掺杂对铌酸锂晶体非挥发 全息存储性能的影响*

付 博¹^(B) 张国权¹^(D) 刘祥明¹^(D) 申 岩¹^(D)
徐庆君⁴ 孔勇发¹⁾ 陈绍林¹⁾ 许京军¹^(D)
1) 南开大学弱光非线性光子学教育部重点实验室 天津 300457)
2) 南开大学物理科学学院光子学中心 天津 300071)
3) 中国工程物理研究院流体物理研究所 綿阳 621900)
4) 枣庄学院物理系 枣庄 277160)
(2007 年 7 月 4 日收到 2007 年 9 月 21 日收到修改稿)

通过研究掺镁、掺锌和掺铟同成分铌酸锂晶体的紫外-红光双色全息存储性能,发现双色记录响应时间均比单 色记录时明显缩短,最多的可减小3个数量级;双色记录灵敏度大幅度提高,在掺镁5 mol.%的晶体中可达到1.1 cm/J.在掺杂浓度超过抗光损伤阈值的铌酸锂晶体中,均可实现非挥发全息存储.但是,在掺镁、锌样品中,深、浅能 级中心上的光栅反相,而在掺铟样品中则表现为同相.这是由于掺杂离子的种类不同,在铌酸锂晶体中形成的缺陷 中心也不同所引起的.

关键词:掺杂,铌酸锂晶体,非挥发,全息存储 PACC:4240,4265,4280T

1.引 言

铌酸锂晶体具有优异的光学性质,并且易于进 行大尺寸生长,是一种重要的光学功能材料.它在非 线性光学、集成光学、准相位匹配、光波导等方面都 有着广泛的应用前景,多年来一直受到密切关注.尤 其是利用光折变效应,在铌酸锂晶体中记录的全息 光栅,具有可重复擦写、波长和角度选择等特性,使 其有望成为高密度体全息存储材料¹¹.但是,这种可 重复擦写特性在信息读出时也会对全息光栅进行破 坏,造成存储信息的缺失,即信息的挥发性.于是,人 们采用了热固定^[2,3]、电固定^[4,5]、双波长存储^[6,7]、 双色存储^[8–10]等方法来克服这个缺点.其中,双色全 息存储技术以其简单的全光学方法操作的特点而受 到重视.长期以来,对铌酸锂晶体光折变性质的研究 主要集中在可见和近红外波段,这在很大程度上限 制了铌酸锂的应用范围.近年来,人们对紫外波段的

光存储、光耦合材料的需求日益强烈,许多研究组都 相继开展了对紫外光折变效应的研究,在20世纪 90年代 "Jungen^[11]和 Laeri 等^[12]报道了名义纯同成 分铌酸锂中紫外光折变效应主要是由扩散机理引起 的,主导的电荷载流子是空穴.2000年以来,Xu^[13], Oiao 等^{14]}相继在掺镁、锌、铟的同成分铌酸锂中发 现了紫外光折变增强效应. Zhang 等^{15]}在高掺镁 (5.0 mol.%) 泥酸锂晶体中发现了一个从近紫外到 近红外的宽紫外光致吸收带,这一吸收带的出现,可 能是由于阳离子空位附近的 02- 俘获了一个被紫外 光激发的空穴,形成浅能级中心 O^- 所致.Zhang等 人还利用这一紫外光致浅能级中心,在掺镁铌酸锂 晶体中成功实现了紫外-近红外双色全息存储16]。 由此可见 铌酸锂晶体在紫外波段具有许多不同于 可见光波段的物理性质,对这些问题进行深入研究, 可以丰富人们对铌酸锂光学性质以及缺陷结构的认 识,从而为拓展其应用范围奠定基础.

本文以非相干紫外光为敏化光、632.8 nm 的红

^{*} 国家自然科学基金(批准号 100678021,10334010) 教育部新世纪优秀人才支持计划(批准号:NCET-04-0234),天津市国际科技合作项目(批准 号 06YFGHHZ00500) 国家重点基础研究发展计划(批准号 2007CB307002 2006CB921703) 和高等学校学科创新引智计划资助的课题。

[†] 通讯联系人.E-mail:zhanggq@nankai.edu.cn

光为记录光 对同成分铌酸锂晶体的非挥发全息存储特性随掺杂种类、浓度的变化进行了系统的实验研究,并对与实验现象相关的微观机理进行了分析和讨论.

