Ga₂O₃ 组分对 Tm³⁺掺杂 GeO₂-Ga₂O₃-Li₂O-BaO-La₂O₃ 玻璃的光谱性能影响*

林琼斐¹) 夏海平¹³ 王金浩¹) 张约品¹) 张勤远²)

1)(宁波大学光电子功能材料研究所,宁波 315211)
 2)(华南理工大学光通信材料研究所,特种功能材料及制备新技术教育部重点实验室,广州 510640)
 (2007年7月6日收到 2007年11月6日收到修改稿)

制备了 Tm³⁺(8.0mol%) 掺杂(77 – x) GeO₂-xGa₂O₃-8Li₂O-10BaO-5La₂O₃(x = 4.8,12,16) 系列玻璃.系统地研究了 Ga₂O₃ 从 4mol%变化到 16mol%时 玻璃的光谱性质与热学性质的变化规律.差热分析表明,随着 Ga₂O₃ 含量的增加, 緒酸盐玻璃的热稳定性增加.运用 Judd-Ofel(J-O)理论计算得到了 Tm³⁺在不同 Ga₂O₃ 含量的 GeO₂-Ga₂O₃-Li₂O-BaO-La₂O₃ 玻璃中的 J-O 强度参数(Ω_2 , Ω_4 , Ω_6)及 Tm³⁺ 各激发能级的自发跃迁概率、荧光分支比以及辐射寿命等 光谱参量.在 808 nm 激光二极管的激发下,测试并分析了 Ga₂O₃ 对 Tm³⁺ 荧光光谱特性的影响.随着 Ga₂O₃ 从 4mol%增加到 16mol%, Tm³⁺在 1.8 μ m 处的荧光强度呈现先减弱后增强的特性.当 Ga₂O₃ 含量大约在 12mol% 时, Tm³⁺在 1.8 μ m 处的荧光强度最弱,受激发射截面达到最小.还初步讨论了 Ga₂O₃ 对玻璃结构与光谱参数的影响 规律.

关键词:Tm³⁺掺杂锗酸盐玻璃,光谱性能,Judd-Ofelt参数,热稳定性 PACC:7855,4270C,7430E,7820

1.引 言

稀土离子掺杂的固体材料在激光、照明、光存 储、通信等领域得到了极其重要的应用.近十几年 来 对人眼安全的 2 μ m 左右波段的固体激光在医 疗、遥感和雷达等领域得到了飞速发展^[1→3].稀土离 子 Tm³⁺的³F₄→³H₆能级跃迁可产生波长约为 2 μ m 的荧光辐射,它是获得该波段荧光的一种重要发光 离子.另外,Tm³⁺之间由于存在着很强的能量交叉 弛豫效应(${}^{3}H_{4} \rightarrow {}^{3}F_{4}$, ${}^{3}F_{4}$),在介质中 Tm³⁺之间的 距离在合适的情况下,当受到光激发时中红外波段 的荧光量子效率可接近 200%^[4],因此理想的 Tm³⁺ 掺杂玻璃可实现高效的波长约为 2 μ m 的荧光发射. 由于 Tm³⁺在 800 nm 附近有较强的吸收带,因此可 用经济的 AlGaAs 激光二极管作为抽运源,研制成高 效、小型、廉价的掺 Tm³⁺ 中红外激光器. 与晶体材料相比,玻璃态物质具有制备工艺简 单、掺杂浓度高、化学组分可调、容易成型及可拉制 成光纤等优点,是稀土等活性离子的理想基质材 料^[5].而以光纤为基础的激光器件由于无需环境的 冷却系统以及可产生很高的光泵能量密度等显著特 点^[6].是以其他材料为基础的激光器所无法比拟的.

早在 20 世纪 80 年代末至 90 年代初,单包层掺 Tm³⁺光纤激光器已经获得了毫瓦量级到瓦量级的 连续波 2 µm 输出^[3].近几年,掺 Tm³⁺光纤激光器的 抽运源大多采用大功率的半导体激光器或半导体阵 列,光纤采用双包层的硅基光纤,掺杂浓度在 1wt%—2wt%之间^[7].目前 Tm³⁺掺杂光纤激光器 2 µm波段已经实现了几百瓦的连续波输出,并已产 品化^[8].但是,由于硅酸盐玻璃具有相对高的基质声 子能量(约 1100 cm⁻¹),由多声子弛豫引起的无辐射 跃迁能量损失占据主导地位,导致 Tm³⁺在基质中量 子效率低下,无法获得理想的激光参数和放大效果.

