# $N_2O^+$ 离子 $A^2\Sigma^+$ 电子态高振动 能级的转动结构分析\*

汪 华<sup>1</sup>) 刘世林<sup>1</sup><sup>†</sup> 刘 杰<sup>2</sup>) 王凤燕<sup>2</sup>) 姜 波<sup>2</sup>) 杨学明<sup>2</sup>)
 1 (中国科学技术大学化学物理系,合肥微尺度物质科学国家实验室,合肥 230026)
 2 (中国科学院大连化学物理研究所,分子反应动力学国家重点实验室,大连 116023)
 (2007 年 3 月 18 日收到 2007 年 4 月 10 日收到修改稿)

利用一束波长为 360.55 nm 的激光,通过(3+1)共振多光子电离方法制备纯净的且处于  $X^2 \prod_{1/2,3/2}$ (000)态的  $N_2 O^+$ 离子,用另一束激光激发所制备的离子到第一电子激发态  $A^2 \Sigma^+$ 的不同振动能级,然后解离,通过检测解离碎 片 NO<sup>+</sup> 强度随光解光波长的变化,得到了转动分辨的  $N_2 O^+$ 碎片激发谱.通过对光谱转动结构的拟合,获得了  $N_2 O^+$ 离子  $A^2 \Sigma^+$ 电子态一系列高振动能级的转动常数和自旋分裂常数.

关键词: $N_2O^+$ 离子  $A^2\Sigma^+$ 电子态,共振增强多光子电离,光解碎片激发光谱,光谱常数 **PACC**: 3310E, 3320L, 3370C, 3520P

## 1.引 言

在地球的大气电离层中,有一个非常重要的离 子分子反应<sup>[12]</sup>:

 $O^{+}({}^{4}S) + N_{2}(X^{1}\Sigma^{+})$ 

→NO<sup>+</sup>( $X^{1}\Sigma^{+}$ ,V) + N( $^{4}S$ ) + 1.10 eV. (1) 实验<sup>[1]</sup>和理论<sup>[2]</sup>研究表明,N<sub>2</sub>O<sup>+</sup>( $A^{2}\Sigma^{+}$ )是这

个离子分子反应的中间产物.因此,对于  $N_2O^+$ 离 子,尤其是第一电子激发态  $A^2 \Sigma^+$ 的研究,一直受到 广泛的关注.较早的工作是 Callomon 和 Creutzberg 于 1974年对  $A^2 \Sigma^+ \rightarrow X^2 \Pi$  发射光谱的研究<sup>[3]</sup>,此后, 大量的光谱实验手段应用于  $A^2 \Sigma^+$ 电子态的光谱和 动力学研究,如光电子能谱<sup>4,5]</sup>、发射光谱<sup>6,7]</sup>、快速 离子束激光光谱(FIBLAS)<sup>8—11]</sup>、光致碎片谱<sup>12]</sup>、阈 值电子-荧光光子(TEFP)符合谱<sup>13]</sup>等.这些前人的 工作获得了  $A^2 \Sigma^+$ 电子态一些低振动能级的寿命和 荧光量子产率,同时还对基态  $X^2 \Pi$ 存在的各种相互 作用,如自旋-轨道耦合、费米共振以及 Renner-Teller 相互作用等,进行了细致的分析.研究表明, $A^2 \Sigma^+$ 电子态为预解离态,除振动基态(000)外,其他振动 能级都存在预解离,随着振动能级的增高,预解离速 率加快,实验上仅观察到少数几个低振动能级的荧 光发射.Larzilliere研究小组<sup>[8-11]</sup>利用 FIBLAS 技术, 通过检测解离碎片 NO<sup>+</sup>的强度随离子束速度的变 化,研究了 A<sup>2</sup>Σ<sup>+</sup>电子态(010)(020)和(100)等振 动能级的高分辨光谱,获得了这些能级的转动常数. 这种光谱的分辨很高,可以研究光谱的超精细结构. 但是,由于此技术采用固定波长的激光,不可能获得 较多振动能级的转动光谱.

其实对于  $A^2 \Sigma^+$  电子态较高的振动能级 ,尤其 是( 300 )以上振动能级的研究一直没有报道.本实验 室曾经获得了  $A^2 \Sigma^+$  电子态高振动能级的光谱<sup>[14]</sup>. 通过记录  $N_2 O^+$  光解碎片的激发谱( PHOFEX ),观察 到了 20 多对新的电子振动跃迁谱带 ,在考虑振动能 级费米共振耦合情况下 ,对光谱进行了可靠的标识 , 给出了准确可信的费米共振和振动频率等光谱 常数.

