钛宝石飞秒激光振荡器的稳定性改善*

曹士英¹²⁾ 张志刚¹²⁾ 柴 路¹⁾ 王清月¹⁾

1)(天津大学精密仪器与光电子工程学院超快激光研究室,信息技术科学教育部重点实验室,天津 300072)

2)(北京大学信息科学技术学院,量子信息与测量教育部重点实验室,北京 100871)

(2007年6月8日收到 2007年9月7日收到修改稿)

对钛宝石飞秒激光器脉冲序列的强度和时间的稳定性进行了分析.实验比较了钛宝石飞秒激光器底板有无水 冷的条件下 输出锁模脉冲序列的稳定性以及中心波长和光谱宽度的变化.结果表明对钛宝石飞秒激光器底板施 加水冷可改善锁模脉冲的稳定性.

关键词:钛宝石激光器,稳定性,飞秒脉冲 PACC:4260,4260B

1.引 言

自 1991 年 Spence 实现钛宝石激光器飞秒脉冲 输出以来^[1],国内外在钛宝石飞秒激光器的结构设 计^[2,3]、器件改进^[4-7]和实际应用等方面都取得了飞 速的发展.近年来,诸多钛宝石飞秒激光器的研究主 要集中于超短脉冲^[8]、超宽光谱^[9,10]、超低阈值抽运 功率^[11,12]、高能量输出^[13]以及锁模自启动^[14]等方 面,而对钛宝石飞秒激光器稳定性的实验研究及改 进却少有报道.

人们在追求超短脉冲、超宽光谱和超低阈值抽 运功率的同时也在不断地将飞秒激光器向实用化、 小型化、稳定性的方向发展 因此复杂环境中钛宝石 飞秒激光器的稳定锁模与检测对于许多实际工程研 究和应用来说至关重要.

钛宝石飞秒激光器的稳定性主要受三个因素影 响 机械振动、空气气压变化和温度变化.针对不同 的影响因素,往往采取不同的措施加以抑止.机械振 动的影响可以通过在激光器内采取小型紧固镜架的 方法得以解决.当然,高性能光学平台也可以有效地 减少外界不可预知振荡对激光器锁模脉冲序列的干 扰.空气气压变化的影响可以采取将整个激光器进 行密闭的方法加以解决.这不仅可以避免空气气压 变化对激光器造成的影响,也有助于抑止外界噪声 和灰尘颗粒的干扰.温度变化的影响主要采取将激 光器搭建在一定厚度的铸铝板上.铸铝板一个典型 特点在于,它可以有足够的热量积累,但在某种程度 上它还是依赖于外界温度环境的变化.在铸铝板底 部与台面之间加上橡胶进行隔离或对整个底板进行 水冷却也可以有效避免铸铝板与光学平台之间的热 量传导造成激光器腔长的变化对输出脉冲稳定性的 影响.

总之,多种因素的影响使得钛宝石飞秒激光器 输出的锁模脉冲序列并非是由完全相同的脉冲构 成,脉冲与脉冲之间总会在诸如能量、振幅、重复频 率等方面存在随机的起伏与变化.了解脉冲的这些 变化与特性对于脉冲的应用来说至关重要.利用傅 里叶光学的知识可知,通过监测脉冲序列功率谱,可 以获得关于脉冲在时间上的抖动以及能量、重复频 率等参数的变化.在实验中我们主要通过电谱仪监 测脉冲序列的功率谱,研究钛宝石飞秒激光器的稳 定性并对其进行改善.

2. 激光器的稳定性分析

2.1. 理论模型

由文献 15 可知 非理想脉冲序列 F(t)的功率 谱 P_t(ω)可以表示为

† E-mail: caosy01@yahoo.com

^{*} 国家自然科学基金重大项目(批准号 160490280),国家自然科学基金(批准号 160578007)资助的课题.

 $P_{\mu}(\omega) = (2\pi/T)^{\beta} |\tilde{f}(\omega)|^{2}$ $\times \sum_{\mu} [\delta(\omega_{\mu}) + P_{A}(\omega_{\mu}) + (2\pi\mu)^{\beta}P_{f}(\omega_{\mu})],$ (1) 其中 $\omega_{\mu} = (\omega - 2\pi\mu/T), \mu$ 是整型变量, $\mathcal{M} - \infty$ 到 + ∞ ; T为脉冲序列的时间周期; $\tilde{f}(\omega)$ 为单个脉冲

(Jitter).

