和探测灵敏度高的特点,这意味着整个探测设备 要具备重量轻,体积小(比如可以装入越野车内),又 有足够高的灵敏度满足视察要求.除采样和分离分 系统外,留给³⁷Ar测量系统的空间更小.重量轻与降 低本底相矛盾,为此重点从硬件和分析方法两方面 进行研究.

- 2.1. 硬件
- 2.1.1. 原理

正比计数系统的放射性活度的探测下限为[3]

$$_{\rm LD} = 4.66 \sqrt{n_{\rm b} t} / t \varepsilon I , \qquad (1)$$

式中 A_{LD}为系统对³⁷ Ar 的最小探测活度,单位为 Bq;

 $n_{\rm b}$ 为本底计数率,单位为 s⁻¹; t 为测量时间,单位为 s; ε 为计数管的测量效率; I 为核衰变中该射线的辐射强度.

由(1)式看出,从物理测量方面而言,在低本底 的测量中,提高探测装置的灵敏度可以通过以下途 径来实现:

a)提高计数器的探测效率;

b) 增长测量时间;

c) 增加射线的辐射强度;

d)降低测量装置的本底.

上述途径的 a 和 b)常常受到物理条件、技术条件及其他因素的限制.例如 ,正比计数管的探测效率 已达 90% ,不可能有较大的提高空间 ,在现场视察 中 ,不可能在现场进行长时间测量.因此 ,增加射线 的辐射强度和降低测量装置的本底就成为提高探测 装置的灵敏度的主要技术途径.

2.1.2. 大体积正比计数管

本系统采用体积约 1000 mL 的正比计数管,比 之于同样条件下的 300 mL 正比计数管,由于其体积 增大,将装入更多的样品,从而增加射线的辐射强 度,使探测灵敏度提高约3倍.提高正比计数管的耐 压能力,同样体积可有更多的样品充入正比计数管的耐 压能力,同样体积可有更多的样品充入正比计数管, 也可提高探测灵敏度.但提高正比计数管压力,将需 更高的工作电压,易产生放电等不利因素,故本测量 系统采用的压力约200 kPa.采用无氧高导电性铜作 为计数管的管壁,以降低计数管的本底计数.正比计 数管的参数见表1.

表1 正比计数管的参数

管长/mm	550.0
灵敏体积/ml	1000 (957.1) ^b
工作温度范围/℃	- 50-150
工作气体	An(90%)+ CH ₄ (10%)
坪长/V	250
坪斜((0.01 V ⁻¹)	2%

注: • 标定的实际体积

2.1.3. 屏蔽措施

由于对整体探测系统重量和体积的限制.不可 能采用较厚的屏蔽,因此本系统采用4 cm 的铅作为 屏蔽材料(重 195 kg).4 cm 厚的铅屏蔽 90.7%的 1460 keV γ 射线,5 cm 厚的铅屏蔽 94.8%的 1460 keV γ 射线,但重量增至 256 kg,因此采用4 cm 厚的 铅较为合适.由于铅质较软,在铅屏蔽的外层用钢包 住.在计数管和屏蔽体之间有井形塑料闪烁反符合 探测器(见图1).

图1 计数管的屏蔽图

2.1.4. 反符合探测器

对于宇宙射线和其他高能粒子,本测量系统采 用反符合探测器进行主动屏蔽.正比计数管位于由 塑料闪烁体构成接近4π立体角的反符合环中.当宇 宙射线或其他射线)在反符合环及正比计数管中同 时产生脉冲,当两路脉冲信号同时输入到反符合电 路后,反符合电路将剔除脉冲信号,以上射线产生的 本底计数被消除^[4].

³⁷Ar 测量系统的单元组成见表 2.

表 2 测试系统组成				
名称	设备型号	备注		
气体正比计数管	LND4953			
反符合探测器 13	0AP688/5M-E2-I	P-X 井形塑料闪烁探测器		
电子学单元	2006 814A 410A 9645 3102D 2100-2 9660 1457 556A	气体正比计数器前置放大器 放大器 门产生器 ICB 6/kV 高压电源 0-2 kV 高压电源 NIM 机框 +/-6V/8A+/-12V/2A ICB 数字信号处理器 信号延时器 控制模块		
软件	Genie2000			
屏蔽体		4 cm 环形铅屏蔽		

2.2. 能谱分析方法

³⁷Ar为电子俘获衰变核素,电子俘获生成的子 核处于激发态,外层的轨道电子将向内层跃迁时发 射 X 射线和俄歇电子.³⁷Ar的衰变^{[5,6}(表 3,图 2)的 特点为射线能量低、电子能量单一,这有利于用正比 计数管能谱法测量带来有利因素.