我们之所以观察到许多新的光谱跃迁并获得较 准确和详细的光谱常数,主要得益于实验方法的不 同,前人主要通过直流放电<sup>[8,15]</sup>、Penning 电离<sup>[16]</sup>、电 子轰击<sup>[17]</sup>和同步辐射光电离<sup>[13]</sup>等方法制备 N<sub>2</sub>O<sup>+</sup>离 子.前三种方法的特点是可以制备大量的离子,而且 操作方法简单,但是不能制备纯净且布居单一的母

<sup>\*</sup> 国家自然科学基金(批准号 20533070 20573100),高等学校博士学科点专项科研基金(批准号 20060358032)资助的课题.

<sup>†</sup> 通讯联系人. E-mail slliu@ustc.edu.cn

体离子,同步辐射光电离虽然可以制备纯净的母体 离子,但光源本身的强度和线宽限制了光谱的分辨 和灵敏度.而我们采用激光共振增强多光子电离 (REMPI)的方法制备 N<sub>2</sub>O<sup>+</sup>离子,通过选择激光波长 可以制备出种类单一且态分布唯一的 N<sub>2</sub>O<sup>+</sup>离子, 然后再通过另一束激光激发制备的 N<sub>2</sub>O<sup>+</sup>离子至其 电子激发态.由于制备离子和激发离子均采用激光, 因而光谱灵敏度和分辨率均大大提高.

本工作是在我们对  $N_2O^+$  离子  $A^2\Sigma^+$  电子态振 动光谱研究的基础上,通过分析各振动谱带的转动 结构,得到了  $N_2O^+$  离子  $A^2\Sigma^+$  电子态一些高振动能 级的转动常数和自旋分裂常数,这些数据是文献中 没有报道过的.

#### 2.实验

实验装置包括脉冲分子束系统、脉冲激光系统 和飞行时间质谱仪三部分<sup>14〕</sup>,三者的时序由脉冲发 生器控制.

未经进一步纯化的 N<sub>2</sub>O(大连特种气体公司生 产)与 He 按照 1:4 比例混合后,绝对压力为 202 kPa 的混合气通过脉冲阀(General Valve,喉道直径为 0.5 mm)喷射到真空腔中.腔体真空由一台直联机械 泵(抽速 15 L/s)和一台涡轮分子泵(抽速 1500 L/s) 组成,进气时腔体真空度为 0.3 mPa.

激光系统由一台准分子激光器(Lambda Physik, LPX200 308 nm,~200 mJ 每脉冲)同时抽运的两台 染料激光器(Lambda Physik,LPD3000 和 FL2002)组 成.其中一束波长为 360.55 nm 的激光,单脉冲能量 约 5 mJ,经过焦距 f = 400 mm 的透镜聚焦于射流分 子束,通过(3 + 1)REMPI 方法电离超声射流中的 N<sub>2</sub>O 分子得到 N<sub>2</sub>O<sup>+</sup>离子.根据 Szarka 等<sup>41</sup>和 Scheper 等<sup>[51</sup>对 N<sub>2</sub>O 分子(3 + 1)REMPI 光谱及光电子能谱的 研究可知 360.55 nm 激光可以通过 3 光子共振激发 N<sub>2</sub>O 分子至里德堡态  $3p\sigma^1 \Pi$ ,进而再吸收 1 个光子, 生成基态的 N<sub>2</sub>O<sup>+</sup>离子,其电离过程为

 $N_2 \mathcal{O} (X^1 \Sigma^+) \xrightarrow{3h\nu} N_2 \mathcal{O} (3p\sigma^1 \Pi)$  $\xrightarrow{h\nu} N_2 \mathcal{O}^+ (X^2 \Pi) + e.$ 

 $\xrightarrow{\mu\nu}$  N<sub>2</sub>O<sup>+</sup>( $X^2\Pi$ )+e. (2) 光电子能谱表明,该波长下产生的 N<sub>2</sub>O<sup>+</sup> 离子全部 布居于振动基态  $X^2\Pi_{3/2,1/2}(000)$ .这一点在我们过去 的工作中得到证实<sup>[14]</sup>.随后引入第二束激光,单脉 冲能量约为 1 mJ,经过焦距 f = 500 mm 的透镜反向 射入腔体,将制备的  $N_2O^+$  离子激发至  $A^2\Sigma^+$  电子态,然后发生解离.在实验中,调节两束激光使其在空间上完全重合,在时间上,使解离激光相对电离激 光滞后 10 ns 以内.并注意到当任何一束激光单独作用  $N_2O$  分子时,不产生  $NO^+$  离子信号,只有当两束 激光共同作用时,才出现  $NO^+$  离子信号.由此可以 判断, $NO^+$  离子确实是由母体离子  $N_2O^+$  被激发到  $A^2\Sigma^+$  电子态后解离而来.

