第一性原理对 XMg_n(X=B,Al,n=1—12)团簇的 几何结构和电子性质的研究

田付阳¹) 王渊旭^{1);} 井 群¹) 田 凯¹) 罗有华^{1,2})

1)河南大学计算材料科学研究所,河南大学物理与电子学院,开封 475004)
2)华东理工大学理学院,上海 200237)
(2007年6月20日收到2007年7月30日收到修改稿)

利用密度泛函理论(DFT)的 B3PW91 方法,在 6-311G 水平上对 BMg_n , $AIMg_n$ (n = 1—12)团簇进行了几何结构优化和电子性质分析.发现随着原子个数的增加, B 原子进入镁团簇的内部,而 $AIMg_n$ 和镁团簇有相似的生长模式. B,AI 原子的掺杂均能使镁团簇的平均结合能增大 稳定性增强, BMg_n , $AIMg_n$ (n = 1—12)团簇的稳定性主要由几何结构决定.由于 B,AI 原子的诱导,主体镁团簇的 3p 轨道的自然键轨道(NBO)电荷布居有了较大改变. $AIMg_n$ 团簇的 Mg 原子 3p 轨道 NBO 电荷布居的平均值的峰值与 $AIMg_n$ 团簇的稳定性一致.

关键词:密度泛函理论,最低能量结构,BMg,和AlMg,团簇,NBO电荷布居 PACC:3640,6146,3520

1.引 言

近 20 多年来 团簇以其独特的物理和化学性质 及潜在的应用价值而引起了人们的广泛兴趣 特别 是对金属团簇作了大量深入地研究^{1-10]}.理论上提 出的凝胶模型(JM)对一些金属团簇和掺杂金属团 簇的幻数结构和电子性质都作出了成功地解 释^[6-10]. 关于镁团簇, Delaly 等人虽发现镁团簇的 凝胶模型的幻数结构^[11,12],但理论和实验上也发现 了非壳层结构幻数^[13,14], Diederich 等人认为这主要 是由于最高占据分子轨道上电子位的交叉影响^{15]}. 对于镁团簇的非金属性到金属性的研究 "Gong 等人 从最近邻键长、p轨道价电子特征等不同角度作了 报道^{16-20]}. Thomas 等人应用 s-p 形成的能隙说明了 实验上观察到金属性^[21],特别是 Acioli 等人通过研 究带一个负电的 $M_{g_n}(n = 2-22)$ 团簇及中性团簇的 3p 轨道电荷分布特征,很好地解释了光电谱实验上 发现的镁团簇的金属性^[21].因此,镁团簇 3p 轨道 上的电子结构特点,对理解 Mg 团簇的结构和性质 至关重要.而对 3p 轨道的系统研究相对较少. Kumar 等人发现 p 轨道电荷的分布与平均最近距离 键长、sp 杂化有密切关系^[11], Bauschlicher 等人研究 了碱土金属的 ns 到 np 轨道的电荷扩展,而导致杂 化在碱土金属的成键中起了主要作用^[23 24].自然键 轨道(NBO)布居分析表明对于碱土金属(Be₃, Mg₃ 和 Ca₃)有较大 p 态分布^[25].

随着团簇研究的逐步深入, 团簇的掺杂对主体 团簇的结构和电子性质的影响备受人们关注, 但镁 团簇的掺杂研究很少, 仅文献[8,26]中有关于 Al₄Mg₄ 团簇性质的报道,另外, 陈等人对 Mg_mB_n(m=1,2,n=1—4)团簇的结构和电子性质作了研 究^[27].由于 B, Mg 原子的电负性相差较大, 而 Al 原 子和 Mg 原子的性质又比较相近, 同时,这样的掺杂 使团簇的电子数为奇数, 因此, B, Al 原子的掺杂将 对主体镁团簇几何结构和电子性质, 特别对镁团簇 的电子结构和 p 轨道的电荷分布情况有较大的影 响.本文的研究将有助于理解 BMg_n, AlMg_n 和镁团 簇结构变化规律和电子性质, 特别是镁团簇的 p 轨 道电荷特征.