† E-mail:hpxcm@nbu.edu.cn

^{*} 国家自然科学基金(批准号:60777030),浙江省自然科学基金(批准号:Y406220)和宁波市博士科学基金(批准号:2005A610010)资助的 课题。

而且硅酸盐玻璃对稀土离子的溶解性较差,使得掺 杂浓度较低.因此,研制合适的玻璃作为Tm³⁺的基 质材料,对于其广泛的实用化有积极的意义.锗酸盐 玻璃基质具有较低的声子能量(900 cm⁻¹),可望有 效抑制Tm³⁺的无辐射跃迁,大幅度提高Tm³⁺在玻 璃中的发光效率.另外,以锗酸盐为基础的玻璃材料 具有良好的光学和机械性能、稳定的物化性能及对 稀土离子有高的溶解性等特点,很可能研制成综合 性能优良的光纤应用到中红外激光器件中.

本文选用 Tm^{3+} 掺杂的(77 - x)GeO₂- xGa_2O_3 -8Li₂O-10BaO-5La₂O₃(x = 4 8, 12, 16)玻璃,研究了该 玻璃系统的热稳定性及光谱性质随 Ga₂O₃ 含量的变 化规律,应用 Judd-Ofel(J-O)理论和 McCumber 理论 分析了掺 Tm^{3+} 锗酸盐玻璃的吸收光谱和荧光光谱 性质.根据上述不同玻璃的物化和光谱性能的变化 情况,从中选取适合于研制光纤的基质玻璃材料,为 研制性能良好的中红外激光光纤打下基础并提供理 论依据.

2. 实 验

外掺 4.0mol% Tm₂O₃ 的玻璃样品组成为(77 – x)GeO₂-xGa₂O₃-8Li₂O-10BaO-5La₂O₃(x = 4,8,12, 16)获得的玻璃样品分别用 GG1,GG2,GG3,GG4 进 行编号.各化学原料均为分析纯.将上述原料按照配 方精确称量 30 g 的玻璃配料,使其充分混合,然后 加入到 30 ml 的刚玉坩埚中.置于预热至约 1400 ℃ 的硅碳棒高温炉中并在此温度下熔制 1 h,然后浇注 到预热至 350 ℃的铸造模具上,在玻璃转变温度 T_g 附近保温 2 h,再以 20 ℃/h 的速度降温至 200 ℃时 关闭电源并自然冷却至室温.最后将样品切割加工 成尺寸为 10 mm×10 mm×2 mm 的两大面平行抛光 块体,用于光谱测试.

玻璃样品的密度由阿基米德法测得;玻璃的折 射率由棱镜耦合仪测得.差热分析曲线由 CRY-2 型 差热分析仪测得.吸收光谱由 Perkin-Elmer-Lambda 950 UV/VIS 型吸收光谱仪测试,测量范围为 300— 2200 nm 红外透过光谱由 FTIR-8400 型红外光谱仪 测得,测量范围为 2.5—25 μm(4000—400 cm⁻¹);拉 曼光谱由法国 J-Y 公司生产的 T64000 型拉曼光谱 仪测得 荧光光谱由法国 J-Y 公司生产的 Triax 320 型荧光光谱仪测得,用 808 nm 激光二极管作为激发 光源,所有的性质测定均在室温下进行.