电离产生的母体离子  $N_2O^+$  和解离生成的碎片 离子  $NO^+$  经电场引出、加速后,沿飞行时间质谱 (TOF)管飞行,最后被微通道板(MCP)接收,MCP 输 出的信号被传送到 Boxcar 平均器(SR250)中平均 30次,然后传输到电脑中记录储存.反复扫描  $N_2O^+$ 离子  $A^2\Sigma^+$  电子态某振动能级区域,记录  $NO^+$  离子 强度随解离光波长的变化,多次平均后得到  $N_2O^+$ 离子转动分辨的 PHOFEX 谱.

### 3. 结果与分析

3.1.  $N_2O^+$  离子  $A^2\Sigma^+$  电子态高振动能级的转动光谱

图 1 和图 2 展示了一些 N<sub>2</sub>O<sup>+</sup> 离子  $A^2 \Sigma^+ \leftarrow X^2 \Pi$  电子跃迁的 PHOFEX 光谱及其拟合,这些光谱 反映了 N<sub>2</sub>O<sup>+</sup> 离子  $A^2 \Sigma^+$  电子态高振动能级的转动 信息.其中,跃迁基态  $X^2 \Pi$  的两个自旋-轨道分裂态  ${}^2\Pi_{3/2}(000) \pi^2 \Pi_{1/2}(000) 分别用 F_1 和 F_2 表示.对于$  $N<sub>2</sub>O<sup>+</sup> 离子 <math>A^2 \Sigma^+$  电子态,由于三个振动模频率大小 有  $\nu_3 \approx 2\nu_1 \approx 4\nu_2$  近似关系,三个振动模之间存在很 强的费米共振耦合,用( $V_1$ , $V_2$ , $V_3$ )来表示这些相互 耦合的振动能级已经失去了意义.

本实验室前人工作<sup>14]</sup>采用了[*P*,*i*] 来标识相互 耦合的振动能级,*P*为振动能级簇量子数,对应于  $N_2O^*$  离子,*P* = 2*V*<sub>1</sub> + *V*<sub>2</sub> + 4*V*<sub>3</sub>,有相同 *P* 值的振动 能级间存在费米相互作用,*i* 表示振动簇中按能量 递增顺序排列的能级序号.本文中,同样采用[*P*,*i*] 来表示  $A^2\Sigma^*$  电子态振动能级.

需要指出的是  $N_2 O^+$  离子  $X^2 \Pi$  态和  $A^2 \Sigma^+$  态皆 为线性构型 ,零级近似下  $X^2 \Pi$  (000 )能级至  $A^2 \Sigma^+$  态 的电子振动跃迁中 ,至  $A^2 \Sigma^+$  电子态的 P 为奇数( 弯 曲振动量子数  $V_2$  为奇数 )的振动能级应该是跃迁 禁阻的 ,但在图 2 中仍观察到强度不弱的这些振动 跃迁谱带.前人的研究<sup>[18,19]</sup>中也曾观察到此类禁阻



图 1 转动分辨的  $N_2O^+$ 离子  $A^2\Sigma^+ \leftarrow X^2\Pi$  电子跃迁 PHOFEX 光谱及其拟合结果 这些电-振跃迁均为  ${}^{2}\Sigma^+(b) \leftarrow {}^{2}\Pi(a)$ 类型,上态振动能级表示方法如文中详细说明,下态能级  $F_1$  表示基态振动能级  ${}^{2}\Pi_{3/2}(000), F_2$ 表示 ${}^{2}\Pi_{1/2}(000)$ ,实线为实验数据,虚线为拟合结果

跃迁,并归结为激发态  $A^2 \Sigma^+$  和基态  $X^2 \Pi$  之间的电 子-振动相互作用所致. 尽管这些跃迁的 Franck-Condon 因子很小,但由于处于高振动态,解离速率 较大,因而观察到的 PHOFEX 光谱强度也不弱.