2. 理论方法

寻找团簇的几何结构和确定团簇最低能量结构

[†] E-mail:wangyx@henu.edu.cn

一直是团簇科学界关注的重要问题, 在团簇的几何 结构优化中,初始构型的选取是能否找到势能面上 局域或全局最小值的关键. 对 $M_{g_{n+1}}(n = 2-12)$ 团 簇 在前人研究的基础上 我们充分考虑了不同的几 何结构作为初始构型,对于掺杂团簇,随着原子个 数的增加 ,可能的几何构型会快速增多 ,这使初始构 型的选取更加困难,本文所采用的方法是在充分考 虑镁团簇的结构 即选取多种不同构型的基础上 通 过对镁团簇适当的位置添加掺杂的原子和 B ,Al 原 子对镁团簇的替代,以及独立构建 BMg,, AlMg,团 簇的几何构型,来确定初始结构,然后应用密度泛 函理论 DFT 的 BPW91 方法 在全电子 6-311G 基组 的水平上对纯镁团簇、 BMg_n 和 $AlMg_n$ (n = 1-12)团 簇作了几何结构优化和频率分析.对 Mg, 二聚体计 算的键长为 0.368 nm、平均结合能为 0.030 eV 这与 实验值 0.389 nm .0.025 eV 符合得较好^{28]}. 对于 BMg的二聚体应用此方法得到了 B—Mg 的键长 0.245 nm 和平均结合能 0.564eV 与文献 29 冲 B-Mg中的 0.243 nm 和 0.504 eV 基本符合. 二聚体 AlMg的键长为 0.297nm、振动频率为 180.3 cm⁻¹与 相应的 0.295 nm ,174.1 cm⁻¹符合较好^{29]}. 所有计 算均在 Gaussian 03^[30]程序上进行.优化过程的能量 收敛标准为 1.00×10⁻⁵ eV.

3. 结果与讨论

3.1. 几何结构

图 1 列出了镁团簇的最低能量结构及 BMg_n , AlM g_n 团簇的最低能量结构和亚稳态结构,其中,半 径较大,颜色较浅的小球表示镁原子,半径较小,颜 色较浅的小球表示掺杂的原子, BMg_n -a, AlM g_n -a 分 别代表 BMg_n , AlM g_n 团簇的最低能量结构,n + 1 - b代表相应的亚稳态结构.

Mg₃ 团簇的最低能量结构是键长为 0.338 nm 的 等边三角形.BMg₂ 团簇是 Mg—B—Mg 为 87.08°的 等腰三角形,B—Mg 键长为 0.231 nm,与文献 27] 报道的 B—Mg 键长 0.217 nm 略长一些.BMg₂ 的次 能量结构为线型结构 ,B 原子位于中间 ,高出最低能 量结构 0.327 eV. AlMg₂ 的最低能量结构是键长为 0.282 nm, Mg—Al—Mg 为 69.58°的等腰三角形. BMg₂ ,AlMg₂ 为等腰三角形 ,主要是由于 B ,Mg ,Al 原子的电负性(分别为2.04,1.2,1.5)不同造成的.

 M_{g_4} 团簇是键长为 0.315 nm 的正四面体结构, BM_{g3} 的键长为 0.228 nm, Mg-B-Mg 为 86.87°的三角 锥构型, AlMg3 的键长为 0.289 nm, Mg—Al—Mg 为 64.54°的接近于正四面体结构. 其亚稳态 4-*b* 能量 高出最低能量结构 0.494 eV, 是 C_{2v} 对称性的平面 Y 型结构.

 M_{g_s} 团簇的最低能量结构为三角双锥. BM_{g_4} 的 最低能量结构可视为在 BM_{g_3} 团簇上戴帽一个 M_{g} 原子而形成的,此生长方式可应用键价优选方法很 好地说明^[31]. AIM_{g_4} 团簇有相似的结构,具有 C_{3v} 对称性. BM_{g_4} 团簇的亚稳态结构是在 BM_{g_3} 结构上 的 M_{g} — M_{g} 键上加一个 M_{g} 原子而构成的,能量比最 低能量结构高出 0.912 eV, AIM_{g_4} 的亚稳态结构是 具有 C_{2v} 对称性的平面结构,能量比 AIM_{g_4} -a 高了 1.26 eV.

