$Nd_2Fe_{14}B$ 的价电子结构分析和磁性计算*

吴文霞 郭永权 李安华 李卫

(钢铁研究总院功能材料研究所 北京 100081) (2007 年 8 月 13 日收到 2007 年 11 月 15 日收到修改稿)

应用固体与分子经验电子理论计算了 Nd₂ Fe₁₄ B 的价电子结构、磁矩和居里温度,计算结果与实验值相符.计算 表明 :该合金的磁性与 3d 磁电子数成正比.从 F(*c*)晶位到 F(*k*₂)晶位磁矩增加,其机理源于价电子、哑对电子和 3d 磁电子之间的转化,有 78%的哑对电子和 18%的 3d 共价电子转化成了磁电子.居里温度和磁矩与 Fe 原子配位 数成正比,与加权等同键数 f^c 成反比,Nd 原子和 B 原子通过调节原子间键距影响 Nd₂ Fe₁₄ B 合金的居里温度.

关键词:Nd₂Fe₁₄B,价电子结构,居里温度 PACC:7550B,7115

1.引 言

固体与分子经验电子理论(EET)是余瑞璜¹¹在 研究能带论和 Pauling^[2]的金属键理论基础上,通过 对 78 种元素和由它们形成的化合物和合金的物理、 化学性能的研究而建立的理论模型.EET 的主要内 容包括四个基本假设和一种键距差(BLD)分析方 法.自该理论发表后,很多材料工作者利用该理论计 算了材料的一些物理性质,涉及熔点、沸点、结合能、 磁矩、超导转变温度^[3—5],应用最多的是计算金属结 构材料的力学性能,而在金属功能材料方面研究较 少.本文应用 EET 研究了 Nd₂Fe₁₄ B 晶体的价电子结 构和磁性能.

2. 经验电子理论简介

EET 的核心内容是四个基本假设和 BLD 方 法^[6] 认为固体和分子中原子状态由原子的价态特 征和尺寸特征两个因素表征.一个确定的原子状 态意即该原子具有确定的共价电子数 n_e 、晶格电子 数 n_1 、磁电子数 m_{3d} 、哑对电子数 n_d 和单键半距 R(1). EET 对于分子和固体中的原子状态普遍采用 双态杂化方法进行描述,双态即杂化不连续的 h 态 和 t 态,用 σ 表示量子态数. BLD 方法计算的前提条 件是分子或晶体的结构已知 ;基本思想是同一体系 内所有共价键连接的原子之间的键距都遵守键距 公式

 $D_{uv}(n_{\alpha}) = R_{u}(1) + R_{v}(1) - \beta \log n_{\alpha}$,

式中 u 和 v 表示成键的原子 n_a 指第 α 键上的共价 电子对数 β 是一参数 ,它的取值依赖于所讨论的分 子或晶体中最强键上的 n_a 值.一个结构单元内全部 原子所贡献的全部共价电子数应与该结构单元内全 部共价键上所有共价电子数之和相等.用理论键长 与实验键长之差 $|\Delta D| < 0.005$ nm 和物理性能的 相对误差低于 10% 同时作为合理量子态的判据.

3. 价电子结构分析

3.1. Nd₂Fe₁₄B的晶体结构

Nd₂ Fe₁₄ B 晶体属四方晶系,空间群为 $P4_2/mnm$, 点阵常数 a = 0.880 nm ,c = 1.220 nm.在1个晶胞内 有4个 Nd₂ Fe₁₄ B 分子,即 68个原子^[7]. Nd₂ Fe₁₄ B 的 结构式为 Nd(f)Nd(g)4Fe(k_1)4Fe(k_2)2Fe(j_1)2Fe (j_2)Fe(e)Fe(c)E(g).从结构式可知,Fe 原子占据 6 个不同的晶位 稀土原子 Nd 占据 2 个不同的晶位, B 原子占据 1 个晶位.各原子的位置坐标见表 1,晶 体结构见图 1.

^{*}国家高技术研究发展计划(批准号 2007AA03Z458)和北京市科技研究计划重大项目(批准号 :D0406002000091)资助的课题.