3.2. 转动分析

根据前人对  $N_2O^+$  离子  $A^2\Sigma^+$  电子态发射光谱 的研究<sup>[3]</sup>和我们曾对  $A^2\Sigma^+$ 态振动能级的标识<sup>[14]</sup>可 知  $N_2O^+$  离子基态  $X^2\Pi$  的电子自旋与分子转动的 耦合方式接近洪特( a )型,激发态  $A^2\Sigma^+$  接近洪特 ( b )型.并且  $A^2\Sigma^+$  电子态 P 为奇数的振动能级的电 子-振动对称类为  $\Pi$  , P 为偶数的振动能级的电子-振动对称类为  $\Sigma^+$ .因此,对于  $N_2O^+$  离子  $A^2\Sigma^+$   $X^2\Pi(000)$ 电子跃迁光谱,存在两种跃迁类型,即  ${}^2\Pi(b) - {}^2\Pi(a)$ ,  $M^2\Sigma^+(b) - {}^2\Pi(a)$ , 分别对应于激发 到  $A^2 \Sigma^+$  电子态 P 为奇数和偶数的振动能级.

图 3 给出了两种类型的跃迁示意图,其中下态 由于自旋-轨道分裂分为<sup>2</sup>  $\Pi_{3/2}$ 和<sup>2</sup>  $\Pi_{1/2}$ ,上态振动能级 考虑了洪特(b)情况下的自旋-转动分裂,而对于  $A^2 \Sigma^+$ 电子态<sup>2</sup>  $\Pi$  振动能级,由于光谱分辨所限,未进 一步考虑转动能级的  $\Lambda$  双分裂.由图 3 中可以看 出,两类跃迁有相似的转动结构,均由 2 套 P,Q 和 R支组成.其中, $Q_1$ 和<sup>4</sup> $P_{21}$ , $R_1$ 和<sup>4</sup> $Q_{21}$ , $P_2$ 和<sup>6</sup> $Q_{12}$ , $Q_2$ 和<sup>4</sup> $R_{12}$ 4组转动支,仅仅是由于  $A^2 \Sigma^+$ 电子态的电子 自旋分裂所致,又因为在洪特(b)耦合情况下,自旋 分裂很小,因此这4组中的每两支几乎重叠在一起. 如图 1 和图 2 中间的 Q转动支所示.下面将分析这 两种跃迁的谱线位置和跃迁强度.

#### 3.2.1. 能级表达式

对于  $N_2O^+$  离子电子基态  $X^2\Pi$  ,电子自旋-转动



图 2 转动分辨的 N<sub>2</sub>O<sup>+</sup> 离子  $A^2 \Sigma^+ \leftarrow X^2 \Pi$  电子跃迁 PHOFEX 光谱及其拟合结果 这些电-振跃迁均为 <sup>2</sup>  $\Pi$ (b) $\leftarrow^2 \Pi$ (a)类型



图 3 <sup>2</sup>∑<sup>+</sup>(b)←<sup>2</sup>Π(a)和<sup>2</sup>Π(b)←<sup>2</sup>Π(a)跃迁示意图

耦合方式接近洪特(a)型 转动能级表达式可由 Hill-VanVleck 公式给出<sup>[20,21]</sup>:

$$F_{12}(J)_{V} = \pm \frac{1}{2}A_{V} - \frac{3}{4}B_{V} \mp B_{V}(1 \pm 3B_{V}/4A_{V}) + B_{\text{eff}, 12, N}J(J + 1)$$

$$- D_{\text{eff , I 2 , N}} J^{2} (J + 1)^{2} \pm \frac{1}{2} \phi (J), \quad (3)$$

