¹⁰²Ru 核振动到转动演化的微观研究*

石筑 -1^{12}) 张春梅¹) 童 红²) 赵行知²) 倪绍勇²)

1)(西北第二民族学院基础部,银川 750021)
2)(贵州民族学院物理系,贵阳 550025)
(2007年3月6日收到 2007年4月10日收到修改稿)

基于微观 sdIBM-2 方案和实验单粒子能量值,在最普遍的哈密顿量下,用两组不同的核子-核子等效相互作用 参数,分别很好地再现了¹⁰² Ru 核的振动带能谱和转动带能谱及其演化过程.微观和唯象的研究指认:1)这两种 激发模式的共存区是能态 $8_1^* - 12_1^*$ (即 $E_x = 2.500 - 4.000$ MeV);态 8_1^* 是振动模式占据优势的能态,态 12_1^* 是转 动模式占据优势的能态,而状态 10_1^* 则是两种模式的中立能态;2)态 12_1^* 是 14_1^* 态退耦到态 10_1^* 辐射光子相变 后的中间能态;3)从基态起直到 20_1^* 态的 yrast 态全都是集体态,而以后出现的第一个拆对顺排态很可能就是中子 $h_{11/2}$ 的两准粒子态;4)这种结构的过渡不是很剧烈的,而是通过玻色子结构常数在过渡区中不大的改变来实现的.

关键词:微观 sdIBM-2 方案,形状演化,玻色子,¹⁰²Ru核 PACC:2110R,2160E,2320L

1.引 言

形状和相变演化是核结构研究中的主要论题之 一.这种演化与核生成角动量的机理紧密相关.尽管 核是由相互作用的费米子系组成,但是作为核的集 体特征,如集体激发谱和跃迁率,却已经用费米子对 的振动和转动模型的激发理论作了成功的描述.这 些集体模型显示出它们的角动量是以不同的方式产 生的,这意味着不同的激发能区将有不同的激发模 式,即不同的激发能会破坏激发态系列和跃迁率的 单一性.从理论上看,这些不同的激发态系列和跃迁 率,应该能够在同一个哈密顿量下,用不同的参数值 加以描述.但目前这种研究还不多见.

实验发现:在 $A \approx 110$, Z < 50 的偶偶核素, 如 ^{98—108} Mo, ^{100—110} Ru, ^{102—112} Pd, ^{104—114} Cd 的低能态中, 旋 转诱发振动向转动过渡的变化特别典型.由于受转 动解释的影响,最初人们把它全部解释为拆对顺排. 最近, Regan 等^[1]提出用简单的 γ 射线能量-自旋曲 线 γ -ray energy over spin curves, E-GOS),从唯象角度 去深入研究这种现象的属性,并指认:¹⁰² Ru 属于旋 转驱动球形核到变形核量子相变的典型例子;其结构变化发生在 10_1^+ — 12_1^+ (即能区 $E_x = 3.00$ —4.00 MeV)附近;而且它与中子组态($h_{11/2}$)》顺排有关.能够从微观角度理解这些现象,并进一步认识该过程有着重要意义.

文献 2 的研究显示 原子核在受到高能激发或 作快速旋转时,转动会诱发出玻色子,即角动量不 同的耦合费米子对的拆对顺排相变与退耦合释放光 子相变.在快速旋转,并诱发振动向转动过渡的退耦 合释放光子过程中,核系统始终保持角动量和能量 守恒.耦合费米子对的拆对与拆对后又重新耦合的 效应,所导致的激烈变化将引起组态重组,将反映在 玻色子结构常数的改变上.因而获得核的微观结构 信息是理解和解决此问题的切入口.

2. 理论方案

熟知,对于本课题来说,微观 IBM 理论^{3—81}的优势是:1)它是用原子核的s,d价核子对的单体项和 两体项的、最普遍形式的哈密顿量来描述原子核体 系,方案本身不具有原始对称性 2)它是通过调整核

^{*} 贵州省高校自然科学类项目(批准号 (黔教科)2004218)和教育厅自然科学重点项目(批准号 (黔教科)2006318)资助的课题.