2.样 品

实验中 我们共使用了 3 个系列的样品 分别是 掺镁、掺锌和掺铟的同成分铌酸锂晶体 样品的基本 参量在表1中列出,掺杂的同成分铌酸锂晶体都是 采用 Czochralski 方法从熔融体中生长而成的 掺杂 浓度都是指熔融体中掺杂物的摩尔浓度,晶体的 + c方向都是由热释电效应判定的.我们测量了全 部样品的吸收光谱结果表明。在 380-800 nm 波长 范围内样品的吸收系数均较小,没有出现任何吸收 峰和吸收带 然而,在波长小于 380 nm 的近紫外波 段,如图1所示,样品的吸收系数急剧增大,为了加 以比较 我们还测量了名义纯同成分铌酸锂晶体的 吸收光谱.可以看出 掺杂会使铌酸锂晶体的吸收边 (吸收系数 $\alpha = 15 \text{ cm}^{-1}$ 时对应的波长)紫移.图 1 还 给出了全部样品的 OH⁻ 振动光谱.H⁺ 以 OH⁻ 的形 式存在于铌酸锂晶格中,它对周围的离子环境非常 敏感 因此 通常把它作为光谱探针来研究铌酸锂晶 体的缺陷结构 将 OH⁻ 吸收峰位置的移动作为判断 掺杂达到阈值浓度的重要标志^{17]}.从图中可以看 出 随着掺杂浓度的增加 .掺镁、锌和铟的铌酸锂晶 体中 OH⁻ 吸收峰由原来的 3484 cm⁻¹左右分别移到 3536 cm⁻¹ 3530 cm⁻¹和 3509 cm⁻¹附近.其中值得注 意的是,对于 CZn7 其 3484 cm⁻¹的吸收峰并未完全 消失,但是,位于3530 cm⁻¹处的吸收峰已经出现,表 明这块样品的掺杂浓度处于阈值浓度附近.

₹1	全部样品的基本参数
51	エロリーエロリータイシン

耒

样品 ^{a)}	掺杂离子	掺杂浓度/mol.%	厚度/mm
CMg4		4.0	3.3
CMg5	Mg	5.0	2.7
CMg9		9.0	3.3
CZn5		5.4	2.1
CZn7	Zn	7.2	2.0
CZn9		9.0	2.0
CIn1		1.0	3.4
CIn3	In	3.0	3.4
CIn5		5.0	3.4

a)全部样品均为 Y 片。

图 1 全部样品的吸收光谱和 OH⁻ 振动光谱 (a) 渗镁铌酸锂; (b) 渗锌铌酸锂 (c) 渗铟铌酸锂

3. 实验结果与讨论

我们利用二波耦合的光路,进行了双色非挥发 全息存储的实验.实验中所使用的敏化光源是中心 波长为 365 nm、波长范围为 320—410 nm 的非相干 紫外光.紫外光经过石英透镜聚焦在晶体上,光强为 120 mW/cm².记录光是 He-Ne 激光器发出的 632.8 nm 的红光,被分束器分成等光强的两束并对称入射 到晶体上,每束光强为 122.9 mW/cm²,空气中夹角 为 32.8°,对应光栅间距 $\Lambda = 1.1 \mu$ m.实验中,晶体的 c 轴方向均为水平放置,记录光和读出光全部为 e 光.

图 2 为全部样品的双色全息存储全过程,光栅 的衍射效率 $\eta = I_d (I_1 + I_d) \times 100\%$,其中 , I_d 和 I_1 分别为衍射光和透射光的光强,在记录阶段,同时打 开抽运光和两路记录光 通过两个反相的快门间歇 性地挡住一路记录光,来采集另一路光的透射光和 衍射光的时间变化过程 记录达到饱和后 同时关掉 抽运光和其中一路记录光 ,用另一路记录光沿原方 向入射到晶体上进行读出;擦除时,再次打开抽运 光,用一路记录光监测.结果表明,当掺杂浓度低于 所谓的抗光损伤阈值浓度(掺镁约 4.6 mol. % 掺锌 约 7 mol. % 掺铟约 3 mol. %)时,并不能实现非挥 发全息存储:在用一束红光进行读出时.很快会将光 折变光栅完全擦除,光栅擦除时间和光栅建立时间 在同一个数量级.当掺杂浓度高于阈值浓度时 掺镁 和掺锌的样品在记录阶段先快速上升达到最大 然 后稍有下降并逐渐趋于平稳,这时关掉紫外光,只用 一束红光进行读出,衍射效率先迅速下降到0,然后 上升至一个饱和值,并维持该饱和值,即实现了非挥 发存储: 而掺铟样品 CIn5 在双色记录中衍射效率达 到饱和、只用一束红光读出时 衍射效率直接下降达 到稳态,也实现了非挥发存储,值得注意的是,光栅 的非挥发性仅具有相对的意义,并不意味着光栅能 够永久保留,在我们的实验中,双色全息记录光栅建 立的时间常数在秒的量级(见表 2),而在读出阶段 之后保留的所谓非挥发光栅 在读出红光辐照下 其 衰减时间常数要比光栅建立时间常数大 3 个量级 以上.