3. 结果及讨论

3.1. 差热分析

Tm³⁺ 掺杂锗酸盐玻璃的密度和折射率由表 1 给出.由表 1 可知,随着 Ga₂O₃ 含量的增加,玻璃的 密度和折射率逐渐增加再减少.为了研究玻璃样品 的热稳定性,测量了样品 GG1,GG2,GG3,GG4 的 差热分析曲线,温度范围为 300—1000 °C.玻璃的 差热分析曲线如图 1 所示.玻璃的热稳定性通常可 由 $T_x - T_g$ 的值来衡量,其中 T_g 为玻璃转变温度, T_x 为结晶起始温度.表 1 同时列出了玻璃转变温度 T_g 、结晶起始温度 T_x 及 $T_x - T_g$ 值.由表 1 可见, 当 Ga₂O₃含量从 4mol% 变化到 16mol% 时, $T_x - T_g$ 由 224 °C 增加到 264 °C.实验表明,Ga₂O₃ 的掺入可 适当提高锗酸盐玻璃的热稳定性.

表 1 玻璃样品的密度、折射率、转变温度 T_g 、结晶 起始温度 $T_x \gtrsim T_g$.

样品	密度	折射率	$T_{\rm g}/^{\circ}{ m C}$	$T_{\rm x}$ /°C	$T_{\rm x} - T_{\rm g}/^{\circ}$ C
GG1	4.74	1.824	491	715	224
GG2	4.81	1.829	487	716	229
GG3	4.95	1.840	485	717	232
GG4	4.82	1.833	501	765	264

图 1 玻璃样品的差热分析曲线

3.2. 吸收光谱和 J-O 理论分析

图 2 为样品的吸收光谱,范围为 350—2200 nm. 由图 2 可以看出,从紫外区至近红外区都有较强吸 收,主要有 6 个吸收带,且谱带的外形和峰值位置与 Tm³⁺在其他基质中的很相似^[9,10]. 位于 1664,1121, 791 684 A70 ,356 nm 的吸收峰,分别对应于电子从 基态³H₆ 到激发态³F₄, ${}^{3}H_{5}$, ${}^{3}H_{4}$, ${}^{3}F_{2,3}$, ${}^{1}G_{4}$ 和¹D₂的跃 迁,每个吸收峰均由 Tm³⁺的激发态标示. 从图 2 可 以看出 随着 Ga₂O₃ 含量的增加,Tm³⁺的吸收峰位置 出现红移现象.

根据 J-O 理论^[11,12],并应用文献 13 的 Tm³⁺ 跃 迁约化矩阵元,用最小二乘法拟合得到该锗酸盐玻 璃的 3 个 J-O 参数 Ω_i (*t* = 2 *A*,6)值.实验振子强度 *f*_{esp}和理论振子强度 *f*_{cal}如表 2 所列 表中 δ_{ms} 为均方 根误差.计算获得的自发辐射跃迁概率 *A*_i,荧光分 支比 *β* 及辐射寿命 τ_{rad} 见表 3.

图 2 玻璃样品的吸收光谱

表 2 相应跃迁的实验振子强度 f_{exp} 和理论振子强度 f_{eal}

样品	振子强度/10 ⁻⁶	${}^{3}H_{6} \rightarrow {}^{3}F_{3}$ (685 nm)	${}^{3}H_{6} \rightarrow {}^{3}H_{4}$ (791 nm)	${}^{3}H_{6} \rightarrow {}^{3}H_{5}$ (1211 nm)	${}^{3}H_{6} \rightarrow {}^{3}F_{4}$ (1669 nm)	$\delta_{\rm ms}/10^{-7}$	
GG1	$f_{ m exp}$	3.516	3.601	1.999	3.412	0.81	
	$f_{ m cal}$	3.466	3.570	2.055	3.410	0.01	
GG2	$f_{ m exp}$	3.547	3.581	2.029	3.396	0 54	
	$f_{ m cal}$	3.514	3.561	2.066	3.394	0.51	
GG3	$f_{ m exp}$	3.519	3.447	1.943	3.367	1.05	
	$f_{ m cal}$	3.456	3.409	2.013	3.365		
GG4	$f_{ m exp}$	3.658	3.617	2.066	3.426	0.62	
	$f_{ m cal}$	3.615	3.593	2.103	3.417	0102	