由两个共边的三角锥结合而成的 Mg_6 团簇的最低能量结构,具有 C_{2e} 对称性. AlMgs 团簇的最低能量结构则是取代 Mg_6 团簇的一个 Mg 原子而构成的. 而 BMgs 团簇的最低能量结构为类四角锥且 B 原子位于底四边形中心偏上的位置,具有 C_1 结构对称性. 最近邻 B—Mg 键长为 0.231 nm. BMgs 和 AlMgs 团簇的亚稳态结构,分别是在 5-b 结构的 B 原子上加一个 Mg 原子和 AlMgs-a 结构的 Al 原子上双戴帽形成的,能量分别比相应的基态结构高出 0.184 eV 和 0.083 eV.

 M_{g_7} 团簇为五角双锥. 对于 BM_{g_6} ,我们得到了 结构相近两种构型,能量仅相差 0.03 eV. BM_{g_6} -*a*, 虽为最低能量结构,但结构较为松散. 位于 B 原子 所在的五边形平面外的二个 Mg 原子(5,7)与 B 原 子的键长分别为 0.225 nm 和 0.218 nm,具有 C_s 对 称性,而亚稳态结构对称性较高(C_{2v})相应的这二 个键长均为 0.223 nm. AlM_{g_6} -*a* 是替代 M_{g_7} 结构中 的一个 Mg 原子而形成的(非锥顶的二个 Mg 原子). 能量比 AlM_{g_6} -*a* 高出 0.159 eV 的次能量结构 7-*b*, 是由双戴帽的三角双锥构成的.

在 Mg7 团簇上戴帽一个 Mg 原子构成了 Mg8 的 最低能量结构 ,AlMg7 团簇的结构与其类似 ,即替代 Mg8 中配位数较多的 Mg 原子构成最低能量结构 , 替代其他位置则形成的亚稳态结构.最低能量结构 AlMg7-a 比亚稳态低了 0.108 eV ,而 BMg7 团簇的最

图 1 镁团簇 ,XMg_n 团簇最低能量结构和 XMg_n 团簇的亚稳态结构及其对称性

低能量结构具有 C_s 对称性 ,即五角双锥外的 M_g 原 子位于 B 原子和锥顶、锥底的 M_g 原子所在的平面 内.在 BM_{g_o} 结构基础上生成的次能量结构 7-b 比 最低能量结构仅高出 0.054 eV.

Mg。 团簇的最低能量结构为三戴帽的三棱柱, 具有 D_{3h}对称性.BMg。 团簇是在 BMg, 的最低能量 结构基础上生成的, AIMg。 团簇可视为替代 Mg。 团 簇中三棱柱上的一个 Mg 原子而构成的,它们的次 能量结构均为替代 Mg。 团簇侧面上的原子而形成 的,能量分别高于最低能量结构 0.083 eV, 0.08 eV.

在 n = 10—12 时 $M_{g_{n+1}}$ 团簇的最低能量结构可 视为在 M_{g_9} 团簇的不同位置增加 M_g 原子而构成 的. BMg, 团簇的最低能量结构是在 BMg, 团簇的次 能量结构上增加原子形成的,其次能量结构则是在 BMg, 团簇的最低能量结构基础上生成的,能量高出 0.856 eV. 本中所列 AlMg, 团簇的几何结构均可视 为在 AlMg, 团簇结构的基础上生成的,最低能量结 构是在 Al 原子所在的三棱柱的上底面增加一个 Mg 原子,而次能量结构是在下底面加一个 Mg 原子而 构成的,能量相差 0.175 eV. 掺杂团簇 BMg,(n =10—12)的几何结构也是在 BMg, 团簇的基础上生成 的 随着原子个数增加, B 原子逐渐陷入三棱柱内, 次能量结构 11-*b*, 12-*b*, 13-*b*分别比最低能量高了 0.179 eV, 0.323 eV, 0.449 eV. 在 AlMg, 团簇上增 加一个 M_g 原子构成 $AlM_{g_{10}}$,能量高于最低能量结构 0.160 eV. 12-b 比 $AlM_{g_{11}}$ -a 高了 0.049 eV,可看作是 替代 $M_{g_{12}}$ 团簇的一个 M_g 原子而形成 ; $AlM_{g_{12}}$ 亚稳态 结构主要是替代 $M_{g_{13}}$ 团簇的一个 M_g 原子而形 成的.