双色记录灵敏度 *S* 表征了在存储介质中记录 光折变光栅的难易程度 其定义为

$$S = \partial \sqrt{\eta} / \partial t \Big|_{t=0} \left(I_{w} d \right), \qquad (1)$$

其中,I_w为记录光的总光强,d为晶体的厚度.在测 量灵敏度时,同时打开紫外敏化光与记录光,通过控 制曝光时间,在∆t时间(远小于晶体的响应时间) 内在晶体中写入光栅,并进行读出,利用存储示波器

图 2 (a) 券镁、(b) 券锌、(c) 券铟铌酸锂晶体双色全息存储的衍 射效率时间演化曲线. $I_{\rm UV}$ = 120 mW/cm², $I_{\rm R}$ = $I_{\rm S}$ = 122.9 mW/cm², Λ = 1.1 μ m

对这一过程进行记录,测出晶体中在△t时间内所 建立光栅的衍射效率,进而利用方程(1)计算出双色 记录灵敏度 S.

动态范围 *M*/# 是由 Mok 等人^[18]引入的参数, 表征了存储介质的存储容量,其定义为

$$M/\# = \tau_{e} \cdot \partial \sqrt{\eta} / \partial t \big|_{t=0} , \qquad (2)$$

其中, , , , 为光栅擦除时间常数.

表 2 同成分掺杂铌酸锂晶体单色和双色全息存储的主要参数^{a)}

		单色			双色	
样品	CMg4	CMg5	CMg9	CMg4	CMg5	CMg9
衍射效率 η/%	1.7	0.25	0.80	0.039	0.38	0.30
记录响应时间 τ/s	102	173	1161	4.0	1.3	1.1
灵敏度 S((cm/J))	0.035	0.046	0.021	0.095	1.1	0.55
动态范围 M/#	0.30	0.53	1.9	0.14	0.31	0.12
		畄A			现在	
		半巴			XE	
样品	CZn5	CZn7	CZn9	CZn5	CZn7	CZn9
衍射效率 $\eta/\%$	0.28	0.52	0.066	0.005	0.067	0.087
记录响应时间 τ/s	940	155	51	8.1	2.7	2.1
灵敏度 S/(10 ⁻² cm/J)	2.4	5.5	1.6	1.2	27.1	27.2
动态范围 M/#	1.2	0.4	0.039	0.004	0.085	0.040
		苗石			77.4	
		甲巴			XE	
样品	CIn1	CIn3	CIn5	CIn1	CIn3	CIn5
衍射效率 η/%	0.22	0.43	> 0.64	0.014	0.015	0.054
记录响应时间 τ/s	331	1166	2059	9	10	68
灵敏度 <i>SI</i> (10 ⁻³ cm/J)	8.9	6.6	4.4	17.3	10.0	4.1
动态范围 M/#	0.24	0.64	0.75	0.008	0.009	0.025

a) $I_{\rm UV} = 120 \text{ mW/cm}^2$, $I_{\rm R} = I_{\rm S} = 122.9 \text{ mW/cm}^2$, $\Lambda = 1.1 \mu \text{m}$.

表 2 列出了掺镁、掺锌和掺铟样品双色非挥发 全息存储的特征参数.作为对比,同时也给出了只用 632.8 nm 的红光进行全息存储时的参数.可以看 出,当引入紫外光辐照后,全部样品的饱和衍射效率 和动态范围均有所下降,这一方面是由于紫外光对 全息光栅具有强烈的擦除作用,另一方面是由于晶 体的光电导有所增加.在掺镁和掺锌样品中,随着掺 杂浓度的增加,记录响应时间明显缩短,最多可达3 个数量级,双色记录灵敏度显著提高,尤其是在 CMg5 中已达到 1.1 cm/J.而在掺铟样品中,虽然响 应时间也有很大幅度的缩短,但仍比前两种样品大 1 个数量级,双色记录灵敏度也没有明显的提高.以 上结果表明,与掺铟铌酸锂相比,掺锌、特别是掺镁 铌酸锂更适合于作为紫外波段实时快响应的全息记 录材料.