表 3 样品 GG3 的发射波长 λ_{p} 、自发辐射跃迁概率 A_{i} 、荧光分支比 β 及辐射寿命 τ_{rad}

发	发射波长 自发辐射跃迁 荧光分支比 辐射寿命 迁 $\lambda_{ m p}/{ m nm}$ 概率 $A_{ m i}/{ m s}^{-1}$ eta $ au_{ m rad}/{ m ns}$ 能级.	长 自发辐射跃迁	荧光分支比	辐射寿命	能级跃迁	发射波长	自发辐射跃迁	荧光分支比	辐射寿命
肥纵跃江			$\lambda_{\rm p}/{\rm nm}$	概率 A _i /s ⁻¹	β	$ au_{ m rad}/ m ms$			
${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	1788	313.232	1.000	3.193	$\rightarrow {}^{3}F_{3}$	17921	0.017	0.000	
$^{3}H_{5} \rightarrow ^{3}H_{6}$	1208	364.467	0.987	2.708	$^{1}G_{4} \rightarrow {}^{3}H_{6}$	477	1336.713	0.447	0.334
$\rightarrow {}^{3}F_{4}$	3724	4.784	0.013		$\rightarrow {}^{3}F_{4}$	650	227.479	0.076	
${}^{3}H_{4} \rightarrow {}^{3}H_{6}$	795	1774.494	0.903	0.509	$\rightarrow^{3}H_{5}$	787	1004.881	0.336	
$\rightarrow {}^{3}F_{4}$	1431	164.740	0.084		$\rightarrow {}^{3}H_{4}$	1190	334.056	0.112	
$\rightarrow {}^{3}H_{5}$	2323	26.260	0.013		$\rightarrow F_3$	1537	70.297	0.024	
${}^{3}F_{3} \rightarrow {}^{3}H_{6}$	691	2919.095	0.835	0.286	$\rightarrow F_2$	1682	16.902	0.006	
$\rightarrow {}^{3}F_{4}$	1125	104.529	0.030		$^{1}D_{2} \rightarrow {}^{3}H_{6}$	360	9830.512	0.241	0.025
\rightarrow ³ H_5	1612	465.819	0.133		$\rightarrow F_4$	450	25154.059	0.616	
$\rightarrow {}^{3}H_{4}$	5269	5.136	0.001		$\rightarrow^{3}H_{5}$	512	158.565	0.004	
${}^{3}F_{2} \rightarrow {}^{3}H_{6}$	665	1042.711	0.440	0.422	$\rightarrow {}^{3}H_{4}$	657	2529.973	0.062	
$\rightarrow {}^{3}F_{4}$	1059	992.901	0.419		$\rightarrow F_3$	750	1635.420	0.040	
\rightarrow ³ H_5	1479	314.768	0.133		\rightarrow ³ F_2	783	1211.219	0.030	
$\rightarrow {}^{3}H_{4}$	4072	21.556	0.009		\rightarrow ¹ G_4	1466	287.409	0.007	

图 3 为样品 GG1, GG2, GG3, GG4 的强度参数 $\Omega_{i}(t = 2, 4, 6)$ 随 Ga₂O₃含量的变化关系.一般认 为 强度参数 Ω_{2} 与玻璃结构的配位对称性、有序性 等特征有密切关系, Ω_{2} 越大,表明玻璃系统的共价 性越强,对称性越低. Ω_{6} 与 Tm³⁺在玻璃中与 O²⁻形 成的强度有关^[14].从图 3 可见 随着 Ga₂O₃含量的增 加 Ω_{2} 和 Ω_{6} 均呈现先减少后增加的趋势.因此,随 着 Ga₂O₃量的增加,玻璃系统的共价性降低,对称性 增强.当 Ga₂O₃含量达到 12mol%时, Ω_{2} 和 Ω_{6} 出现 最小值,说明玻璃的共价性最低,Tm—O 键的共价 性最强.然后随 Ga₂O₃含量增加,玻璃共价性增强, 离子性减弱,Tm—O 键的共价性减弱.