其中, $F_1(J)$ 表示  $N_2O^+$  离子基态  $X^2\Pi$  的自旋-转动 分裂项<sup>2</sup> $\Pi_{3/2}$ , $F_2(J)$ 表示<sup>2</sup> $\Pi_{1/2}$ . $A_V$  为自旋-轨道耦合 常数, $B_V$  为真实转动常数, $B_{eff,1,2,V}$ 和  $D_{eff,1,2,V}$ 分别为 有效转动常数和有效离心畸变常数, $\phi(J)$ 为  $\Lambda$  双 分裂,对于<sup>2</sup> $\Pi_{1/2}$ , $\phi(J) = p(J + 1/2)$ ,p 为常数,对于 <sup>2</sup> $\Pi_{3/2}$ ,  $\Lambda$  分 裂 更 小,可以忽略. Callomon 和 Creutzberg<sup>[3]</sup>在对  $N_2O^+$  离子发射光谱的研究中,得到 了基态基振动能级的光谱常数.对于  $F_1$ 态, $B_{000,eff}$ = 0.41026 cm<sup>-1</sup>, $D_{000,eff}$  = 1.74 × 10<sup>-7</sup> cm<sup>-1</sup>,p = 1.8 × 10<sup>-3</sup> cm<sup>-1</sup>, 对于  $F_2$ 态, $B_{000,eff}$  = 0.41290 cm<sup>-1</sup>, $D_{000,eff}$ = 2.10 × 10<sup>-7</sup> cm<sup>-1</sup>.本文中,所用到的电子基态光谱 常数均采用此数值.

对于  $N_2O^+$  离子  $A^2\Sigma^+$  电子态 ,电子自旋-转动 耦合方式接近洪特(b)型 ,转动能级公式由 Herzberg 描述给出<sup>[22]</sup>:

 $F_{12}(N)_{v} = B_{v}(N(N+1) - \Lambda^{2}) + \varphi(N).$ (4)

这里对于自旋分裂  $F_1(N)$ 支项 ,即  $J = N + \frac{1}{2}$  ,  $\varphi(N) = + \frac{1}{2} \gamma N$  ,对于  $F_2(N)$ 支项 ,即  $J = N - \frac{1}{2}$  ,  $\varphi(N) = -\frac{1}{2} \gamma (N+1)$  , $B_V \Delta A^2 \Sigma^+$  态振动能级转动 常数 , $\gamma$  为自旋分裂常数 , $\Lambda$  为电子轨道量子数 ,对  $F^2 \Sigma^+$  电子振动态 , $\Lambda = 0$  ,对于<sup>2</sup>  $\Pi$  电子振动态 , $\Lambda =$ 1.由于实验是在射流冷却的条件下进行的 ,离子的 转动激发比较小 ,因此在公式中忽略了那些数值更 小的光谱常数 ,如离心畸变常数和电子振动对称性 为<sup>2</sup>  $\Pi$  振动能级的  $\Lambda$  双分裂等 .

3.2.2. 转动跃迁的谱线强度

PHOFEX 光谱转动谱线强度与  $A^2 \Sigma^+ \leftarrow X^2 \Pi$  电 子跃迁的吸收光谱是一致的 即与离子基态  $X^2 \Pi$  的 转动布居和跃迁概率成正比.假定在热平衡情况下, 离子基态的转动布居符从 Boltzmann 分布.根据 Earls<sup>[23]</sup>,Hill 和 Vleck<sup>[20]</sup>及 Mulliker<sup>[24]</sup>等人关于双原 子分子跃迁强度的理论研究,我们对这两类跃迁的 跃迁概率进行了推导,其结果如下.

对于<sup>2</sup>*Σ*<sup>+</sup>(b)←<sup>2</sup>Π(a)电子振动跃迁 :<sup>2</sup>*Σ*<sup>+</sup> ← <sup>2</sup>Π<sub>1/2</sub>跃迁 ,<sup>2</sup>*P*<sub>1</sub>, 和 *P*<sub>2</sub> 谱线 :

$$I = (4J''^2 - 1)'J''; \qquad (5a)$$

 ${}^{p}Q_{12}$ 和  $Q_{2}$  谱线:

 $I = (2J'' + 1)^{3} / J(J'' + 1); \quad (5b)$ <sup>*q*</sup>*R*<sub>12</sub> 和 *R*<sub>2</sub> 谱线:

I = (2J'' + 1)(2J'' + 3)(J'' + 1). (5c) <sup>2</sup>∑<sup>+</sup> ←<sup>2</sup> Π<sub>3/2</sub>跃迁 ,<sup>q</sup>P<sub>21</sub>和 P<sub>1</sub> 谱线:

 $I = (2J'' + 1)(2J'' + 3)J''; \quad (5d)$ ' $Q_{21}$ 和  $Q_1$  谱线:

 $I = (4J''^2 - 1)(2J'' + 3)J(J'' + 1); (5e)$ \*R<sub>21</sub>和 R<sub>1</sub> 谱线:

$$I = (4J''^2 - 1)(J'' + 1).$$
 (5f)