总之 ,B 原子的掺杂对主体团簇 Mg, 的几何结 构影响较大 ,这是由于二者的电负性相差较大 ,随着 原子个数的增加 ,B 原子被 Mg 团簇包围.而 Al 原 子的掺杂则主要是替代相应的纯镁团簇的不同原子 或戴帽而构成的.

3.2. XMg, 团簇的稳定性

图 2 给出了团簇的平均结合能,其定义为 $E_{h} =$ $[E(XMg_n) - nE(Mg) - E(X)](n + 1), 其中,$ E(XMg_n) 表示 BMg_n 或 AlMg_n 团簇的能量, E(Mg) 指 Mg 原子的能量, 随着原子个数的增加, 镁团簇的 平均结合能增大,其中,在 n = 4,10 时出现较大值, 满足凝胶模型的壳层结构(8,20). AlMg, 团簇的平 均结合能在 n = 1-3 时快速增大 ,AlMg, 时出现峰 值, n = 4-12 时缓慢增加, 与我们以前报道的带一 个负电的镁团簇的平均结合能变化趋势较为相 似^[32] 这主要是由于这两类团簇的电子数相等,Al, Mg 原子的性质较为相近.而 BMg, 团簇的平均结合 能与前二者的平均结合能的变化情况不同, BMg, 团簇的平均结合能在n=3时为最大值 随着原子个 数的增加,平均结合能减小,从 BMg。开始平均结合 能增大 ,BMga 时出现峰值. 与 Al 主体团簇中掺杂一 个氮原子的平均结合能变化趋势相似[33].比较发 现 B, AI 原子的掺杂均使镁团簇的平均结合能增 大 稳定性增强. 其中 B 原子的掺杂最为明显.

图 2 镁团簇、 BMg_n 和 $AlMg_n$ 团簇的平均结合能

二阶能量差分和劈裂能均可用来表征团簇的相 对稳定性.其定义式为

 $\Delta_2 E = E(XMg_{n+1}) + E(XMg_{n-1}) - 2E(XMg_n),$

 $D(n_{n} - 1) = E(XMg_{n-1}) + E(Mg) - E(XMg_{n}),$ 式中 $E(XMg_{n})$ 表示的是 BMg_{n} 或 BMg_{n} 团簇的能量, 而 E(Mg)代表 Mg 原子的能量.

金属团簇的相对稳定性主要由几何结构和电子 壳层结构决定. 由于 B, Al 原子的掺杂,使镁团簇 的电子数为奇数,并不满足所谓的电子壳层结构. 由图 3,4 知, BMg, 团簇的二阶能量差在 n = 4,9时为峰值,而劈裂能在n=3,9时为峰值,由劈裂能 的定义知 劈裂能所表征的稳定性与结构有很大的 关系.例如 ,BMg。 团簇的结构比较松散 ,相对应的 劈裂能也较小.结合上面结构的讨论,BMg,团簇是 构成 BMg 团簇的基础.显然 从 BMg 团簇中分解 出一个镁原子相对更为容易. BMg。 团簇几何构型 具有较高的对称性 尽管随着原子个数的增多 B 原 子进入主体镁团簇的内部 ,但 BMg。 的最低能量结 构仍可视为 BMg,(n = 10-12)团簇的生长基础,且 具有较高的对称性. AlMg, 团簇的二阶能量差分与 劈裂能对应的比较一致 均在 n = 3, 6, 8 时出现了 相对峰值. 这主要是由于它们的结构有较高的对称 性,又是 AlMg, 团簇的几何构型的生长基础.因此, 几何结构对 BMg, 和 AlMg, 团簇的相对稳定性起了 重要作用.