[†] E-mail ;yqguo100@yahoo.com.cn

表	表 1 $\operatorname{Nd_2Fe_{14}B}$ 晶体中各原子占位坐标							
原子	x	У	z					
Nd($4f$)	0.268	0.268	0.000					
Nd($4g$)	0.140	-0.140	0.000					
Fe($16k_1$)	0.223	0.567	0.127					
Fe($16k_2$)	0.037	0.360	0.176					
Fe($8j_1$)	0.098	0.098	0.204					
Fe(8j2)	0.317	0.317	0.246					
Fe(4 <i>e</i>)	0.500	0.500	0.114					
Fe(4c)	0.000	0.500	0.000					
B(4g)	0.371	-0.371	0.000					

3.2. 实验键距与等同键数

本工作中选用的结构单元为一个结构式.根据 原子间键距公式

 $D_{wv} = \{x_u - x_v\}a^2 + (y_u - y_v)b^2 + (z_u - z_v)c^2\}^2$ 可计算出各键的实验键距值.本工作的实验键距和 原子配位数是依据文献[7]提供的结构参数(空间 群、点阵常数和原子占位)应用 Diamond 软件测量获 得,共计测得 41 种不同的键,不同于张瑞林等^[8]前 期报道的 44 种键.由等同键数的概念,第 α 键的等 同键数^[6]

$$I_{\alpha} = I_{\rm M} I_{\rm S} I_{\rm K}$$

其中 I_{M} 表示在一个分子或一个晶体结构单元内包 含的参考原子数; I_{s} 表示对一个参考原子所形成 α

图 1 $Nd_2Fe_{14}B$ 的晶体结构

键的等同键数即配位数;1_K为一参数,当成键的两 个原子为同类原子时其值为1,当成键的两个原子 为不同类原子时其值为2.同类原子指的是处于同 一种等效位置上的同一种元素的原子.据此得出的 实验键距和等同键数的结果列于表2.

表 2 $Nd_2Fe_{14}B$ 的实验键距和等同键数

键序	成键原子	实验键距	等同键数	独向	式独国フ	实验键距	等同键数	
		$D(n_{\alpha})$ mm		進序	成 键原士	$D(n_{\alpha})$ mm		
1	B(g)—Fe(k_1)	0.210	8	22	Nd(f)—Fe(k_2)	0.306	8	
2	𝔄 g)—𝑘(e)	0.212	4	23	Nd(f)—Fe(j_2)	0.307	4	
3	Fe(j_1)—Fe(k_2)	0.239	8	24	Nd(f)—Fe(k_1)	0.308	8	
4	Fe(j_1)—Fe(j_1)	0.244	2	25	Nd(g)—Fe(k_1)	0.309	8	
5	Fe(k_1)—Fe(k_2)	0.246	8	26	Fe(k_1)—Fe(k_1)	0.311	4	
6	Fe(c)—Fe(k_2)	0.250	8	27	Nd(f)—Fe(c)	0.312	4	
7	Fe(e)—Fe(k_1)	0.251	8	28	Nd(g)—Fe(j_2)	0.314	4	
8	Fe(k_1)—Fe(k_2)	0.252	16	29	Nd(f)—Fe(e)	0.321	4	
9	Fe(e)—Fe(j_1)	0.253	4	30	B(g)—B(g)	0.321	1	
10	Fe(k_2)—Fe(k_2)	0.256	12	31	Nd(f)—Fe(j_1)	0.327	4	
11	Fe(c)—Fe(k_1)	0.257	8	32	Nd(g)—Fe(j_1)	0.328	8	
12	Fe(j_1)—Fe(k_1)	0.260	8	33	Nd(g)—Fe(k_2)	0.328	8	
13	Fe(k_1)—Fe(k_1)	0.260	4	34	$B(g) \rightarrow Nd(f)$	0.330	4	
14	Fe(j_1)—Fe(j_2)	0.265	8	35	Nd(g)—Fe(c)	0.340	4	
15	Fe(j_2)—Fe(k_2)	0.266	8	36	𝔄 g)—𝔄 𝔄)	0.346	4	
16	Fe(j_2)—Fe(k_1)	0.270	8	37	Nd(g)—Nd(g)	0.349	1	
17	Fe(j_2)—Fe(k_1)	0.276	8	38	$B(g) - F(j_1)$	0.362	4	
18	Fe(j_1)—Fe(j_2)	0.277	4	39	Nd(g)—Nd(f)	0.376	4	
19	Fe(e)—Fe(e)	0.278	1	40	Fe(e)—Fe(k_1)	0.386	8	
20	Fe(e)—Fe(j_2)	0.280	4	41	R(g)—Fe(j ₂)	0.388	4	
21	$B(g) \rightarrow Nd(g)$	0.287	2					