对于<sup>2</sup> Π( b )←<sup>2</sup> Π( a )电子振动跃迁 :<sup>2</sup> Π←<sup>2</sup> Π<sub>1/2</sub> 跃迁 ,<sup>°</sup>P<sub>12</sub>谱线:

$$I = (2J'' - 1)^2 / J''; \qquad (6a)$$

 $P_2$  谱线:

 $I = (2J'' - 1)(2J'' + 3)J''; \quad (6b)$ <sup>*p*</sup>Q<sub>12</sub> 谱线:

 $I = (2J'' - 1)J''(J'' + 1); \quad (6c)$  $Q_2$  谱线:

$$I = (2J'' + 3)J''(J'' + 1); \quad (6d)$$
<sup>*q*</sup> $R_{12}$  <sup>*i*</sup>#线:

 $I = (2J'' - 1)(2J'' + 3)(J'' + 1); \quad (6e)$ R<sub>2</sub> 谱线:

 $I = (2J'' + 3)^{\circ} (J'' + 1).$  (6f) <sup>2</sup> П ←<sup>2</sup> П<sub>3/2</sub> 跃迁, <sup>q</sup> P<sub>21</sub> 谱线:

I = (2J'' - 3)(2J'' - 1)(2J'' + 3)'J''(2J'' + 1);(6g)

#### $P_1$ 谱线:

I = (2J'' - 3)(2J'' + 3)'/J''(2J'' + 1); (6h)'Q<sub>21</sub>谱线:

$$I = 9(2J'' - 1)J''(J'' + 1); \quad (6i)$$

 $Q_1$  谱线:

$$I = 9(2J'' + 3)'J''(J'' + 1);$$
 (6j)

<sup>\*</sup>R<sub>21</sub>谱线:

$$I = (2J'' - 1)'(2J'' + 5)(J'' + 1)(2J'' + 1);$$
(6k)

R<sub>1</sub> 谱线:

$$I = (2J'' - 1)(2J'' + 3)(2J'' + 5)$$
  
(J'' + 1)(2J'' + 1). (61)

式中, J''为电子基态  $X^2 \Pi_{1/2,3/2}(000)$ 的总角动量子数.各转动支符号的意义,  ${}_{21}$ 中的上标 q 表示  $\Delta N = 0$ , P 表示  $\Delta J = -1$ , 下标 21 表示跃迁是由基 电子态  $X^2 \Pi$  的  $F_1(J)$ 支项到激发态  $A^2 \Sigma^+$ 的  $F_2(N)$ 支项.直观的表示可见图 3.

根据以上的能级公式和跃迁概率公式,我们对 N<sub>2</sub>O<sup>+</sup>离子的 PHOFEX 光谱转动结构进行拟合,所需 参数仅为上态的转动常数、自旋分裂常数和转动温 度,拟合的结果分别在图 1 和图 2 中实验数据的下 方.由于 Q 转动支跃迁概率大,谱线相互重叠,使得 光谱强度比 P,R 转动支强很多,从而导致实验中 Q 支光谱信号强度达到饱和,因而在光谱强度方面 无法很好地拟合此段光谱,即光谱中心区域没有拟 合.从图 1 和 2 可看出,对于光谱的两侧 P 支和 R 支,实验和拟合结果吻合得很好.图 1 和图 2 的光谱 拟合给出的转动温度均为 15 K 左右,从另一个方面 说明了我们对光谱拟合的合理性和正确性.

通过对谱带转动结构的拟合,我们得到了  $N_2O^+$ 离子 $A^2\Sigma^+$ 电子态一些高振动能级的转动常数和自旋分裂常数,结果列于表 1.

可以看到 随着 A<sup>2</sup>Σ<sup>+</sup>态振动能级的增加 ,转动 常数呈减小的趋势 ,而自旋分裂常数有增大的趋势. 由于分子的振-转相互作用 ,转动常数随振动能级的 增高而递减是可以理解的 ,而自旋分裂常数的增加

 $B_{100} = 0.43098 \text{ cm}^{-1} (P = 2), B_{001} = 0.42952 \text{ cm}^{-1}$ (P=4)对比他们给出的数据,本文所得到的高振 动能级转动常数与其在减小的趋势上是一致的.

