烧结 Nd-Fe-B 磁体的微观结构和冲击韧性研究*

胡志华^{1,2,} 连法增¹ 朱明刚² 李 卫²

1)(东北大学材料各向异性与织构教育部重点实验室,沈阳 110004)
2)(钢铁研究总院功能材料研究所,北京 100081)
(2007年4月21日收到2007年6月6日收到修改稿)

对烧结 $Nd_{15}Fe_{72-x}Co_{y}Nb_{x}B_{s}(y=0,5;x=0,0.5,1.0,1.5,2.0,2.5)$ 永磁体的微观结构和冲击韧性及二者间 的关系进行了研究.结果表明 添加 Nb 能够改善 Nd-Fe-B 磁体的微观结构 ,提高磁体的冲击韧性.当无 Co 磁体中 Nb 的原子百分含量为 1.5% 时 ,其冲击韧性达到最大 ,对于添加了 Co 的磁体 ,其冲击韧性的变化不明显 ,并且明显 低于不含 Co 磁体的冲击韧性.对磁体的微观结构研究表明 ,影响磁体冲击韧性的因素很多 ,其中烧结磁体的晶界 厚度及其形状是影响冲击韧性的主要因素.

关键词:Nd-Fe-B,冲击韧性,微观结构,晶界 PACC:7550V,6220M

1.引 言

烧结 Nd-Fe-B 永磁材料自诞生之日起就得到了 广泛的重视,人们对其磁性能和微观结构做了大量 的研究,特别是在添加微量元素改善磁体的综合磁 性能方面取得了巨大的成就^[1-3].然而,由于烧结 Nd-Fe-B 永磁材料是以 Nd₂Fe₁₄ B 金属间化合物为基 体的合金,具有复杂的晶体结构,滑移系少,脆性很 大,使得机械加工困难,增加了生产成本,限制了其 应用^[4].

近几年来,人们对烧结Nd-Fe-B永磁材料的力学 性能已经做了大量的工作,取得了一些成果.Liu等 人^[5]研究了微量添加元素 Cu,Ti等对烧结Nd-Fe-B 永磁体冲击韧性的影响,认为含有少量 Nd、大量 Fe 和微量元素的沉淀物是改善磁体冲击韧性的原因. Li等人^[6]认为微量添加晶界合金可使磁体中晶界相 的分布更加均匀,基本上消除主相晶粒直接接触的 现象,使晶粒的不规则长大得到抑制,从而提高了磁 体的抗弯强度.Wang等人^[7]研究了稀土元素 Pr,Dy 对烧结 Nd-Fe-B 永磁体的影响,并得出结论:随着 Dy 含量的增加,磁体的冲击韧性增加,随着 Pr 含量 的增加,磁体的冲击韧性降低.Jiang 等人^[8]认为添 加适量的 Co 能显著提高磁体的抗弯强度 ,添加 Ti, Al 对磁体的强度基本上没有作用.

Nb 作为一种微量添加元素,对烧结 Nd-Fe-B 永磁体磁性能和微观结构的影响已进行了大量的研究^[9,10] 但其力学性能方面的研究较少.因此,本文研究了 Nb 对烧结 Nd-Fe-B 永磁体微观结构和冲击韧性的影响,旨在弄清磁体的微观结构与冲击韧性的关系.

2. 实验方法

按照 Nd₁₅ Fe_{72-x} Co_y Nb_x B₈(y = 0, 5; x = 0, 0.5, 1.0, 1.5, 2.0, 2.5)的成分配比 称取相应质量的工 业原材料,其中 B, Nb 分别以 B-Fe, Nb-Fe 的形式加 入,然后在氩气保护下用电弧炉冶炼成合金铸锭.将 合金锭粗破碎并在汽油介质的保护下用振动球磨机 磨成平均粒度为 4—5 μ m 的粉体,在约 1.5 T 的磁 场中取向成型,经等静压压制后在 1100℃烧结 2 h, 900℃回火 1 h, 600℃热处理 2 h.最终磁体用电火花 切成直径 10 mm,高度 4 mm 的圆柱,用自由落锤装 置测量样品的冲击韧性.装置中所用落锤的质量 *m* 为 48.335 g,锤头半径大约 2 mm,测量高度为 0— 1000 mm 范围内.落锤从一定高度升起,然后做自由

^{*} 国家自然科学基金(批准号 50771035)资助的课题.