图 3 BMg_n 和 $AlMg_n$ 团簇的二阶能量差分

3.3. XMg, 团簇的自然键轨道(NBO)分析

电荷布居分析是理解成键性质的关键.我们用 自然键轨道(natural bond orbital, NBO)方法分析

图 4 BMg_n 和 $AlMg_n$ 团簇的劈裂能

BPW91/6-311G 优化后 BMg_n 和 $AlMg_n$ 团簇的电荷布 居特性和部分成键性质.

图 5,6列出来了团簇总的 NBO 电荷转移和 B 原子 2s,2p轨道、Al 原子 3s,3p轨道上 NBO 电荷分 布情况 2s,3s轨道上 NBO 电荷基本没有变化,均 在 2 左右.从 Mg 原子转移到 B 原子和 Al 原子的电 荷主要分布在 B 原子的 2p和 Al 原子的 3p轨道上, 总的电荷转移与 p轨道上的电荷是一致的.BMg_n 团 簇电荷的转移随着原子个数的增加,NBO 电荷转移 增多,在 n = 6处为谷值,这主要是由于 BMg₆ 团簇 的结构杂化较弱.尽管 AlMg_n 团簇的电荷转移的趋 势是增大的,但并不是单调增大的,在 n = 4,10 时 出现峰值.

图 5 BMg_n 团簇的 NBO 电荷分布和转移

由于镁团簇较为特殊的电子结构,在二聚体,甚至小团簇,均表现了范氏力的结合^[15].由图7可以 看到,在原子个数少时,镁团簇的3p轨道上的电荷

图 6 $AIMg_n$ 团簇的 NBO 电荷分布和转移

分布很少 但 AI 原子的掺杂诱导了镁团簇的电荷向 p轨道的转移. 与 AlMgn 团簇相比,在 $n \leq 8$ 时,纯 Mg 团簇的 3p 轨道上 NBO 电荷的分布小于 Al 原子 掺杂后的分布,仅在n = 4时略大于AlMg,团簇中 Mg的 3p 轨道的 NBO 电荷分布. 对于纯镁团簇,从 n = 6开始, 3p轨道上的平均自然键轨道(NBO)电 荷分布快速增加,并出现了 n = 9 时为峰值, 与文献 的报道一致^{11,22]}. 而 n > 8 时,纯镁团簇 3p 轨道的 NBO 电荷比 AlMg, 团簇大,这主要是由于从n = 8开始 "Mg 原子向 Al 原子的电荷转移快速增加(如图 6). BMg。团簇相对于 AlMg。 团簇 , Mg 原子的平均 3p 轨道上的 NBO 电荷值要小,这是由于 Mg 原子转 移给 B 原子的电荷较多的缘故. 另外 ,AlMg, 团簇 中的镁原子的 3p 轨道上的平均自然键轨道(NBO) 电荷分布在 n = 3, 6, 8 时有相对较大值, 与 AlMg, 团簇的稳定性相一致.

图 7 BMg_n 和 AlMg_n 及镁团簇的 Mg 原子 3p 轨道上 NBO 电荷 平均值分布

在团簇的部分自然键轨道(图 8)中,HOMO代 表最高占据轨道,HOMO-1表示次最高占据轨道, LUMO表示最低未占据轨道.BMg。团簇中 B 原子的 p 轨道与 Mg 原子的 s 轨道发生了 sp 杂化,这也是 BMg。团簇的最低能量结构形成的顶角较大的原因. 而 AIMg。的 HOMO 主要是以 p 轨道键合形成的σ轨 道,Mg4 团簇的 LUMO 与其类似,也表现为σ轨道的 特点.Mg4 团簇的电子数满足壳层结构,但 NBO 轨 道上并没有出现离域化的特征(Diederich 等人认为 电子壳层结构是由离域化的电子形成金属键结合而 形成的^[15])这也可能是实验上并没有发现 Mg₄ 团 簇为幻数的原因^[14].为了更好地说明镁团簇的 3p 轨道的特点 图 8 也列出了 Mg₉ 与 Mg₁₀ 团簇的 NBO 轨道分布. Mg₉ 与 Mg₁₀ 团簇的 HOMO 轨道已经有 σ 轨道的特征 Mg₉ 团簇的 LUMO 则以 sp 杂化的 π 轨 道键合而成 , Mg₁₀ 团簇的 LUMO 则由 sp 杂化的 π 轨