子-核子等效相互作用参数再现核能谱,而获得核的 微观信息,如s,d 玻色子的总能量、结构常数和波函 数等,进而指认核的对称性,最后确认该核是否发生 了量子相变 3)它的价核子对具有物理结构,不是简 单的、几何的刚性粒子,其结构用玻色子结构常数表 征,因而能研究其拆对与重组的细节 4)它既具有区 分中子-质子的精确方案,又具有不区分中子-质子 的最大同位旋近似方案,便利于按需要选择.这样一 来,微观 IBM 理论就提供了我们需要的微观信息. 而当再现的两个能量区的微观信息存在较大差异 时,它有助于分析和理解对称性在过渡区的变化趋 势和特征,甚至能揭示出共存点的特性.

在研究中,一方面在再现核的低能谱(E_x = 3.00—4.00 MeV),即核的振动相时,避开确定中子 对与质子对分摊激发能的困难,我们假定:共轭核 (即中子数和质子数相等的核)的中子对与质子对贡 献给振动态的低激发能应该近似相等.即先使用 Ru 同位素的近共轭核 $^{90}_{44}$ Ru₄₆的丰富能谱去确定中子和 质子的等效相互作用参数(见表 2);以后,在再现 ¹⁰²Ru核的能谱时,让质子的等效相互作用参数基本 保持不变,而只通过调整中子参数去再现振动带能 谱(见表3).这便可从中抽取核振动带的核子对结 构常数.

另一方面,当再现核转动能谱(*E_x* > 3.00—4.00 MeV)时,考虑到相变区中核子的强烈相互作用,会 出现能量的重新分配,使得中子对与质子对贡献给 转动激发态的能量趋于均衡.因此,我们将同时调整 中子与质子的相互作用强度参数(见表 4),实现两 类 d 玻色子的激发能近似相等,拟合出转动带,从而 获得转动带的核子对结构常数.在将其与振动带的 结构常数比较中抽取信息,可以做出相关结论.

3. 计算结果和讨论

在微观 sdIBM-2 方案中 ,¹⁰² Ru 核的价核子组 态为

($2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, $1g_{9/2}$)% ($1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$,

 $3s_{1/2}$, $1h_{11/2}$) ;

单粒子能量取新近测定的实验值^[2,9](表 1)时,拟合 出 $_{44}^{90}$ Ru₄₆的中子和质子的等效相互作用参数(表 2).

表 1 实验单粒子能量值^{[29}(MeV)

n l j	1g _{7/2}	$2d_{5/2}$	$2d_{3/2}$	$3s_{1/2}$	$1h_{11/2}$	n l j	$2p_{3/2}$	1f _{5/2}	$2p_{1/2}$	1g _{9/2}
(α,β)	1	2	3	4	5		1	2	3	4
中子	0.000	0.962	2.440	2.6972	2.792	质子	0.00	0.77	1.04	3.51

表2 9	⁰ Ru 核振式	力带能谱的	1核子-核于	子等效相互	瓦作用参数	(MeV)
$g_0^{(n)}$	$G_2^{(n)}$	K ⁽ⁿ⁾	$g_0^{(p)}$	$G_2^{(p)}$	<i>K</i> ^(p)	$K^{(np)}$
0.0776	0.0360	0.0250	0.0765	0.0360	0.0250	0.0300

当核子-核子等效相互作用参数如表 3 时,方案 很好地再现了¹⁰² Ru 核的低角动量的整个振动能 谱^{[1,10}](限于篇幅省去了低角动量的振动能谱图,至 于 yrast 带请见表 5).