3.3. 价电子结构计算

文献[6]中给出了 Nd, Fe, B 的量子态表和 Nd₂Fe₁₄B 晶体的价电子结构及磁矩值,本工作则拓 展至磁性的电子作用机制和与热声子相关的居里 温度的研究方向.从原子量子态表的建立、价电子 结构计算到磁性计算全部为编程计算获得.由于 Nd₂Fe₁₄B晶体结构复杂, 2 个 Nd 晶位分别有 10 种 量子态 6 个Fe 晶位,每个晶位有 46 种量子态, B 晶 位有 6 种量子态,即 Nd₂Fe₁₄B 晶体共有 10 × 10 × 46⁶ × 6 种不同的价电子组合状态.因此,我们先根据

磁矩的实验值确定 6 个 Fe 晶位的量子态,再根据 $|\Delta D(n_a)| < 0.005 \text{ nm}、合理 n_a 值和居里温度的$ 相对误差限(低于 10%)来确定 Nd(<math>f), Nd(g)和 R(g)的量子态.

3.4. 居里温度的计算

徐万东等⁹¹以元素晶体结合能计算公式为基础,建立了过渡金属化合物晶体的结合能计算公式,即

$$\overline{E}_{c}^{0} = \sum_{\alpha} \frac{B_{\alpha}I_{\alpha}n_{\alpha}}{D(n_{\alpha})}f + \frac{B_{1}n_{1}}{\overline{D}}f' + b_{\mu}am_{3d} - b_{\mu}CW.$$
(1)

(1)式等号右端的四项分别表示共价电子、晶格电 子、磁电子和哑对电子对结合能的贡献.本工作主要 讨论与居里温度相关的磁电子的贡献.即(1)式中等 号右端的第三项.根据前期1:13型稀土合金化合物 的计算报道^{10]},每条键的平均磁能为

$$U_{\rm m} = g \frac{cm_{\rm 3d}}{I^{\sigma}}.$$

这里 g 为朗德因子;

$$I^{\sigma}~=~\sum I_{lpha}r_{lpha}$$
 ,

其中 I_a 是第 α 键的等同键数 , r_a 是通过 BLD 方法求 解的结果 ,即

$$r_{\alpha} = n_{\alpha}/n_1$$
;

*c*为一拟合因子.将文献 9,10 结合后认为,每摩尔物质的磁能

$$U_{\rm m} = g \frac{bam_{\rm 3d}}{I^{\sigma}}$$

其中 b 为电子对核电荷的屏蔽作用系数,b = 31.395($n = 0.36\delta$),单位为 kJnm/mol,对于铁,n =

原子的平均热振动能为 3kT,此工作以摩尔物 质的量为单位计算能量,对 1 mol 原子,热振动能为 3RT.温度升高,热振动能增大,当温度升高到居里 点时热声子的能量与磁能相等,当温度大于居里点 时磁能将消失,所以有

$$3RT_{\rm C} = U_{\rm m} ,$$

$$T_{\rm C} = \frac{bagm_{\rm 3d}^{\rm T}}{3RI^{\rm T}} \times 10^3 ,$$
(2)

式中取 Fe 的 g 值为 2.05 , m_{3d}^{T} 是一个结构式中所包 含的总磁电子数 ,R 为摩尔气体常量 ,因子 10³ 是由 R 和 b 的单位换算关系引入的.