| $A^2\Sigma^+$ 电子态振动能级 $P$ , $i$ ] | 跃迁基态1)           | $B_{ u'}/\mathrm{cm}^{-1}$ | $\overline{B}_{\nu'}/\mathrm{cm}^{-1}$ | $10^3  \gamma/\mathrm{cm}^{-1}$ | $10^3 \overline{\gamma}/\mathrm{cm}^{-1}$ |
|-----------------------------------|------------------|----------------------------|----------------------------------------|---------------------------------|-------------------------------------------|
| [54]                              | $F_1$            | 0.4295(5) <sup>2)</sup>    | 0.4293(5)                              | 0(5)                            | - 5(5)                                    |
|                                   | $F_2$            | 0.4290(6)                  |                                        | - 10( 5 )                       |                                           |
| [6 6]                             | $F_{1}$          | 0.4285(8)                  | 0.4285(8)                              | - 5(5)                          | - 5(5)                                    |
|                                   | $F_2$            | -                          |                                        | -                               |                                           |
| [76]                              | $F_1$            | 0.4270(6)                  | 0.4273(7)                              | - 10( 5 )                       | - 15(7)                                   |
|                                   | $F_2$            | 0.4275(8)                  |                                        | - 20( 10 )                      |                                           |
| [83]                              | $F_1$            | 0.4260(5)                  | 0.4265(5)                              | - 10( 5 )                       | - 15(6)                                   |
|                                   | $F_2$            | 0.4270(6)                  |                                        | - 20( 8 )                       |                                           |
| [ 8 8 ]                           | $F_1$            | 0.4270(7)                  | 0.4264(8)                              | - 10( 5 )                       | - 20( 8 )                                 |
|                                   | $F_2$            | 0.4258(8)                  |                                        | - 29(10)                        |                                           |
| [89]                              | $F_1$            | -                          | 0.4235(6)                              | -                               | - 11(5)                                   |
|                                   | $F_2$            | 0.4235(6)                  |                                        | - 11(5)                         |                                           |
| [ 10 <i>A</i> ]                   | $F_1$            | 0.4210(5)                  | 0.4218(5)                              | - 10( 5 )                       | - 8( 5 )                                  |
|                                   | $F_2$            | 0.4225(5)                  |                                        | - 5(5)                          |                                           |
| [ 12 2 ]                          | $F_1$            | -                          | 0.4195(8)                              | -                               | - 56( 8 )                                 |
|                                   | $F_2$            | 0.4195(8)                  |                                        | - 56(8)                         |                                           |
| [ 12 8 ]                          | $\overline{F_1}$ | 0.4220(9)                  | 0.4204(9)                              | - 42(10)                        | - 44(9)                                   |
|                                   | $F_2$            | 0.4187(9)                  |                                        | - 48(8)                         |                                           |

表1 N<sub>2</sub>O<sup>+</sup> 离子  $A^2 \Sigma^+$  电子态振动能级的转动常数  $B_{\lambda'}$ 和自旋分裂常数  $\gamma$ 

注:1)F1 对应基电子态 X<sup>2</sup> II32(000),F2 对应基电子态 X<sup>2</sup> II12(000) 2)误差为估计值

## 4.结 论

本文报道了  $N_2O^+$  离子  $A^2\Sigma^+$  电子态一系列高振动能级的转动发谱.首先利用第一束激光通过 (3+1)REMPI的方法制备母体离子  $N_2O^+ X^2 \Pi_{_{3/2,1/2}}$ (000),随后用第二束激光激发母体离子至  $A^2\Sigma^+$  态 ,离子随后发生解离 ,通过检测碎片离子 NO<sup>+</sup> ,获 得了 N<sub>2</sub>O<sup>+</sup> 离子的 PHOFEX 光谱.通过对光谱转动结 构的分析 ,得到了这些高振动能级的转动常数和自 旋分裂常数 ,与前人的低振动能级转动常数相比 ,在 变化趋势上有着很好的一致性.高振动能级转动常 数的获得 ,为进一步了解 N<sub>2</sub>O<sup>+</sup> 离子  $A^2 \Sigma^+$  电子态的 光解动力学提供了有益的实验数据.