图 3 $G_{a_2}O_3$ 含量 x 对强度参数 $\Omega_t(t=2 A 6)$ 的影响

图 4 为 Ga_2O_3 含量对 Tm^{3+} 掺杂锗酸盐玻璃³ F_4 能级自发辐射跃迁概率 A_i 及辐射寿命 τ_{rad} 的影响. 从图 4 可以看出,随着 Ga_2O_3 含量的增加, 3F_4 能级 的自发辐射跃迁概率随之先减少后增加, 辐射寿命 先增加后减少.当 Ga_2O_3 含量达到 12mol%时,自发 辐射跃迁概率 A_i 达到最小值, 辐射寿命 τ_{rad} 达到最 大值.

3.3. 荧光光谱和 McCumber 理论分析

在 808 nm 激光二极管激发下,玻璃样品中 Tm³⁺的³ $F_4 \rightarrow {}^{3}H_6$ 跃迁的荧光发射由图 5 给出,荧光 峰值均在 1.8 μ m 附近.从图 5 可以看出 随着 Ga₂O₃ 含量从 4mol%增加到 16mol%, Tm³⁺在 1.8 μ m 处的 荧光强度随之先减弱再增强.当 Ga₂O₃ 含量达到 12mol%时, Tm³⁺在 1.8 μ m 处的荧光强度最弱.

根据 McCumber 理论^[15], Tm³⁺的³ $H_6 \rightarrow {}^{3}F_4$ 跃迁 吸收截面 σ_a 可以通过测试样品的光密度利用下式 计算:

图 4 Ga_2O_3 含量 x 对 Tm³⁺ 的³ F_4 能级自发辐射跃迁概率 A_i 及 辐射寿命 τ_{rad} 的影响

$$\sigma_{a}(\lambda) = \frac{2.303 D(\lambda)}{nL}, \qquad (1)$$

式中 $D(\lambda)$ 是波长 λ 处的光密度 ,L 为样品厚度(单 位为 cm),n 为样品中 Tm³⁺ 离子数密度(单位为 cm⁻³).受激发射截面 σ_e 可以通过玻璃的吸收截面 σ_e 计算得到 ,即

$$\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \exp\left[\frac{\varepsilon - h\nu}{kT}\right], \qquad (2)$$

式中 ε 是与温度有关的激发能量,其物理意义是保 持温度不变,把一个 Tm³⁺ 从基态³H₆ 激发到能级³F₄ 所需要的自由能;应用文献 16 的方法进行计算,求 得峰值处的 ε = 5754 cm⁻¹; *h* 为普朗克常数; *k* 为玻 尔兹曼常数, *k* = 1.38 × 10⁻²³ J·K⁻¹; *T* 为样品温度. 由(1)(2)式计算得到样品 GG1 的吸收截面和受激 发射截面如图 6 所示.

表 4 列出了 Tm³⁺ 掺杂锗酸盐玻璃样品的自发 辐射跃迁概率 A_i 、有效线宽 $\Delta \lambda_{er}$ 、峰值吸收截面 σ_a

图 6 样品 GG1 的吸收截面 σ_a 与受激发射截面 σ_e

以及峰值受激发射截面 σ_e . 值得指出的是 ,大的受 激发射截面对激光材料非常重要 ,文献 17]总结了 Tm³⁺掺杂的各种玻璃基质(如镓化物、氟化物、铝酸 盐、氟磷酸盐、硅酸盐、磷酸盐以及氟锆铝酸盐玻璃) 中的峰值吸收截面 σ_a 和峰值受激发射截面 σ_e 的 值.由表 4 可见 ,本文所报道的锗酸盐玻璃峰值发射 截面比氟化物和氟磷酸盐玻璃^[17]要大 ,比其他玻璃 基质略小.从表 4 还可以看出 ,随着 Ga₂O₃ 含量的增 加 ,锗酸盐玻璃的峰值受激发射截面减少 ,当 Ga₂O₃ 的含量达到 12mol%时 ,峰值受激发射截面达到最小 值 ,故可通过调整 Ga₂O₃ 的掺杂量 ,可以改变玻璃的 受激发射截面.此外 , $F_4 \rightarrow {}^{3}H_6$ 跃迁具有大的荧光分 支比 ,并呈现强而宽的发光特性($\Delta\lambda_{eff}$ 为 261—307 nm),可以预料 ,Tm³⁺掺杂锗酸盐激光器在 1.5—2.0 µm 范围内具有连续可调的潜力.