表 3 102 Ru 核振动带能谱的核子-核子等效相互作用参数(MeV)

$g_0^{(n)}$	$G_2^{(n)}$	<i>K</i> ⁽ⁿ⁾	$g_0^{(p)}$	$G_2^{(p)}$	<i>K</i> ^(p)	$K^{(np)}$
0.0425	0.0530	0.0100	0.0765	0.0355	0.0230	0.0180

再当核子-核子等效相互作用参数如表 4 时,方 案满意地再现了¹⁰² Ru 核的高角动量的转动能谱^{1,10]} (见表 5).

表4 10	¹² Ru 核转z	边带能谱的	的核子-核-	子等效相互	豆作用参数	X (MeV)
$g_0^{(n)}$	$G_2^{(n)}$	K ⁽ⁿ⁾	$g_0^{(p)}$	$G_2^{(p)}$	K ^(p)	$K^{(np)}$
0.0425	0.0532	0.0070	0.0510	0.0538	0.0120	0.0010

为了便于从微观上理解该相变的过程和细节, 表 5 列出了 yrast 带的理论计算值与实验值,它显示 出计算值与实验结果符合得相当好;表 6 和表 7 列 出了在计算中得到的玻色子结构常数,它显示出在 两种激发模式中,结构常数的改变不是很大.

表 5 ¹⁰² Ru 核 yrast 带的理论计算值与实验值^[1,10]的比较(MeV)

能态	0	2	4	6	8	10	12	14	16	18	20
实验值	0.000	0.476	1.108	1.876	2.708	3.436	4.057	4.810	5.726	6.791	7.999
振动带	0.000	0.470	1.100	1.845	2.728	3.798	5.062				
转动带				1.605	2.262	3.001	3.823	4.740	5.713	6.803	8.052

表 6 中子 s, d-玻色子结构常数 $\chi_{\alpha\beta}^{(mJM)}$

s - 玻色子									d - 其	皮色子						
方案	(1,1)	(22)	(33)	(44)	(55)	(1,1)	(12)	(13)	(2,2)	(23)	(24)	(33)	(34)	(44)	(55)	
振动	-0.922	-0.300	-0.129	-0.083	-0.192	0.949	0.110	-0.171	0.152	0.068	-0.113	0.055	0.069	0.000	0.102	
转动	-0.922	- 0.299	-0.128	-0.082	-0.066	0.949	0.111	-0.169	0.152	0.067	-0.112	0.054	0.068	0.000	0.102	
		·· · _ ·														

表中的(α , β)是表 1 的中子能级编号.

表 7 质子 s, d-玻色子结构常数 $\chi_{a\beta}^{(mJM)}$

s - 玻色子									d - 玻色子	Z			
方案	(1,1)	(22)	(33)	(44)	(1,1)	(12)	(13)	(22)	(23)	(24)	(33)	(34)	(44)
振动	-0.808	-0.484	-0.254	-0.220	-0.987	0.077	-0.109	-0.054	0.066	0.000	0.000	0.000	0.020
转动	-0.899	-0.371	-0.185	-0.141	0.974	-0.105	0.150	0.088	-0.092	0.000	0.000	0.000	0.033

表中的(α , β)是表 1的质子能级编号.

从上面的表中,可以做出如下结论:

1)基于微观 sdIBM-2 方案和实验单粒子能量 值,在最普遍的哈密顿量下,用两组不同的核子-核 子等效相互作用参数,分别很好地再现了¹⁰² Ru 核的 振动带能谱和转动带能谱及其在过渡区的演化 过程.

2)这两种激发模式的共存区是能态 8⁺₁-12⁺ (即 *E_x* = 2.500-4.000 MeV).能态 8⁺₁ 是振动模式 占优势的能态;态 12⁺₁ 是转动模式占优势的能态; 而态 10⁺₁ 是两种模式的中立能态,其平均值是 3.399 MeV,仅比实验值3.436 MeV 小 0.037 MeV.