3.5. Nd₂Fe₁₄B 晶体的价电子结构计算结果

结合 $Nd_2 Fe_{14} B$ 晶体的中子衍射实验磁矩^[11]和 Fe 原子的量子态表,先定出了 6 个 Fe 晶位的量子 态.在 Fe 的量子态确定后,根据 Nd ,Fe 和 B 的量子 态表,将相关数据代入上述键距公式和居里温度的 计算公式,计算出各键的理论键距值和 $Nd_2 Fe_{14} B$ 晶 体的居里温度,再结合经验判据 $|\Delta D| < 0.005$ nm , n_a 的范围和居里温度的实验值 588 K^[12]即可确 定最佳组合量子态.根据以上思路编程计算得出, $Nd_2 Fe_{14} B$ 晶体中 2 个 Nd 晶位都处于第 3 阶,B 晶位 处于第 1 阶.各位置原子的量子态数、各 Fe 晶位的 实验磁矩和部分价电子结构参数列于表 3.Nd₂ Fe₁₄ B 晶体中各键的 n_a 值和居里温度计算结果列于表 4. 从表 4 可知,居里温度的计算结果与实验值相符.

在表 3 中 ,A 表示甲种杂化 ;C 表示丙种杂化 ;A 和 C 之后的数字表示量子态数.对于 Nd 和 B ,由于 只存在一种杂化 ,所以只列出了量子态数.

本文计算结果与文献 8 的结果对比表明 本工 作选取的 6 个 Fe 晶位的量子态与其一致 ,但 K g), Nd f)和 Nd (g)晶位的量子态不同.这主要是由于 处理方法不同所致 ,张瑞林等^[8]分析认为 ,B 在 Nd₂ Fe₁₄B 晶体中处于间隙位置 ,所以其量子态应为 第 6 阶 ,2 个 Nd 晶位是试取的第 1 阶 ,计算结果符 合经验判据 $|\Delta D| < 0.005$ nm.本工作是利用程序 循环查找 ,再结合经验判据 $|\Delta D| < 0.005$ nm , n_a 的范围及居里温度实验值 588 K 来共同确定最佳 组合量子态 结果是 K g)晶位取第 1 阶 ,Nd(g)和 Nd f)晶位都取第 3 阶.

原子	Fe(c)	Fe(<i>e</i>)	Fe(j_1)	Fe(j_2)	Fe(k_1)	Fe(k_2)	Nd(f)	Nd(g)	B(g)
杂 阶	A15	A13	A10	C3	A7	A8	3	3	1
磁矩实验值/ $\mu_{ m B}$	0.330	1.220	2.020	3.320	2.510	2.410			
磁电子数 m _{3d}	0.301	1.31	2.028	3.459	2.444	2.404			
共价电子数 $n_{\rm c}$	5.699	4.690	3.972	3.000	3.556	3.596	2.096	2.096	1.000
晶格电子数 n ₁	0.200	0.873	1.352	1.541	1.629	1.603	0.904	0.904	2.000
单键半距 R(1)/nm	0.0969	0.1041	0.1092	0.1234	0.1121	0.1119	0.1527	0.1527	0.0798

表 4 Nd₂Fe₁₄B 晶体的价电子结构参数

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D(n _α)/nm 0.306 0.307 0.308
1 8 0.565 0.207 0.210 22 8 0.231 0.301 2 4 0.384 0.209 0.212 23 4 0.346 0.304 2 9 0.566 0.206 0.202 23 4 0.346 0.304	0.306 0.307 0.308
2 4 0.384 0.209 0.212 23 4 0.346 0.304 2 4 0.560 0.200 0.212 23 4 0.346 0.304	0.307 0.308
	0.308
5 8 0.508 0.236 0.239 24 8 0.216 0.305	
4 2 0.423 0.241 0.244 25 8 0.208 0.306	0.309
5 8 0.486 0.243 0.246 26 4 0.041 0.308	0.311
6 8 0.232 0.247 0.250 27 4 0.103 0.309	0.312
7 8 0.298 0.248 0.210 28 4 0.265 0.311	0.314
8 16 0.386 0.249 0.252 29 4 0.096 0.318	0.321
9 4 0.246 0.250 0.253 30 1 0.002 0.318	0.321
10 12 0.328 0.253 0.256 31 4 0.093 0.324	0.327
11 8 0.180 0.254 0.257 32 8 0.090 0.325	0.328
12 8 0.256 0.257 0.260 33 8 0.099 0.325	0.328
13 4 0.287 0.257 0.260 34 4 0.027 0.327	0.330
14 8 0.326 0.262 0.265 35 4 0.035 0.337	0.340
15 8 0.348 0.263 0.266 36 4 0.002 0.343	0.346
16 8 0.302 0.267 0.270 37 1 0.212 0.346	0.349
17 8 0.240 0.273 0.276 38 4 0.002 0.359	0.362
18 4 0.206 0.274 0.277 39 4 0.075 0.373	0.376
19 1 0.078 0.275 0.278 40 8 0.002 0.383	0.386
20 4 0.151 0.277 0.280 41 4 0.001 0.385	0.388
21 2 0.140 0.284 0.287	