我们注意到只有当掺杂浓度超过抗光损伤阈值 的晶体中才能实现非挥发存储,并且不同掺杂离子 的铌酸锂晶体表现出不同的双色全息存储性质.紫 外敏化光以其较高的光子能量能够激发晶体中较深 能级上的载流子,从而导致深能级也参与了全息存 储过程,最终光栅分别记录在晶体中的深、浅能级 上.从图2可以看出,在掺镁、掺锌样品中深、浅能级 上的光栅为反相光栅,而在掺铟样品中则为同相光 栅.而非挥发全息光栅只有在掺杂浓度超过抗光损 伤阈值的晶体中才能实现的实验事实,表明这些紫 外敏感的深能级中心的出现与掺杂浓度有着密切的 联系.根据 Li 空位模型,向铌酸锂晶体中掺入镁、 锌、铟等离子时 ,它们首先会把反位 Nbr 驱赶至正常 的 Nb 位 ,当掺杂浓度超过抗光损伤阈值浓度时 ,晶 体中的本征缺陷 Nb₁^{4+/5+} 基本上完全消失,掺杂离 子开始进入正常 Nb 位,并在晶体中形成新的缺陷 中心,所不同的是,镁和锌同属于二价掺杂离子,它 们在铌酸锂晶格中的占位机理和电荷补偿机理相类 似 分别会形成 Mg_{Nb}³⁻和 Zn_{Nb}³⁻ 缺陷^[19,20],而铟是 三价掺杂离子 研究表明^{21,22}] Jn³⁺进入铌酸锂晶格 时 通常形成 In_u-In_w 缺陷簇结构,以实现电荷自补 偿,三种掺杂离子形成了两种不同类型的缺陷,导致 不同铌酸锂晶体中非挥发全息存储现象的差异.结 合紫外光致吸收的实验结果[15,16],我们初步判断参 与双色全息记录的浅能级中心和 Li 空位附近的 O^- 空穴小极化子有关,而到目前为止,对于深能级中心 对应缺陷的认定仍然缺少实验依据 我们猜测可能 和晶体中的 $M_{g_{Nb}}^{3-}$ 、 Zn_{Nb}^{3-} 和 In_{Nb}^{2-} 等缺陷有关.根 据光折变效应光激发载流子的带输运模型 深、浅能 级上光栅是反相还是同相,由参与光激发载流子输 运过程的缺陷中心的性质所决定 一般来讲 参与光 激发载流子输运过程的缺陷中心不同,其表现出来 的双色全息记录行为也将不同,由于缺少深、浅能级 中心相关的光学参数,目前我们还无法对高掺镁、锌 和铟铌酸锂晶体的双色全息记录过程给出定量的理 论描述.另外,CZn7再次表现出比较特殊的性质,从 CZn7的OH⁻振动光谱已经知道,在这块样品中锌离 子已经开始进入正常的Nb位,形成Zn_{Nb}³⁻缺陷,但 是它的全息存储现象却与那些低于阈值的样品相类 似.我们认为,这主要是因为Zn的电负性要比Mg 高^[23],它会在反位Nb_{Li}完全消失之前就开始替换正 常位置上的Nb,而晶体中残余反位Nb_{Li}的存在,使 新的缺陷在全息存储过程中尚不能发挥主要作用.

4.结 论

本文系统地研究了掺杂对同成分铌酸锂晶体双

色全息存储性能的影响.通过对不同掺杂浓度铌酸 锂晶体的紫外-红光双色全息存储衍射效率、灵敏 度、响应时间、动态范围等参数的测量,发现掺杂浓 度超过抗光损伤阈值的铌酸锂晶体在引入紫外光辐 照后,晶体的响应时间明显缩短,记录灵敏度显著提 高,在样品 CMg5 中更是达到了 1.1 cm/J,这对铌酸 锂在紫外波段实时快速响应方面的应用十分有利. 另外,铌酸锂晶体中双色光折变光栅的性质对掺杂 浓度有很强的依赖性,只有在那些超过抗光损伤阈 值浓度的晶体中才实现非挥发存储.在掺镁和掺锌 铌酸锂中,深、浅能级中心上的光栅反相,而在掺铟 铌酸锂中则为同相,我们认为这可能和掺杂离子引 入的缺陷种类不同有关.