3) 计算表明,从基态起直到 20⁺态的 yrast 态 全都是集体态.¹⁰² Ru 核已有 4 个质子占据了 1h₉₂ 能 级,也可能会发生跨壳层激发,但需要的激发能量相 当大,超出了正常情况.因此,以后出现的第一个拆 对顺排态,很可能就是中子的(h_{11/2})³两准粒子态. 我们注意到:文献[11,12]报道了¹⁰² Ru 核的近邻核 ^{107,09} Ru 及¹⁰⁴ Mo 的最新实验结果.该文献也指认这 些核有中子的 2h_{11/2}两准粒子态,与我们的结论相 符合.

4) 遵从文献[2], 在实验上, $E_m^{exp.} = (E_{10_1}^{exp.} + E_{14_1}^{exp.})/2 = 4.117 \text{ MeV} 与 <math>E_{12_1}^{exp.} = 4.057 \text{ MeV}$ 间的偏差 约为 0.065 MeV; 而在理论上, $E_m^{calc.} = (\overline{E_{10_1}^{calc.}} + E_{14_1}^{calc.})/2 = 4.070 \text{ MeV}, 这里, <math>\overline{E^{calc.}} = (E_{vib.}^{calc.} + E_{vib.}^{calc.})/2$, $E_{vib.}^{calc.}$, $E_{vib.}^{calc.}$, 分别是在振动方案和转动方案 中计算出的相应状态的能量, 其偏差仅为 0.013 MeV. 其差异来自于态间玻色子的相干能差. 据此, 我们可以得到辐射光子的频率 $\omega_{\gamma}^{exp.} = (E_{14_1}^{exp.} - E_{10_1}^{exp.})/2\hbar \approx 0.687 (MeV/\hbar), \omega_{\gamma}^{calc.} = 0.701 (MeV/\hbar),$ 仅差 2% .顺便指出,对于本结论,完全与在质子空 穴-中子粒子方案中得到的结论一样,只是后者更 简明一点.因此,当忽略玻色子间的相干能时,可以 认为能态 12⁺ 是 14⁺ 态退耦到 10⁺ 态时发生退耦合 辐射光子相变后的中间态.这样,我们就从微观 sdIBM-2 方案的角度,给出了文献 1]指认的¹⁰² Ru 发 生了旋转驱动球形核过渡到变形核的核相变结论的 微观理解和依据.分析发现:¹⁰² Ru 核与¹⁰⁴ Mo 核的基 态带有很多相似的结构特征,例如在它们的基态带 都发生了旋转驱动球形核过渡到变形核的核相变, 而且相变过渡区都为 8⁺一10⁺ 态;又如,按文献 2] 的观点,¹⁰⁴ Mo 核的能态 12⁺ 是 14⁺ 态退耦到 10⁺ 态时 发生退耦合辐射光子相变后的中间态,与本条的论 断相同(细节将另文报道).

5) 从比较振动方案和转动方案中 s,d-玻色子 的结构常数发现:它们有完全相同的结构耦合,即结 构变化前后既没有增加新的耦合类型,也没有减少 原有的组分;而且组分的数值改变也不是很大,以致 其结合能仅从73.094 MeV 增至78.672 MeV,这里的 变化很温和,完全不像它的能谱值及其对称性所表 现出来的宏观改变那么剧烈和鲜明.有理由认为,在 过渡区中,转动将诱发价核子轨道之间耦合强弱的 变化,改变了玻色子结构常数,从而形成新的玻色子 真空态,完成从振动模式向转动模式转变(见表6和 表7).

4.结 论

基于微观 sdIBM-2 方案和实验单粒子能量值, 在最普遍的哈密顿量下,用两组不同的核子-核子等 [1] Regan P H , Beausang C W , Zarmfir N V , Casten R F , Jing-ye Zhang , Yamamoto A D , Caprio M A , Gurdal G , Hecht C , Hutter C , Krucken R , Langdown S D , Meyer D A , Ressler J J 2003 *Phys. Rev. Lett.* **90** 152501