表 3 ³⁷ Ar 的衰变数据			
辐射类型	能量/keV	绝对强度/%	
EC_1		100	
eAuk	2.380	81.7	
Xk	2.622	8.5	
半衰期	35.0	$4 \pm 0.04 \mathrm{d}$	

图 2 ³⁷ Ar 的衰变纲图

3. 实验内容和结果

3.1. ³⁷Ar 的能谱

将装有⁴⁰ Ca 粉末的密封石英管放入反应堆辐 照 使⁴⁰ Ca 和中子发生⁴⁰ Ca(n,α)³⁷ Ar 反应.将生产 的³⁷ Ar 样品经过简单的化学处理后充入正比计数 管 ,然后加入工作气体到预定的压力.等气体平衡后 进行测量.为了更清楚说明³⁷ Ar 能谱和本底的特点, 采用弱样品长时间的实测能谱.图 3 是约 0.37 Bq ³⁷ Ar在 167880 s 时间内的测量能谱图.

图 3 ³⁷ Ar 能谱图

在图 3 中,³⁷Ar 能峰右边(约 600—2000 道)为本 底计数,而且在 1200 道附近,本底计数较高.而³⁷Ar 能峰避开此位置,位于电子学噪声和本底较高之间. 此处本底较低,可以降低³⁷Ar 样品的探测下限.

3.2. 不同压力下计数管的坪长和坪斜

将一定活度的³⁷ Ar 样品充入计数管,初始压力为 100 kPa,进行坪曲线测量^[7].测量结束后,往计数管内继续充入工作气体,使之压力达到 200 kPa,而样品量保持不变,对计数管再次进行坪曲线测量.继续充入工作气体直到计数管的压力为 300 kPa.测量结果如下表 4.

表 4 正比计数器坪曲线测量

₩ 世 4	计数管压力/kPa		
	100	200	300
坪长/V	450	550	250
坪斜(/100 V)	0.38%	0.39 %	1.49%

由表 4 看出,计数管的坪斜和坪长与计数管内 气体压力有关,当计数管内气体压力为 100 和 200 kPa 时,具有较好的坪特性,当计数管内气体压力升 至 300 kPa 时,计数管的坪长变小,坪斜变差.

3.3. 计数管的工作电压与压力的关系

方法同 3.2 节,将一定活度的³⁷ Ar 样品充入计 数管,初始压力为 100 kPa,进行测量.测量结束后, 往计数管内继续充入工作气体,使之压力达到 150 kPa,而样品量保持不变,对计数管再次测量.调 节工作电压,使两次测量时的³⁷ Ar 能峰重合.继续重 复以上过程,直到计数管的压力为 400 kPa.做出正 比计数管在不同压力和工作电压的关系(见图 4).

图 4 计数管的工作电压与计数管压力的关系

由图 4 得出,正比计数管的工作电压随计数管 压力的升高而升高,当计数管压力升高 1 kPa 时,计 数管的工作电压升高(5.55±0.16)V. 3.4. 计数管的工作电压与甲烷含量的关系

将一定活度的³⁷ Ar 样品充入计数管,向计数管 充入氩气使计数管初始压力为 151.3 kPa,进行测 量.测量结束后,往计数管内充入甲烷气体,使之含 量为 5%,而样品量保持不变,对计数管再次测量, 通过调节工作电压使³⁷ Ar 能峰在同一位置,而其他 参数保持不变.继续重复以上过程,直到计数管中甲 烷的含量到 25%.表5是工作电压与气体样品中的 甲烷含量的实验结果.

表 5 计数管的工作电压与甲烷含量的关系

甲烷含量/%	0	5	10.7	13.2	16.6	20.7	25
气压/kPa	151.3	159.3	169.4	174.4	181.4	189.3	202.2
工作电压/V	2000	2023	2252	2340	2475	2616	2845

当一定量的甲烷气体充入计数管的同时计数管 内的压力同样升高,因此计数管的工作电压不仅与 甲烷含量有关,而且与计数管内的压力有关.采用 3.3节中得出的工作电压与计数管内压力的关系 式,扣除压力的影响,再进行平移,使甲烷含量为零 时的工作电压为零.最终结果见图 5.

图 5 计数管的工作电压与甲烷含量的关系

由图 5 看出,当甲烷含量为 5%时,工作电压相比 无甲烷时有所降低.当甲烷含量大于 5%时,工作电 压相随无甲烷含量的升高而升高,成线性关系.当甲 烷含量增加 1%时,工作电压上升(28.19±0.75)V.

3.5. ³⁷Ar 能谱与甲烷含量的关系

对 3.4 节中,不同甲烷含量的能谱结果见图 6.