 $\Delta D = |\overline{D}(n_{\alpha}) - D(n_{\alpha})| = 0.0032 \text{ nm}, \overline{T}_{C} = 618.9 \text{ K}, |\Delta T_{C}|/T_{C} = 4.99\%$

4. 分析及讨论

文献 8 的工作主要是计算了 Nd₂Fe₁₄ B 晶体中 各 Fe 原子周围的电荷分布,分析了 Fe 原子磁矩指 向 *c* 方向的原因.本工作不同于此,我们主要是研 究磁性的电子作用机制和与热声子相关的居里温 度,探讨磁性的物理机制.表 5 列出了 Nd₂Fe₁₄ B 晶体 中不同 Fe 晶位的磁电子数、哑对电子数、共价电子 数、4s 次壳层的晶格电子数、4s 次壳层的共价电子 数及 4p 次壳层的等效价电子数.从表 5 中的数据可 看出 ,各个 Fe 晶位的 4p 等效价电子数除 j₁ 晶位外 都保持不变.为便于直观分析磁性和 Nd₂ Fe₁₄ B 晶体 的价电子结构关系.图 2 和图 3 示出了电子数随 Fe 晶位的变化关系.

原子	Fe(c)	Fe(<i>e</i>)	Fe(<i>j</i> ₁)	Fe(j ₂)	Fe(k_1)	Fe(k_2)		
杂 阶	A15	A13	A10	С3	A7	A8		
磁电子数 m _{3d}	0.301	1.310	2.028	3.459	2.444	2.404		
哑对电子数 $n_{\rm d}$	1.800	1.127	0.648	0.000	0.371	0.397		
共价电子数 n _c	5.699	4.690	3.972	3.000	3.556	3.596		
$4s$ 晶格电子数 n_1	0.200	0.873	1.352	1.541	1.629	1.603		
4s 共价电子数	0.900	0.563	0.324	0.229	0.185	0.199		
4p 等效价电子数	1.000	1.000	1.000	1.230	1.000	1.000		
							1	

图 2 共价电子与磁电子随 6 个 Fe 晶位的变化关系

图 3 各种电子随 6 个 Fe 晶位的变化关系

4.1. $Nd_2Fe_{14}B$ 晶体的磁性与价电子结构的关系

在 6 个 Fe 晶位中,除 Fe(j₂)晶位属 C 种杂化 外,其余各个 Fe 晶位都属 A 种杂化.对 Fe 的 A 种杂 化^[6], h 态的电子分布为

 $\uparrow \uparrow \uparrow \cdots \oplus \cdots$,

相应的参量值为 l = 2,m = 1,n = 2, $\tau = 0$;t态的电子分布为

|| ···· <u>· ·</u> · · ,

相应的参量值为 l' = 1 ,m' = 1 ,n' = 4 , $\tau' = 1$.这里 , " ↑ "表示磁电子 ", ·"表示共价电子 "①"表示晶格 电子 ", · ·"表示等效价电子 ", °"表示空轨道 ", ॥"表 示哑对电子 ;l ,m ,n ,l' ,m' ,n'分别表示 h 态和 t 态 中 s ,p ,d 次壳层的晶格电子数和共价电子数 ,当 s 电子为晶格电子时 , τ , $\tau' = 0$,当 s 电子不是晶格电 子时 , τ , $\tau' = 1$.由此可见 ,A 种杂化中共价电子数加 上磁电子数等于常数 6.