非理想脉冲序列的功率谱模拟图,如图1所示. 从图1和(1)式可以看出,功率谱 $P_{\rm F}(\omega)$ 代表了以 ω_{μ} 为中心频率 $\Delta\omega = 2\pi/T$ 为频率间隔的一系列频 带.每个频带都可以划分为三个不同的部分. δ 函数 为第一项,表示理想无噪声的脉冲功率谱;第二项表 示振幅噪声的功率谱;第三项包括重复频率的变化, 即时间上 Jitter 的功率谱.其中,第三项 Jitter 项与频 带次序的平方 μ^2 有关.由(1)式可知 μ^2 可以区别 两种不同的噪声,从而决定 $P_A(\omega)$ 和 $P_J(\omega).当 \mu$ = 0 时 Jitter 项为零,因此从 ω = 0 的基频中可直接 获得脉冲振幅抖动的功率谱.而当阶数 μ 很高时, Jitter 项起主导主用,因此 Jitter 的功率谱 $P_J(\omega)$ 可 以直接从 μ 的高阶次的频率成分中获得.

图 1 非理想脉冲序列各阶功率谱示意图(虚线为各阶振幅噪声 包络 ;点划线为各阶 Jitter 噪声包络)

图 2 给出了为第 μ 阶的功率谱示意图 ,其中 P_1 表示带噪声脉冲序列的功率 , P_2 表示 Jitter 噪声的 功率 , P_3 表示振幅噪声的功率.脉冲序列强度(振 幅 和时间上的抖动可分别通过下列公式获取[15]:

$$\frac{\delta F(t)}{F_0(t)} = \left[\left(P_3 / P_1 \right)_0 \Delta f_A / \Delta f_{\rm res} \right]^{1/2} , \qquad (2)$$

$$\frac{\delta T(t)}{T(t)} = (2\pi n)^{-1} [(P_2/P_1)_n \Delta f_J / \Delta f_{\rm res}]^{/2} , (3)$$

其中, Δf_A , Δf_J 分别为振幅噪声和 Jitter 噪声的带 宽 Δf_{rs} 为扫描分辨率.

图 2 非理想脉冲序列第 µ 阶功率谱示意图(P₁ 表示脉冲功率; P₂ 表示 Jitter 功率; P₃ 表示振幅噪声功率; B 为振幅噪声带宽)

2.2. 激光器输出锁模脉冲的稳定性改善

为了克服外界环境变化对激光器造成的影响, 我们对整个激光器的水冷进行了改造,增加了对激 光器底板的整体冷却并与钛宝石晶体水冷串连保持 恒温,以此测试激光器输出锁模脉冲序列稳定性.为 了清楚地分析激光器底板有无水冷时激光器输出锁 模脉冲序列稳定性的变化,我们采用电谱仪监测了 锁模脉冲的频谱,扫描频率为 10 kHz,扫描分辨率为 30 Hz,视频分辨率为 30 kHz 积分时间 3 s,分别取锁 模脉冲的第零阶和第十阶的频谱.

实验结果表明,有水冷和无水冷时的第零阶频 谱振幅噪声分别为 1.1×10⁻³和 2.1×10⁻³;有水冷 和无水冷时的第十阶频谱的 Jitter 值分别为 5.0× 10⁻⁶和 1.58×10⁻⁴.这说明,有水冷时的振幅噪声略 低于无水冷时的振幅噪声;对于高阶次(第十阶)有 水冷时的 Jitter 值要远远小于无水冷时的 Jitter 值. 因此增加对激光器底板的水冷可使输出脉冲的振幅 噪声和 Jitter 值大大减小,起到了稳定脉冲的作用.

同时我们利用电谱仪还监测了激光器锁模脉冲 的重复频率和脉冲强度的变化情况,如图 3 和图 4 所示.在图 3 中,曲线 1 为激光器底板无水冷情况 下,激光器重复频率的变化曲线;曲线 2 为对激光器

2973

底板施加水冷情况下 激光器重复频率的变化曲线. 在图 4 中,曲线 1 为激光器底板无水冷情况下,激光 器输出锁模脉冲强度的变化曲线;曲线 2 为对激光 器底板施加水冷情况下,激光器输出锁模脉冲强度 的变化曲线.