- [1] Burley J D , Evin K M , Armentrout P B 1987 J. Chem. Phys.
   86 1944
- [2] Komiha N 1994 J. Mol. Struct. **306** 313
- [3] Callomon J H Creutzberg F 1974 Philos. Trans. R. Soc. London, Ser. A 277 157
- [4] Szarka M G , Wallace S C 1991 J. Chem. Phys. 95 2336
- [5] Scheper C R ,Kuijt J ,Buma W J 1998 J. Chem. Phys. 109 7844
- [6] Eland J H D ,Devoret W ,Leach S 1976 Chem. Phys. Lett. 43 97
- [7] Maier J P ,Thommen F 1980 Chem. Phys. 51 319

- [8] Lerme J, Abed S, Holt R A, Larzilliere M, Carré M 1983 Chem. Phys. Lett. 96 403
- [9] Larzilliere M ,Gragued K ,Lerme J ,Koffend J B 1987 Chem. Phys. Lett. 134 467
- [10] Larzilliere M Jungen C H 1989 Mol. Phys. 67 807
- [11] Chafik M el Idrissi ,Larzilliere M ,Carré M 1994 J. Chem. Phys. 100 204
- [12] Ukai M ,Kameta K ,Machida S ,Kouchi N ,Hatano Y ,Tanaka K 1994 J. Chem. Phys. 101 5473

- [13] Frey R ,Gotchev B ,Poatman W B 1978 Chem. Phys. Lett. 54 411
- [14] Xu H F, Guo Y, Li Q F, Dai J H, Liu S L Ma X X, Liang J, Li H Y 2003 Acta Phys. Sin. 53 1027 (in Chinese)[徐海峰、郭 颖、李 奇峰、戴静华、刘世林、马兴孝、梁 军、李海洋 2003 物理学 报 53 1027]
- [15] Patsilinakou E ,Wiedmann R T ,Fotakis C 1989 J. Chem. Phys. 91 3916
- [16] Imamura T ,Imajo T ,Koyano I 1995 J. Phys. Chem. 99 15465
- [17] Tokue I ,Kobayashi M ,Ito Y 1992 J. Chem. Phys. 96 7458

- [ 18 ] Dehmer P M , Dehmer J L , Chupka W A 1980 J. Chem. Phys. 73 126
- [19] Chen W ,Liu J ,Ng C Y 2003 J. Phys. Chem. A 107 8086
- [20] Hill E ,Van Vleck J H 1928 Phys. Rev. 32 250
- [21] Mulliken R S 1930 Rev. Mod. Phys. 2 60
- [22] Herzberg G 1953 Molecular Spectra and Molecular Structure I (New York: D. Van Norstrand Company Jnc)
- [23] Earls L T 1935 Phys. Rev. 48 423
- [24] Mulliken R S 1927 Phys. Rev. 30 785

## Rovibronic spectrum of N<sub>2</sub>O<sup>+</sup> ion at the $A^2\Sigma^+$ state<sup>\*</sup>

Wang Hua<sup>1</sup>) Liu Shi-Lin<sup>1</sup><sup>†</sup> Liu Jie<sup>2</sup>) Wang Feng-Yan<sup>2</sup>) Jiang Bo<sup>2</sup>) Yang Xue-Ming<sup>2</sup>)

1 X Hefei National Laboratory for Physical Sciences at Microscale ,Department of Chemical Physics ,

University of Science and Technology of China , Hefei 230026 , China )

2  $\ensuremath{\underline{X}}$  State Key Laboratory of Molecular Reaction Dynamics ,Dalian Institute of Chemical Physics ,

Chinese Academy of Science ,Dalian 116023 ,China )

(Received 18 March 2007; revised manuscript received 10 April 2007)

#### Abstract

The rotational structures of the photofragment excitation spectrum of  $N_2O^+(A^2\Sigma^+)$  at high vibrational levels have been studied experimentally. The parent  $N_2O^+(X^2\Pi)$  ions were prepared by (3 + 1) resonance-enhanced multiphoton ionization of jet-cooled  $N_2O$  molecules by 360.55 nm laser beam and were excited by another laser to the predissociative  $A^2\Sigma^+$  state in the range of 280—320 nm. Two types of rotational transition *i*.e.  $_r^2\Sigma^+ \leftarrow^2 \Pi$  and  $_r^2\Pi \leftarrow^2 \Pi$  have been clearly observed for a series of vibronic transitions. The rotational constants and spin splitting constants have been obtained from the spectral analysis.

Keywords : N<sub>2</sub>O<sup>+</sup>(  $A^2 \Sigma^+$  ) state , REMPI , PHOFEX spectrum , spectral constants PACC : 3310E , 3320L , 3370C , 3520P

<sup>\*</sup> Project supported by the National Natural Science Foundation of China( Grant Nos. 20533070,20573100) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060358032).

<sup>†</sup> Corresponding author. E-mail slliu@ustc.edu.cn