从中子衍射实验知 6 个 Fe 晶位中 Fe(j_2)晶位 的磁性最强,达到 3.32 $\mu_B^{[11]}$,根据 EET,这是由于 Fe(j_2)晶位属 C 种杂化所致.从图 2 可见,Fe(j_2)晶 位的磁电子数最多,共价电子数最少,这导致它参与 形成的共价键相对较弱.因此,对于 Fe(j_2)晶位,起 主导作用的是磁电子.除 Fe(j_2)晶位外,从 Fe(c)晶 位到 Fe(k_2)晶位,共价电子数减少,磁电子数增多, 也就是共价电子向磁电子发生了转化.这说明在 Nd₂Fe₁₄B 晶体中 Fe(k_1),Fe(k_2)和 Fe(j_2)晶位的磁 性较强是由于成键的共价电子向非成键的磁电子发 生了转化所致.

在 Nd₂ Fe₁₄ B 晶体中,由于 B 原子和 Nd 原子无磁 电子,所以居里温度计算公式中 $m_{3d}^{T} = m_{3d}$ Fe(c)+ m_{3d} Fe(e)+ $2m_{3d}$ Fe(j_1)+ $2m_{3d}$ Fe(j_2)+ $4m_{3d}$ Fe(k_1) + $4m_{3d}$ Fe(k_2); $f' = \sum I_a r_a$ 中的 r_a 可通过键距差方 法求解得到结果,其值与元素 Nd, Fe, B 各晶位的量 子态有关.由此可见,居里温度主要是与元素 Nd, Fe, B 各晶位的量子态和等同键数有关,不同的量子 态组合导致不同的 r_a 值和各 Fe 晶位的磁矩值.因 此,上述量子态组合是通过经验判据、实验磁矩、居里 温度实验值和合理的 n_a 值这些条件给出的(表 3).在 所选组合态下 居里温度的计算值与实验值相符.

4.2.6个 Fe 晶位的 s.p.d 电子转化关系

图 3 给出了各 Fe 晶位的各种电子数.需要说明 的是,图 3 中列出的 Fe(j_2)晶位属 C 种杂化,与其他 Fe 晶位不同,所以下面讨论的转化问题是除 Fe(j_2) 晶位之外的电子转化.从图 3 可见 As 次壳层晶格 电子数从 Fe(c)晶位到 Fe(k_2)晶位是单调增加的, 而 4s 次壳层共价电子数是单调减少的.总体上 As次壳层的电子数是随晶位增加的 Ap 次壳层的电子 数是随晶位保持不变的 3d 磁电子数是随晶位增加 的 3d 哑对电子数和共价电子数基本上是随晶位单 调下降的.所以,从 Fe(c)晶位到 Fe(k_2)晶位,总体 上是共价电子转变为磁电子和 4s 电子.根据上述 Fe 的 A 种杂化的 h 态和 t 态的电子分布及各 Fe 晶位 的量子态可知,有 78% 的哑对电子和 18% 的 3d 共

- [1] Yu R H 1978 Chin. Sci. Bull. 23 217 (in Chinese)[余瑞璜 1978 科学通报 23 217]
- [2] Pauling L 1966 The Nature of the Chemical Bond (New York: Cornell University Press) p384
- [3] Fang C Z Sun L L Zhang J Jia Y Z Zhang L Y Wei Z J Ma M Z, Liu R P Zeng S Y ,Wang W K 2005 Chin. Sci. Bull. 50 1300(in Chinese)[范长增、孙力玲、张 君、贾元智、张连勇、魏尊杰、 马明臻、刘日平、曾松岩、王文魁 2005 科学通报 50 1300]
- [4] Peng K, Yi M Z, Tao H J, Ran L P 2007 Chin. J. Monfer. Met.
 17 216 (in Chinese) [彭可、易茂中、陶辉锦、冉丽萍 2007 中 国有色金属学报 17 216]
- [5] Li Z L ,Huang Q ,Wu Y Q ,Li Z F 2007 Sci. China E 37 890 (in Chinese)[李志林、黄 钦、吴远启、李志峰 2007 中国科学 E 37 890]
- [6] Zhang R L 1993 The Empirical Electron Theory of Solids and Molecules (Changchun : Jilin Science and Technology Press) pp11,

价电子转化为 3d 磁电子,这导致了从 Fe(c)晶位到 Fe(k_2)晶位磁矩的增加;有 79%的 4s 共价电子、 18%的 3d 共价电子转化成为 4s 晶格电子,这导致 了从 Fe(c)晶位到 Fe(k_2)晶位电子的巡游性增强.