由图 3 分析可知,当激光器底板不施加水冷时, 激光器输出锁模脉冲的重复频率随着时间的变化逐 渐变小,在 1.0 h 的时间内仍不能实现稳定运转,实 验测试结果为经过 1.5—2.0 h 预热后激光器才能 实现稳定运转.由于锁模脉冲的重复频率由 $v = \frac{c}{2L}$ 决定,其中 L 为激光器的腔长,这说明在未加水冷 激光器开始工作时腔长逐渐变长,这主要是由于在 高功率抽运下引起热量积累导致温度升高造成的结 果.尽管温度变化很小,但是对腔长的影响还是不可 忽视的.此时输出脉冲的强度变化也是比较剧烈的, 如图 4 中的曲线 1 所示.

图 3 有无水冷时激光器输出锁模脉冲重复频率的变化曲线

图 4 有无水冷时激光器输出锁模脉冲强度的变化曲线

为了避免热量积累导致腔长增加造成的重复频

率的下降并稳定输出的锁模脉冲 我们对激光器底 板施加了循环水以带走腔内产生的热量,并平衡温 度的变化,在这种情况下,我们同样监测了激光器输 出锁模脉冲重复频率的变化情况 即图 3 中的曲线 2.曲线2的变化方向正好和曲线1变化的方向相 反 这说明对激光器底板的冷却确实起作用了 定使 得激光器的腔长变短,导致了重复频率增加.这说明 施加水冷后激光器的腔长突然间得到了缩短导致锁 模脉冲重复频率增加 从图 3 中的曲线 2 可知 经过 约0.6h后激光器可实现稳定运转,实际上在这个 过渡过程中激光器输出的锁模脉冲的强度变化也是 十分剧烈,如图4中的曲线2的开始阶段,随着时间 的增加 水冷使激光器内部产生的热量逐渐被带走 并达到一个稳定的状态 这时激光器腔长的变化也 逐渐缓慢,在图3中曲线2上体现出较为缓慢的变 化 这时输出的锁模脉冲的强度的抖动变化也随之 变缓,如图4中曲线2所示.

尽管有水冷和无水冷在短时间内都未能使激光 器输出锁模脉冲的重复频率达到稳定,但是从图 3 中还是可以看出有水冷时重复频率达到稳定所需要 时间要短于无水冷时所需的时间.另外从图 4 中也 可以看出,在施加水冷后激光器输出的锁模脉冲的 强度变化在短时间内即可趋于平稳状态.这说明在 条件允许的情况下,对激光器底板的整体冷却比不 冷却的效果明显.需要指出的是,这里讨论的都是短 时间的稳定性,从长时间来看,加水冷后经过 0.6 h 以及未加水冷经过 1.0—2.0 h 后都可以达到相似 的稳定状态,但加水冷后这个过渡时间将得到缩短.

为了进一步检验激光器输出光谱质量的稳定 性,在锁模稳定一段时间后,我们利用光谱议(Ocean Optics SD2000)长时间监测有水冷和无水冷条件下 光谱的稳定性,如图 5 所示.该激光器在有水冷条件 下长时间锁模时中心波长变化在±1 nm 之间,光谱 宽度(光谱的半高全宽)的变化在±1.5 nm 之间,光谱 宽度(光谱的半高全宽)的变化在±1.5 nm 之间;而 无水冷时长时间锁模时中心波长变化在±1.5 nm 之间,光谱宽度(光谱的半高全宽)的变化在±2 nm

图 5 锁模脉冲光谱随时间变化曲线 (a)中心波长随时间变化曲线 (b)光谱宽度随时间变化曲线

3.结 论

本文对钛宝石飞秒激光器的稳定性进行了分 析 实验分析比较了底板有无水冷时锁模脉冲序列 的稳定性变化以及中心波长和光谱宽度的变化.实 验测试结果表明对激光器底板施加水冷大大改善输 出脉冲的稳定性.实验结果为建立在复杂环境中稳 定工作的钛宝石飞秒激光器提供了依据,有利于更 稳定锁模脉冲的实现,并推动钛宝石飞秒激光器的 广泛应用.