[†] E-mail: huzhihua_1@163.com

落体运动,瞬间撞击样品,其撞击高度逐渐升高直到 样品脆裂,记录下最后一次的撞击高度.每种成分测 量四个样品的撞击高度,取它们的平均值 h 作为最 后的结果.样品的冲击能 W 就是冲击样品所消耗的 势能(mgh),用来表征样品的冲击韧性.用 JMS-6400

3. 结果与讨论

3.1. Nb 对磁体冲击韧性的影响

扫描电子显微镜观察磁体的微观结构.

图 1 为烧结磁体在不同 Nb 含量下的冲击能.从 图中可以看出,两类成分的烧结Nd-Fe-B永磁体冲击 能都是先增加后减少,但达到最大值时 Nb 的原子 百分含量不相同.对于不含 Cd(y=0)的烧结 Nd-Fe-B 永磁体,Nb 的原子百分含量为 1.5% 时达到最大 值,并且冲击能的变化非常明显.含 Cd(y=5)的烧 结 Nd-Fe-B 永磁体,Nb 的原子百分含量为 1.0% 时 达到最大值,但是冲击能随 Nb 含量的变化并不明 显,且其冲击能低于不含 Co 的烧结 Nd-Fe-B 永磁体.这说明,添加 5%(原子百分比,本文同)含量的 Co 降低了磁体的冲击能,并且减弱了 Nb 对磁体冲击能的影响.也就是说,无 Co 含 Nb 磁体的冲击韧性优于含 Co 和 Nb 磁体的冲击韧性.

图 1 Nd₁₅Fe_{72-x}Co_yNb_xB₈(y=0,5)磁体冲击能随 Nb 含量的变 化曲线

3.2. Nb 对磁体微观结构的影响

图 2 和图 3 分别为不含 Co 和含 Co 磁体的显微

组织形貌,图 4 为图 2 和图 3 中黑色箭头处的能谱 图.从图 4 可以看出黑色箭头处是一种主要含 NbFe 的化合物,其中 Nb 与 Fe 的原子百分含量比大约为 1:1.这种 NbFe 化合物存在于晶粒之间,阻碍了晶界 的移动,使得烧结 Nd-Fe-B 永磁体的晶粒均匀化和 规则化,使条形、四边形等含有尖锐棱角的、形状极 不规则的晶粒和尺寸过大或过小的晶粒大为减少甚 至消失^[s].从图 2 可以看出晶粒之间由点接触过渡 到面接触 结合得更加紧密 ,富 Nd 相的分布更加均 匀 晶界相比不添加 Nb 时要厚 ,并且出现了晶粒之 间部分接触甚至完全接触的现象. 随着 Nb 含量的 增加 ,NbFe 化合物的分布越来越广 ,当 Nb 含量太大 时 ,反而阻碍了磁体的烧结 ,使得小晶粒大量出现 , 形成了" 窝 ",大大降低了磁体的磁性能. 从图 3 可以 看出含 Co 磁体中添加 Nb 并没有增宽磁体的晶界 , 相反随着 Nb含量的增加 ,磁体的晶界宽度降低 ,晶

图 3 Nd₁₅Fe_{72-x}Co₅Nb_xB₈系列烧结永磁体的典型显微形貌

界变细 极大地增加了磁体的矫顽力.

3.3. 磁体微观结构与冲击韧性的关系

烧结 Nd-Fe-B 永磁体的断裂机理主要是沿晶断 裂,它是一种典型的脆性断裂,不同于烧结 Sm₂Co₁₇ 型永磁材料的微观断裂机理¹¹¹.箭头处的 NbFe 化 合物存在于两晶粒之间,少量的这种化合物能对晶 界起到强化作用,有助于磁体冲击韧性的提高.随着 Nb 含量的增加,NbFe 化合物的分布增大,导致了磁 体的冲击韧性下降^[12],从图 2 中可以看出 Nb 的加 入使得磁体的晶界更加清晰平滑,并且出现了一些 晶粒部分接触甚至完全接触的现象 增加了晶界的 厚度 从而改变了晶界的形状 增大了晶粒间的断裂 应力,大大提高了磁体的冲击韧性,此现象与陶瓷材 料中晶须补强 产生桥联效应而使韧性增加相似,从 图 3 中可以看出,Nb 的加入对磁体的晶界影响不 大 晶界的清晰光滑程度不如图 2 中的磁体 并且晶 粒之间部分或者完全接触的现象减少 晶界形状与 不添加 Nb 时相似 随着 Nb 含量的增加 晶界变薄, 降低了磁体的冲击韧性,因此它的冲击韧性变化不 大,也就是说,大量的 Co 的加入使得 Nb 对磁体晶 界厚度的影响减弱了,进一步导致其冲击韧性变化 不明显,对比图 2 和图 3 可以看出,适量的 NbFe 化 合物可以改善磁体的冲击韧性,但对磁体冲击韧性 起主要作用的是晶界厚度与形状,这也是不含 Co 磁 体的冲击韧性明显优于含 Co 磁体的原因.