图 8 部分团簇的 NBO 轨道图

道以及 s 轨道形成的 σ 轨道所组成.从 HOMO 和 LUMO上,进一步说明了 Mg,团簇是 Mg₀团簇的生 长基础.

4. 结 论

本文应用密度泛函理论(DFT)的 B3PW91 方法, 在 6-311G 基组的水平上,对 BMg_n和 AlMg_n(n = 1— 12)团簇的几何构型,平均结合能,二阶能量差分, 劈裂能和自然键轨道(NBO)布居等进行了详细地讨 论,并与纯镁团簇作了比较,结果表明:

1. 随着原子个数的增加 ,B 原子进入镁团簇的 内部 ,而 AlMg, 团簇的基态结构则主要是由替代或 戴帽 Mg 原子而构成的.

2. B ,Al 原子的掺杂均能使 M_{g_n} 团簇的平均结 合能增大,稳定性增强.发现 $BM_{g_n}(n = 1-12)$ 团 簇在 n = 9时相对比较稳定,对于 AIM_{g_n} 团簇 ,则 是 AIM_{g_n} , AIM_{g_n} , AIM_{g_n} 比较稳定.这主要是由于它 们是 BM_{g_n} , $AIM_{g_n}(n = 1-12)$ 团簇的生长基础,并 具有较高的对称性.

3. NBO 电荷分析表明 B ,AI 原子的诱导 ,使 BMg_n 在 n < 4 时 , AlMg_n 团簇在 n < 8 时 ,掺杂镁团 簇中镁原子 3p 轨道上的 NBO 电荷分布大于纯镁团 簇.同时 ,AlMg_n 团簇的 Mg 原子 3p 轨道上 NBO 电 荷布居的平均值的峰值与 AlMg_n 团簇的稳定性相 一致.

- [1] Wang G H 2003 Clusters Physics (Shanghai : Shanghai Scientific and Technical Publishers) (in Chinese) p87-p92 [王广厚 2003 团簇 物理学(上海:上海科技出版社)第 87—92 页]
- [2] Knight W D , Clemenger K , Heer W A , Saunders W A , Chou M Y , Cohen M L 1984 Phys. Rev. Lett. 52 2141
- [3] Herlert A, Krückeberg S, Schweikhard L, Vogel M, Walther C 1999 Phys. Scr. T 80 200
- [4] Ekardt W 1999 Metal Clusters (New York : Wiley)

- [5] Lyalin A G , Semenov S K , Solov 'yov A V , Cherepkov N A , Greiner W 2000 J. Phys. B 33 3653
- [6] Matveentsev A, Lyalin A, Il. Solov 'yov A, Solov 'yov A V, Greiner W 2003 Int. J. Mod Phys. E 12 81
- [7] Meiwes-Broer K H 1999 Meal Clusters at Surfaces Structure, Quantum Properties, Physical Chemistry Springer Series in Cluster Physics (Berlin : Springer)
- [8] Chacko S , Deshpande M , Kanhere D G 2001 Phys . Rev . B 64