由图 6 看出,当甲烷含量为零时,³⁷ Ar 能峰较 宽,而能峰的前沿、本底和电子学噪声相互重合.当 甲烷含量为 5%时,³⁷ Ar 能峰变窄,能峰的前沿和电 子学噪声基本能够分开,但平台较高.当甲烷含量为 10.7%时和甲烷含量为 5%相比,³⁷ Ar 能峰基本保 持不变,但能峰的前沿和电子学噪声基本进一步分 开,平台降低.当甲烷含量为 20.7%时,和甲烷含量 为 10.7%相比,两种基本相同,但前者需要更高的 工作电压.因此在³⁷ Ar 的测量中工作气体为 P10

图 6 ³⁷ Ar 能谱与甲烷含量的关系

(10% CH₄ + 90% Ar) 气体较为合适.以下测量中工作 气体均为 P10 气体.

3.6. 本底

3.6.1. 总本底

在以上条件下,正比计数管在无屏蔽、有反符合 和有反符合加屏蔽体的情况下,相同时间内的实验 本底能谱见图 7,本底计数见表 6.

图 7 在不同情况下计数管的本底能谱

表 6 在不同情况下计数管的本底

本底	裸管	有反符合无屏蔽体	有反符合加屏蔽体
总计数/s ⁻¹	7.8	3	1.1
峰本底/s ⁻¹	0.6	0.23	0.16

 10^{4}

10³

 10^{2}

0

计数

³⁷Ar 2. 38 keV

300

峰本底

600

图 8 峰本底示意图 移动要求,采用能谱法测量³⁷ Ar 具有直观、坪长长、

坪斜小等优点,相比传统总计数方法,采用峰本底的

方法可以将本底降低约一个量级,从而降低³⁷Ar的

道数

本底

1200

的某些规则是是不是可能

900

由图 7 和表 6 可以看出,采用屏蔽和反符合的 能够降低计数管本底,由裸管的 7.8 s⁻¹降到有反符 合加屏蔽体的 1.1 s⁻¹.

3.6.2. 峰本底

由于³⁷ Ar 能够在计数管内形成较好的单能峰, 因此可采用峰本底作为测量³⁷ Ar 的本底.³⁷ Ar 峰本 底是指在³⁷ Ar 峰下本底计数(见图 8),实验结果见 表 6.

由表 6 看出,采用峰本底的方法可以将本底降低约一个量级,从而降低³⁷Ar的探测下限.

4.结 论

建立了³⁷Ar测量系统,重量和体积可以满足可

- [2] Loosli H H, Heimann M, Oeschger H 1980 Low-level Gas Proportional Counting in an Underground Laboratory Radiocarbon 22 461-469
- [3] Gu D C 1994 Method and Technology of Measurement for Radionuclide Activity (Beijing Science Press) p296(in Chinese] 古当长 1994 放射性核素活度测量的方法和技术(北京:科学出版社)第

296页]

探测下限.

- [4] Chang J T, Wu L A 2003 Acta Phys. Sin. 52 1132 (in Chinese) [常君 、吴令安 2003 物理学报 52 1132]
- [5] P M Endt 1990 Nucl. Phy 1 A521
- [6] Richard B F, Virginia S S, Coral M B, Jean Z S Y, Frank Chu 1996 Table of Isotopes CD-ROM Eighth EditionVersion 1.0 p775
- [7] An J G 1995 Ionization and Radiation Detector (Beijing: Atomic Energy Press)p124—126(in Chinese]安继刚 1995 电离辐射探 测器(北京 原子能出版社)第124—126页]

Development of a system of measuring ³⁷Ar by spectrum method

Xiang Yong-Chun[†] Gong Jian Li Wei Bian Zhi-Shang Hao Fan-Hua

Wang Hong-Xia Wang Qian Xiong Zong-Hua

(Institute of Nuclear Physics and Chemistry, China Academy of Engineer Physics, Mianyang 621900, China)

(Received 30 December 2006; revised manuscript received 10 February 2007)

Abstract

A portable system of measuring ³⁷ Ar has been developed. Measurement of ³⁷ Ar is realized by the proportional counter and spectrum analysis method. Plateau length , plateau slope and background have been analyzed. Compared with traditional counting method , the present method has the advantages of visibility , longer plateau length and smaller plateau slope. background is reduced by an order of magnitude which decreases the detection limit. Working gas of 10% methane improves the peak shape. Greater concentration of methane is not necessary because it does not make the peak shape better but needs higher working voltage.

Keywords : gas proportional counter , $^{37}\,\mathrm{Ar}$, plateau curve , spectrum method PACC : 2940C , 2970F

[†] E-mail :xiang20030818@yahoo.com.cn