- [2] Shi Z Y, Tong H, Shi Z Y, Zhang C M, Zhao X Z, Ni S Y 2007 Acta Phys. Sin. 56 1329 (in Chinese] 石筑一、童 红、石筑 亚、张春梅、赵行知、倪绍勇 2007 物理学报 56 1329]
- [3] Yang Z S , Liu Y , Qi H 1984 Nucl. Phys. A 421 297
- [4] Sang JP, Liu Y 1994 High Energy Phys. & Nucl. Phys. 18 407 (in Chinese) 桑建平,刘庸 1994 高能物理与核物理 18 407]
- [5] Shi Z Y , Liu Y , Sang J P 2000 Chin . Phys. 9 99
- [6] Shi Z Y , Zhao X Z , Tong H 2003 Chin . Phys . 12 732

式的中立状态.2)态12⁺ 是14⁺ 态的发生退耦合辐 射光子相变后的中间状态.3)从基态起直到20⁺ 态 的 yrast 态全都是集体态,而以后出现的第一个拆对 顺排态很可能就是中子的(h_{11/2})⁺ 两粒子态.4)这种 结构的过渡不是很剧烈的,而是在过渡区中通过价 核子轨道之间耦合的强弱变化,改变玻色子结构常 数,在刚形成的新真空态中实现的.

- [7] Zhang Z J, Shi Z Y, Liu Y, Sang J P 1998 High Energy Phys & Nucl Phys. 22 169 (in Chinese] 张战军、石筑一、刘 庸、桑建 平 1998 高能物理与核物理 22 169]
- [8] Shi Z Y , Liu Y , Sang J P 1999 Nuclear Science and Techniques 10 235
- [9] Sarkar S , Sarkar M S 2001 Phys. Rev. C 64 014312
- [10] Chu S Y, Nordberg H, Firestone R B, Ekström L P 2005 Isotope Explorer 3.0 //ie.lbl.gov/toi.htm
- [11] Zhu S J , Gan C Y , Hamilton J H et al 1998 Chin . Phys. Lett. 15 793
- [12] Yang L M, Zhu S J, Li K, Hamilton J H et al 2001 Chin. Phys. Lett. 18 24

Shi Zhu-Yi¹⁽²⁾[†] Zhang Chun-Mei¹) Tong Hong²) Zhao Xing-Zhi²) Ni Shao-Yong²)

1 X Department of Base Science , The Second Northwest Institute for Minority , Yinchuan 750021 , China)

2 🕽 Department of Physics , Guizhou Institute for Nationalities , Guiyang 550025 , China)

(Received 6 March 2007; revised manuscript received 10 April 2007)

Abstract

Based on the microscopic sdIBM-2 approach and the single-particle energies from experiment, with the use of the most general Hamiltonian, the vibrational band and rotational band of 102 Ru nucleus as well as its evolutional process are reproduced very well by two parameters of nucleon-nucleon effective interactions, respectively. Microscopic and phenomenological study identifies that :1) the coexisting region of two excitation models are located in the interval between the state 8_1^+ and state 12_1^+ (which is an interval with $E_x = 2.50-4.00 \text{ MeV}$), the 8_1^+ state is a state predominant in the vibrational model, the 12_1^+ state is one predominant in the rotational model, while the state 10_1^+ is neutral relative to two models ; 2) the 12_1^+ state is a medial state decoupled from the 14_1^+ state to the 10_1^+ state as well released photons ; 3) the yrast states from the ground-state up to the 20_1^+ state are collective states, hereafter the first breaking up and aligning state may be a neutron two-particle-state in the intruder orbits $h_{11/2}$; 4) this structure evolution is not very furious, but achieved softly by the boson structure constant changing unobviously in the coexisting region.

Keywords : microscopic sdIBM-2 approach , shape evolution , boson , $^{102}{\rm Ru}$ nucleus PACC : 2110R , 2160E , 2320L

^{*} Project supported by the Science Foundation of the Education Department of Guizhou Province China (Grant No. Qian Jiao Ke 2004218) and (Grant No. Qian Jiao Ke 2006318).

[†] E-mail : Shizhuyi@vip.sina.com.cn