155409

3期

- [9] Zope R R, Blundell S A 2001 J. Chem. Phys. 115 1381578
- [10] Zope R R , Blundell S A , Guet C , Baruah T , Kanhere D G 2001 Phys. Rev. A 63 043202
- [11] Kumar V, Car R 1991 Phys. Rev. B 44 8243
- [12] Delaly P, Ballone P, Buttet J 1992 Phys. Rev. B 45 3838
- [13] Lyalin A , Solov' yov Ilia A , Slov' yov A V , Greiner W 2003 Phys . Rev. A 67 063203
- [14] Diederich Th, Döppner T, Braune J, Tiggesbäumker J, Meiwes-Broer K H 2001 Phys. Rev. Lett. 86 4807
- [15] Diederich Th, Döppner T, Fennel Th, Tiggesbäumaker J, Meiwes-Broer K H 2005 Phys. Rev. A 72 023203
- [16] Gong X G , Zheng Q Q , He Y Z 1993 Phys. Lett. A 181 459
- [17] Eriksson L A 1995 J. Chem. Phys. 103 1050
- [18] Davidson E R , Frey R F 1997 J. Chem. Phys. 106 2331
- [19] Köhn A, Weind F, Alrichs R 2001 Phys. Chem. Chem. Phys. 3 711
- [20] Akola J, Rytköenen K, Manninen M 2001 Eur. Phys. J. D 16 21
- [21] Thomas O C , Zheng W , Xu S , Bowen K H 2002 Phys. Rev. Lett. 89 213403
- [22] Acioli P H , Jellinek J 2002 Phys. Rev. Lett. 89 213402
- [23] Bauschlicher C W, Bagus P S, Cox B N 1982 J. Chem. Phys. 77

4032

- [24] Walch S P , Bauschlicher C W 1985 J. Chem. Phys. 83 5735
- [25] Kaplan Ilya G , Roszak Szczepan , Leszczynski Jerzy 2000 J. Chem . Phys. 113 30333
- [26] Chiranjib M , Kulshreshtha S K 2004 Phys. Rev. B 69 075419
- [27] Chen Y H, Zhang C R, Ma J 2005 Acta Phys. Sin. 55 171 (in Chinese] 陈玉红、张材荣、马 军 2005 物理学报 55 171]
- [28] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
- [29] Ruette F, Sanchez M, Anez R, Bermudez A, Sierraalta A 2005 THEOCHEM 729 19
- [30] Gaussian 03, Revision C.02, Frisch M J, Trucks G W, Schlegel H B et al 2004
- [31] Yuan Z, He C L, Wang X L, Liu H T, Li J M 2005 Acta Phys. Sin. 54 628 (in Chinese] 袁 、何春龙、王晓路、刘海涛、李 家明 2005 物理学报 54 628]
- [32] Tian F Y, Luo Y H 2006 At. Mol. Phys. (accepted)(in Chinese]田付阳、罗有华 2006 原子与分子物理学报 [已接受)
- [33] Wang B , Zhao J , Shi D , Chen X , Wang G H 2005 Phys. Rev. A 72 023204

Density functional theory study of structures and electronic properties of $XMg_n(X = B, AI, n = 1-12)$ clusters

Tian Fu-Yang¹) Wang Yuan-Xu¹[†] Jing Qun¹) Tian Kai¹) Luo You-Hua¹⁽²⁾

1) Institute of Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China)

2 € School of Science , East China University of Science and Technology , Shanghai 200237 , China)

(Received 20 June 2007; revised manuscript received 30 July 2007)

Abstract

Geometry optimization and electronic properties of BMg_n , $AIMg_n$ (n = 1-12) clusters have been studied based on density functional theory (DFT). With the increase of the number of Mg atoms, the boron atom gradually comes into the interior of the Mg_n cluster. However, the growth patterns of $AIMg_n$ clusters are similar to that of magnesium clusters. Doping of a B or Al atom makes the average binding energy higher and the stability enhanced. The atomic configuration plays a dominant role in the stability of B, Al atom doped magnesium clusters. The induction of B, Al atoms makes the NBO charge population of host magnesium clusters obviously altered. The peak of the average NBO charges population of 3p orbital of Mg atoms in $AIMg_n$ clusters is in agreement with the stability of $AIMg_n$ (n = 1-12) clusters.

Keywords : density-functional theory, the lowest energy-structure, BMg_n and $AlMg_n$ clusters, NBO charge population **PACC** : 3640, 6146, 3520

[†] E-mail : wangyx@henu.edu.cn