样品	$\lambda_{\rm p}/{\rm nm}$	$A_{\rm i}/{\rm s}^{-1}$	$\Delta\lambda_{\rm eff}/nm$	$\sigma_a/10^{-21}\mathrm{cm}^2$	$\sigma_{\rm e}/10^{-21}{\rm cm}^2$
GG1	1.786	323.59	271	4.433	4.562
GG2	1.793	319.05	278	4.417	4.515
GG3	1.797	313.23	307	4.402	4.422
GG4	1.788	320.79	261	4.511	4.719

表4 Tm³⁺ 红外跃迁³ $F_4 \rightarrow {}^{3}H_6$ 的一些参数值

为了进一步定量地确定增益特性,根据所获得 的吸收截面和发射截面,得出上能级粒子数反转的 净增益截面与波长的函数关系.我们假设 Tm³⁺ 既不 在基态能级也不在激光上能级,其增益截面可由下 式给出:

 $Q(\lambda) = P\sigma_{e}(\lambda) - (1 - P)\sigma_{a}(\lambda),$ (3) 式中 P为 Tm³⁺激光上能级³F₄的反转粒子数浓度 N₂ 与 Tm³⁺ 总粒子数浓度 N 的比值.能级的跃迁截 面对工作物质的激光性能影响很大.从(3)式可知, 大的发射截面可以获得较大的增益.同时,在发光 区 希望离子的吸收截面较小,以减少离子的自吸 收,使玻璃的增益截面增大.

图 7 为锗酸盐玻璃样品 GG1 中 Tm³⁺的³F₄→³H₆ 跃迁的增益截面与波长的关系.从图 7 可以看出,随 着玻璃中 Tm³⁺的³F₄能级反转粒子数的减少,波峰 的增益截面最大值出现红移现象.增益最大值的激 光工作波长随着抽运功率的增加而变化,这种变化 可能会成为准三能级激光系统的典型特征之一.从 图 7 还可以看出,掺 Tm³⁺ 锗酸盐激光器在 1.5—2.0 μ m 范围内具有实现连续可调的潜力.此外,本文所 得到的 Tm³⁺ 掺杂锗酸盐玻璃的波峰增益截面最大 值约是文献 18]所报道的 Tm³⁺ 掺杂氟氧化物玻璃 增益截面最大值的 1.5 倍.

图 7 样品 GG1 的 Tm³⁺ 跃迁³F₄→³H₆ 的增益截面光谱

3.4. 光谱特性与玻璃结构

图 8 为玻璃样品 GG1,GG2,GG3,GG4 在 400— 1200 cm⁻¹范围内的红外透过光谱.从图 8 可以看 出 样品的透过光谱主要有比较大的两个吸收带所 组成,一个吸收带大致在 490—660 cm⁻¹,另一个吸 收带大致在 660—1000 cm⁻¹.490—660 cm⁻¹的吸收 可能由 Ge-O-Ge 的伸缩振动^[19]及[GaO₄]四面体结 构单元的伸缩振动^[20]所引起,660—850 cm⁻¹处的吸 收归因于玻璃中[GeO₄]四面体结构单元^[19]的伸缩 振动;850—1000 cm⁻¹的吸收是由于 O-Ge-O 的伸缩 振动^[21]所引起.

由图 8 可明显看出,随着 Ga2O3 含量从 4mol%

图 8 锗酸盐玻璃的红外透过光谱

逐步增加到 12mol%, 490—660 cm⁻¹的吸收逐步减 弱,当 Ga₂O₃ 进一步增加到 16mol%时,其吸收强度 又开始增强.大量的研究表明^{20,22,23}],Ga 在氧化物 玻璃中通常形成[GaO₆]八面体与[GaO₄]四面体两 种配位形式而连接于玻璃网络中.因此可以推断,随 着 Ga₂O₃ 含量从 4mol%增大到 12mol% [GaO₆ **正**玻 璃中的形成量逐步增加,而[GaO₄]的量有所减少, 导致 490—660 cm⁻¹的吸收减弱.当 Ga₂O₃ 再进一步 增加到 16mol%时 [GaO₄]在玻璃中的生成量又开 始增加,导致 490—660 cm⁻¹的吸收增强.从图 8 还 可以看出,位于 490—660 cm⁻¹的吸收增强.从图 8 还 可以看出,位于 490—660 cm⁻¹的吸收增强.例图 8 还 可以看出,位于 490—660 cm⁻¹的吸收增强.例图 8 还 可以看出,位于 490—600 cm⁻¹的吸收增强.例图 8 还