5.结 论

计算得到 $Nd_2 Fe_{14} B$ 晶体中 9 个晶位的量子态、 晶格电子数、共价电子数和磁电子数 ,居里温度计算 结果为 618.9 K ,与实验值相符 .对 Fe 的 A 种杂化 , 有 78%的哑对电子和 18% 的 3d 共价电子转化为 3d 磁电子 ,使得从 Fe(c)晶位到 Fe(k_2)晶位磁矩增加. 因为一个结构式中包含4 个 Fe(k_1) ,Fe(k_2)晶位 ,可 见这两个晶位对居里温度同样具有重要的贡献. Fe(j_2)晶位的磁矩最大 ,这是由于它属 C 种杂化 所致.

24,234,260,324(in Chinese)[张瑞林 1993 固体与分子经验 电子理论(长春:吉林科学技术出版社)第11,24,234,260, 324页]

- [7] Herbst J F 1991 Rev. Mod. Phys. 63 822
- [8] Zhang R L, Wu S C, Yu R H 1988 Sci. China A **31** 197 (in Chinese)[张瑞林、吴尚才、余瑞璜 1988 中国科学 A **31** 197]
- [9] Xu W D ,Zhang R L ,Yu R H 1988 Sci. China A 31 324 (in Chinese)[徐万东、张瑞林、余瑞璜 1988 中国科学 A 31 324]
- [10] Guo Y Q , Yu R H , Zhang R L , Zhang X H , Tao K 1998 J. Phys. Chem. B 102 9
- [11] Herbst J F ,Croat J J ,Yeten W B 1985 J. Appl. Phys. 57 4086
- [12] Zhou S Z ,Dong Q F 1999 Super Permanent Magnets—*Rare-earth Iron Based Permanent-magnet Materials* (Beijing: Metallurgical Industry Press)p262(in Chinese)[周寿增、董清飞 1999 超强永 磁体——稀土铁系永磁材料(北京 治金工业出版社)第 262 页]

Analysis of valence electron structures and calculation of magnetic properties of Nd₂Fe₁₄B*

Wu Wen-Xia Guo Yong-Quan[†] Li An-Hua Li Wei

(Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China)
 (Received 13 August 2007; revised manuscript received 15 November 2007)

Abstract

The valence electron structure and magnetic properties of $Nd_2 Fe_{14} B$ intermetallics have been investigated using empirical electronic theory of solids and molecules. The calculations fit the experimental data well. It reveals that the magnetic properties of $Nd_2 Fe_{14} B$ are proportion to the 3d electrons of Fe atoms. The moments increase from the Fe at 4c site to the Fe at $16k_2$ site , which is due to the changes between the valence electrons , dumb pair electrons and 3d magnetic electrons. According to the calculation , 78% of dumb pair electrons and 18% of valence electrons in d orbit change to magnetic electrons , this causes the increase of moments from the Fe at 4c site to the Fe at $16k_2$ site. Both Curie temperature and moments are proportion to the coordination numbers of the Fe atom , however , the Curie temperature decrease with the weighted equal bond numbers I'. The effect on Curie temperature of non-magnetic elements Nd and B is derived from the change of the Fe—B and Fe—Nd bond distances.

Keywords : $Nd_2 Fe_{14}B$, valence electron structures , Curie temperature PACC : 7550B , 7115

^{*} Project supported by the National High Technology Development Program of China (Grant No. 2007AA03Z458) and the Major Program of the Science and Technology Research of Beijing , China (Grant No. D0406002000091).

[†] E-mail: yqguo100@yahoo.com.cn