- [1] Spence D E , Kean P N , Sibbett W 1991 Opt . Lett . 16 42
- [2] Zhang X H, Zhang G Y, Jiao Z Y, Gu X W, Yan C F, Wu D E, Chai L, Cao S Y 2005 Acta Phys. Sin. 54 1213 (in Chinese)[张 晓华、张光寅、焦志勇、顾学文、颜彩繁、武丁二、柴 路、曹士 英 2005 物理学报 54 1213]
- [3] Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) [令维军、郑加安、贾玉磊、魏志义 2005 物理 学报 54 1619]
- [4] Keller U, 'tHooft G W, Knox W H, Cunningham J E 1991 Opt. Lett. 16 1022
- [5] Zhang ZG, Torizuka K, Itatani T, Kobayashi K, Sugaya T, Nakagawa T, Takahashi H 1998 Opt. Lett. 23 1465
- [6] Krtner F X , Matuschek N , Schibli T , Keller U , Haus H A , Heine C , Morf R , Scheuer V , Tilsch M , Tschudi T 1997 Opt . Lett. 22 831
- [7] Wu Z B, Wang Z, Liao C Y, Han Y K, Cao S Y, Zhang Z G, Wang Q Y, Shao J D 2005 Acta Opt. Sin. 25 216 (in Chinese)
 [吴祖斌、王 专、,廖春艳、韩英魁、曹士英、张志刚、王清 月、邵建达 2005 光学学报 25 216]
- $\left[\begin{array}{c} 8 \end{array} \right] \quad Ell \ R \ , Morgner \ U \ , Krtner \ F \ X \ , Fujimoto \ J \ G \ , Ippen \ E \ P \ , Scheuer$

V, Angelow G, Tschudi T, Lederer M J, Boiko A, Luther-Davies B 2001 Opt. Lett. **26** 373

- [9] Fuji T , Unterhuber A , Yakovlev V S , Tempea G , Stingl A , Krausz F , Drexler W 2003 Applied Physics B 77 125
- [10] Tian J R, Han H N, Zhao Y Y, Wang P, Zhang W, Wei Z Y 2006 Acta Phys. Sin. 55 4725 (in Chinese)[田金荣、韩海年、赵研 英、王 鹏、张 炜、魏志义 2006 物理学报 55 4725]
- [11] Kowalevicz A M , Jr. , Schibli T R , Krtner F X , Fujimoto J G 2002 Opt. Lett. 27 2037
- [12] Ling W J, Wei Z Y, Sun J H, Wang Z H, Tian J R, Jia Y L, Wang P, Han H N 2005 Acta Phys. Sin. 54 1619 (in Chinese)
 [令维军、魏志义、孙敬华、王兆华、田金荣、贾玉磊、王 鹏、 韩海年 2005 物理学报 54 4182]
- [13] Fernandez A, Fuji T, Poppe A, Fürbach A, Krausz F, Apolonski A 2004 Opt. Lett. 29 1366
- [14] Wang Y S, Liu H J, Cheng Z, Zhao W, Wang Y G, Ma X Y, Zhang Z G 2005 Acta Phys. Sin. 54 5184 (in Chinese)[王屹山、 刘红军、程昭、赵卫、王勇刚、马骁宇、张志刚 2005 物理 学报 54 5184]
- [15] Von der Linde D 1986 Applied Phyics B 39 201

Improving the stability of the Ti : sapphire oscillator *

Cao Shi-Ying^{1,2})[†] Zhang Zhi-Gang^{1,2}) Chai Lu¹) Wang Qing-Yue¹)

1 🕽 Key Laboratory of Optoelectronic Information Technical Science , Ministry of Education , China ;

Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China)

2) Institute of Quantum Electronics , School of Electronics Engineering and Computer Science , Peking University , Beijing 100871 , China)

(Received 8 June 2007; revised manuscript received 7 September 2007)

Abstract

Stability of the pulse intensity and timing jitter of the Ti : sapphire oscillator is analyzed in this paper. The stability, central wavelength and bandwidth of the pulse train from the Ti : sapphire oscillator with and without water cooling plate were experimentally compared. The results show that by introducing a water cooling plate, the stability of the Ti : sapphire oscillator can be improved.

Keywords: Ti: sapphire oscillator, stability, femtosecond PACC: 4260, 4260B

^{*} Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60490280), the National Natural Science Foundation of China (Grant No. 60578007).

[†] E-mail: caosy01@yahoo.com