为了更好地反映 Ga₂O₃ 对玻璃结构及光谱参数 的影响,我们测定了玻璃样品的拉曼光谱,结果如图 9 所示.由图 9 可知,该锗酸盐玻璃的最大声子能量 约为 849 cm⁻¹,小于硅酸盐玻璃的最大声子能量(约 1100 cm⁻¹).该玻璃的拉曼光谱主要由位于 286 cm⁻¹弱峰和位于 525,849 cm⁻¹两个强峰组成.286 cm⁻¹致的弱峰对应着[GaO₆]八面体结构单元的伸 缩振动^[20],从图 9 可见,当 Ga₂O₃ 含量为 12mol%时, 该拉曼弱峰最明显,说明玻璃中[GaO₆]八面体的量 最多,产生相对明显变化的玻璃结构,这与红外 光谱的结果相一致.这些结构的变化影响了掺杂离 子 Tm³⁺的光谱参数与荧光特性,导致 Tm³⁺的强度 参数 Ω_2 和 Ω_6 最小、自发辐射跃迁概率最小、荧光 强度最弱以及峰值受激发射截面最小. 另外,525 cm⁻¹处的强峰可能由 Ge-O-Ge 的伸缩振动^{19]}及 [GaO₄]四面体结构单元的伸缩振动^{120]}所引起;849 cm⁻¹处的强峰归因于玻璃中[GeO₄]四面体结构单 元^[19]的伸缩振动.

图 9 锗酸盐玻璃的拉曼光谱

4.结 论

在 Tm³⁺(8.0mol%)掺杂(77 - x)GeO₂-xGa₂O₃-8Li₂O-10BaO-5La₂O₃(x = 4,8,12,16)系统中,Ga₂O₃的加入能适当提高锗酸盐玻璃的热稳定性.当Ga₂O₃含量达到 12mol%时, Ω_2 和 Ω_6 为最小,玻璃的对称性最大,Tm—O 共价键最弱,辐射寿命达到最大.同时还发现随着Ga₂O₃含量的增加,荧光强度呈先减少后增加的趋势,当Ga₂O₃含量达到 12mol%时,1.8 μ m处的荧光强度最小,受激发射截面最小为4.422×10⁻²¹ cm²,最大有效线宽为 307 nm.由于Ga₂O₃ 与 Tm₂O₃的结构具有相似性,使得Tm₂O₃能有效地高掺到锗酸盐玻璃体系中,掺杂浓度可达4.0mol%.上述这些光谱参数的变化与玻璃中[GaO₆]八面体和[GaO₄]四面体的结构转变有密切关系.

- [2] Jackson S D , Mossman S 2003 Appl . Phys . B 77 489
- [3] Zhang Y J, Wang Y Z, Ju Y L, Yao B Q 2005 Laser Optoelectron. Prog. 42 34 (in Chinese)[张云军、王月珠、鞠有伦、姚宝权 2005 激光与光电子学进展 42 34]
- [4] Chen H, Liu Y H, Yao X X, Feng Z M 2005 Acta Phys. Sin. 54
 4427 (in Chinese)[陈 鹤、刘粤惠、姚小旭、冯洲明 2005 物理
 学报 54 4427]
- [5] Shi D M, Zhang Q Y, Yang G F, Jiang Z H 2007 Acta Phys. Sin.
 56 2951 (in Chinese)[石冬梅、张勤远、杨钢锋、姜中宏 2007 物理学报 56 2951]
- [6] Wu Z H, Song F, Liu S J, Cai H, Su J, Tian J G, Zhang G Y 2006 Acta Phys. Sin. 55 4659 (in Chinese)[吴朝晖、宋 峰、刘 淑静、蔡 虹、苏 静、田建国、张光寅 2006 物理学报 55 4659]
- [7] Wu J F, Jiang S B, Luo T, Geng J H, Peyghambarian N, Barnes N P 2006 IEEE Photon. Tech. Lett. 18 334
- [8] Brian M W, Norman P B, Donald J R, Jiang S B 2006 J. Non-Cryst. Solids 352 5344
- $\left[\begin{array}{c} 9 \end{array} \right] \quad Balda \ R$, Lacha L M , Fernandez J , Fernandez-Navarro J M 2005