4. 结 论

添加 Nb 可以在烧结 Nd-Fe-B 磁体中形成一种 NbFe 化合物,少量的这种化合物能够改善磁体的微 观结构,提高其磁性能和冲击韧性.对于不含 Co 的烧

- [1] Pandian S, Chandrasekaran V 2002 J. Appl. Phys. 92 6082
- [2] Kim A S, Camp F E 1996 J. Appl. Phys. 79 5035
- [3] Zhang R, Liu Y, Li J, Ma Y L, Gao S J, Tu M J 2007 Acta Phys. Sin. 56 518 (in Chinese)[张 然、刘 颖、李 军、马毅龙、高 升吉、涂铭旌 2007 物理学报 56 518]
- [4] Zhou S Z, Dong Q F 2004 Supermagnets: Rare-earth & Iron System Permanent Magnet (Beijing: Metallurgical Industry Press)p535(in Chinese)[周寿増、董请飞 2004 超强永磁体-稀土铁系永磁材 料(北京 治金工业出版社)第535页]
- [5] Liu S, Cao D, Leese R, Bauser S, Kuhl G E 2002 17th International workshop on Rare Earth Permanent Magnets & Their Applications, Delaware, Newark, USA ,18 – 22 August 2002
- [6] Li A H , Li W , Dong S Z , Li X M 2006 J. Magn. Mater 307 268
- [7] Wang H J , Li A H , Li W 2006 Intermetallics 15 985

结 Nd-Fe-B 磁体,添加 Nb 使得一些晶粒之间部分或 者完全接触.同时 磁体的晶界变宽,大大提高了磁体 的冲击韧性.当无 Co 磁体中 Nb 的原子百分含量为 1.5%时 其冲击韧性能达到最大值.对于含 Co 的烧 结 Nd-Fe-B 磁体,Nb 的添加对其冲击韧性的改变不 太明显,并且其冲击韧性能明显低于不含 Co 的磁体.

- [8] Jiang J H 2000 Research on the Improvement in the Mechanical Properties of Sintered NdFeB Magnets[Ph. Dr. Thesis](Shanghai: Shanghai Jiaotong University) p47(in Chinese)[蒋建华 2000 提 高烧结 NdFeB 永磁材料力学性能的研究[博士论文](上海: 上海交通大学)第 47 页]
- [9] Cheng W H, Li W, Li C J 2001 Acta Phys. Sin. 50 139 (in Chinese) [成问好、李卫、李传健 2001 物理学报 50 139]
- [10] Yu L Q, Wen Y H, Yan M 2004 J. Magn. Magn. Mater 283 353
- [11] Li A H, Dong S Z, Li W 2002 Acta Phys. Sin. 51 2320 (in Chinese)[李安华、董生智、李 卫 2002 物理学报 51 2320]
- [12] Liu W 2004 A Study on Preparation and Mechanical Performance of Nd-Fe-B Magnets[Ph. Dr. Thesis](Shanghai : Shanghai Jiaotong University)p117(in Chinese)[刘 微 2004 Nd-Fe-B 磁体的制 备及其力学行为[博士论文](上海:上海交通大学)第 117页]

The microstructure and impact toughness of sintered Nd-Fe-B magnets *

Hu Zhi-Hua¹⁽²⁾[†] Lian Fa-Zeng¹) Zhu Ming-Gang²) Li Wei²

1) Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004, China)

2 🕽 Division of Functional Materials , Central Iron & Steel Research Institute , Beijing 100081 , China)

(Received 21 April 2007; revised manuscript received 6 June 2007)

Abstract

The effects of Nb on the microstructure and impact toughness of sintered Nd-Fe-B magnets as well as their inter relation have been investigated. The results show that the addition of Nb improves the microstructure, and increases impact toughness of sintered magnets. When Nb content of the sintered magnets without Co is 1.5 at%, the maximum impact toughness is obtained. But for the sintered magnets with the Co addition, the variation of impact toughness of the magnets is not obvious, and the magnets have lower impact energy than the magnets with the Co addition. The microstructure of sintered magnets has been studied. It was found that many factors affect the impact toughness of sintered magnets, but the main factor is the width and shape of grain boundary of sintered magnets.

Keywords: Nd-Fe-B , impact toughness , microstructure , grain boundary **PACC**: 7550V , 6220M

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50771035).

[†] E-mail:huzhihua-1@163.com