- [1] Chen F S , Lamacchia J , Fraser D 1969 Appl. Phys. Lett. 13 223
- [2] Amodei J J , Staebler D L 1971 Appl. Phys. Lett. 18 540
- [3] Staebler D L , Amodei J J 1972 Ferroelectrics 3 107
- [4] Micheron F, Bismuth G 1972 Appl. Phys. Lett. 20 79
- [5] Micheron F , Bismuth G 1973 Appl . Phys . Lett . 23 71
- $\left[\begin{array}{c} 6 \end{array} \right] \quad McRuer \; R$, Wilde J , Hesselink L 1989 Opt . Lett . $\mathbf{14}$ 1174
- [7] Külich H 1991 Appl. Opt. 30 2850
- [8] Von der Linde D, Glass A M, Rodger K F 1974 Appl. Phys. Lett. 25 155
- [9] Von der Linde D, Glass A M, Rodger K F 1975 Appl. Phys. Lett. 26 22
- [10] Bai Y S , Kachru R 1997 Phys. Rev. Lett. 78 2944
- [11] Jungen R , Angelow G , Laeri F 1992 Appl. Phys. A 55 101
- [12] Laeri F , Jungen R , Angelow G 1995 Appl. Phys. B 61 351
- $\left[\begin{array}{cc} 13 \end{array} \right] \ \ Xu \ J$, Zhang G , Li F , Zhang X , Sun Q , Liu S , Song F , Kong F ,

Chen X , Qiao H , Yao J , Zhao L 2000 Opt . Lett . 25 129

- [14] Qiao H , Xu J , Zhang G , Zhang X , Sun Q , Zhang G 2004 Phys. Rev. B 70 094101
- [15] Zhang G, Tomita Y 2002 J. Appl. Phys. 91 4177
- [16] Zhang G, Tomita Y 2003 J. Appl. Phys. 93 9456
- [17] Bryan D A , Gerson R , Tomaschke H E 1984 Appl . Phys . Lett . 44 847
- [18] Mok F , Burr G , Psaltis D 1996 Opt . Lett . 21 896
- [19] Iyi N, Kitamura K, Yajima Y 1995 J. Solid S tat. Chem. 118 148
- [20] Volk T R , Maximov B , Chernaya T 2001 Appl . Phys . B 72 647
- [21] Volk T R , Rubinina N M 1992 Ferroelectrics Letters 14 37
- [22] Volk T R , Wohlecke M , Rubinina N M 1995 Appl. Phys. A 60 217
- [23] Volk T R, Rubinina N, Wöhlecke M 1994 J. Opt. Soc. Am. B 11 1681

2951

Influence of dopants on nonvolatile holographic storage in lithium niobate *

Fu Bo^{1,B,)} Zhang Guo-Quan^{1,D,)†} Liu Xiang-Ming^{1,D,)} Shen Yan^{1,D,)} Xu Qing-Jun^{4,)}

Kong Yong-Fa¹) Chen Shao-Lin¹) Xu Jing-Jun¹⁽²⁾

1 🗴 The Key Laboratory of Weak Light Nonlinear Photonics (Nankai University), Ministry of Education , Tianjin 300457 , China)

2 X Photonics Center , College of Physics Science , Nankai University , Tianjin 300071 , China)

3 🕽 Institute of Fluid Physics , China Academy of Engineering Physics , Mianyang 621900 , China)

4 Department of Physics , Zaozhuang College , Zaozhuang 277160 , China)

(Received 4 July 2007; revised manuscript received 21 September 2007)

Abstract

By studying the ultraviolet-red two-color holographic storage performances of Mg-, Zn- and In-doped lithium niobate crystals, we found that the response time of the two-color recording could be shortened by as much as 3 orders of magnitude compared to that of one-color recording, and the two-color recording sensitivity was improved significantly, which was measured to be 1.1 cm/J in the crystal doped with Mg of 5 mol.%. Nonvolatile holographic storage was achieved in the crystals with doping concentrations above the damage-resistant threshold value. However, gratings on the deep centers and the shallow centers were out of phase in Mg- or Zn-doped lithium niobate, while those in In-doped lithium niobate were in phase. We consider that different defects induced by different dopants are responsible for the observed results.

Keywords : dopants , lithium niobate , nonvolatile , holographic storage PACC : 4240 , 4265 , 4280T

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 60678021 and 10334010), the Program for New Century Excellent Talents in University (Grant No. NCET-04-0234), the Municipal International Cooperation Program of Tianjin (Grant No. 06YFGHHZ00500), the "973" Program (Grant Nos. 2007CB307002, 2006CB921703), and the Institution of Higher Education.

[†] Corresponding author. E-mail : zhanggq@nankai.edu.cn