Opt. Mater. 27 1771

- [10] Jayasankar C K , Devi A R 1996 Opt . Mater . 6 185
- [11] Judd B R 1962 Phys. Rev. 127 750
- [12] Ofelt G S 1962 Chem. Phys. 37 511
- $\left[\begin{array}{c} 13 \end{array} \right] \ \ \, Tanabe \ \, S$, Tamai K , Hirao K , Soga N 1993 Phys . Rev . B 47 2507
- [14] Tanabe S 1999 J. Non-Cryst. Solids 259 1
- [15] McCumber D E 1964 *Phys*. *Rev*. A **134** 299
- [16] Zou X L , Izumitani T 1993 J. Non-Cryst. Solids 162 68
- [17] Zou X , Toratani H 1996 J. Non-Cryst. Solids 195 113
- [18] Tikhomirov V K, Mendez-Ramos J, Rodriguez V D, Furniss D, Seddon A B 2007 J. Alloys Compd. 436 216
- [19] Baia L , Iliescu T , Simon S , Kiefer W 2001 Mol. Struc. 599 9
 - [20] Miyaji F , Sakka S 1991 J. Non-Cryst. Solids 134 77
 - [21] Gan F X, Chen S Z, Huang G S 1982 Acta Opt. Sin. 2 252 (in Chinese)[干福熹、陈世正、黄国松 1982 光学学报 2 252]
 - [22] Belkebir A, Rocha J, Esculcas A P, Berthet P, Gilbert B, Gabelica Z, Llabres G, Wijzen F, Rulmontm A 2000 Spectrochim. Acta A 56 435
 - [23] McKeown D A, Merzbacher C I 1995 J. Non-Cryst. Solids 183 61

Lin Qiong-Fei¹) Xia Hai-Ping¹[†] Wang Jin-Hao¹) Zhang Yue-Pin¹) Zhang Qin-Yuan²

1) Institute of Photo-electronic Functinal Materials, Ningbo University, Ningbo 315211, China)

2) Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology of Ministry of Education ,

Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China)

(Received 6 July 2007; revised manuscript received 6 November 2007)

Abstract

Glasses with the compositions of (77 - x)GeO₂-xGa₂O₃-8Li₂O-10BaO-5La₂O₃(x = 4.8, 12, 16) doped with 8.0mol% of Tm³⁺ were fabricated. The spectroscopic properties and thermal stability were investigated experimentally with increasing Ga₂O₃ content from 4mol% to 16mol%. It is noted from differential thermal analysis curves that the thermal stability of the glasses are improved by increasing Ga₂O₃. According to Judd-Ofelt theory, the Judd-Ofelt strength parameters ($\Omega_2, \Omega_4, \Omega_6$) of Tm³⁺ doped GeO₂-Ga₂O₃-Li₂O-BaO-La₂O₃ were calculated, by which the radiative transition probabilities, fluorescence branching ratios and radiative lifetimes were obtained. The emission spectra of Tm³⁺ -doped germanate glasses and the effects of Ga₂O₃ on the emission cross section first decrease along with the increase of Ga₂O₃ content from 4mol% to 16mol%, and then increase. The effects of Ga₂O₃ on the glass structure and the spectral parameters were also preliminarily investigated.

 $\label{eq:Keywords: Tm^{3+}-doped germanate glasses , spectroscopic properties , Judd-Ofelt parameters , thermal stability PACC : 7855 , 4270C , 7430E , 7820$

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60777030), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y406220) and the Doctoral Science Foundation of Ningbo, China (Grant No. 2005A610010).

[†] E-mail:hpxcm@nbu.edu.cn