非共面几何条件下 102 eV 电子碰撞 He 原子 电离的全微分截面*

孙世艳 贾祥富 师文强 李雄伟

(山西师范大学物信学院,现代物理研究所,临汾 041004) (2007年10月14日收到2007年11月19日收到修改稿)

利用 DS3C 模型研究了非共面几何(垂直平面与垂直动量转移平面)条件下,散射电子的散射角 θ₁ 取不同固定 值时,102 eV 的电子碰撞 He 原子单电离反应过程的完全微分截面(FDCS),将其计算结果与 3C,CCC 等理论模型及 实验数据进行了比较.结果表明 DS3C 模型能够较好地定性描述非共面几何(垂直平面与垂直动量转移平面)条件 下的碰撞结果,说明对于非共面几何条件下的碰撞过程,出射道三粒子间的动力学关联效应是比较强的.

关键词:非共面几何,单电离,全微分截面 PACC:3480D,3450H

1.引 言

电子碰撞原子分子电离反应是原子物理中最基 本的过程之一 广泛地出现在天体物理、量子化学、 等离子物理、X 射线激光、核聚变等领域,因此,其实 验与理论的研究有着极强的应用背景,引起了许多 物理学工作者的极大兴趣.实验上,基于 30 多年前 Ehrhardt 研究小组^[12]开拓性的工作,这些碰撞过程 可以通过所谓的(e_2e)完全实验详细地测量各参与 碰撞粒子的运动学行为,理论上在研究这些碰撞动 力学及运动学方面已取得了重大进展 出现了许多 优秀的理论模型与近似方法,如满足出射渐近边界 条件的解析三体连续库仑波[3-5]模型、扭曲波近 似[6-10]、基于非微扰近似的三体库仑体系数值解;如 ECS(the exterior complex scaling)法¹¹]及 CCC(the convergent close coupling 法^[12].这些理论方法对实验 结果的描述与解释都比较成功,使得人们能够较为 细致地探索这些相互作用的动力学问题^{13,14]}.

上述理论多年来一直限于所谓的共面散射几 何,即电离电子同散射电子与入射电子在同一平面. 然而,这并不能代表在全空间对理论的检验,正如由 Schulz 等人^[15]最近对快离子(100 MeV/u C⁶⁺)碰撞 He 电离的运动学完全实验,第一次在微扰范围(微扰参数等于 0.1),小能量和小动量转移情况下测量 了电离电子(*E* = 6.5 eV)的完全 3D 微分截面,揭示 了一个意想不到的结果——散射平面外有一较强的 电子出射截面.同样,在非共面几何条件下最近的快 电子(400—3000 eV)碰撞 Mg^[16]及相对慢电子 (102 eV)碰撞 He^[17],理论描述也出现了同样的问 题.上述理论方法,甚至是最新的在共面几何非常成 功的连续扭曲波理论也无法解释这一结果,直到现 在还没有对此定量的理论描述出现^[17],这无疑是对 理论上处理非共面电离过程提出了新的挑战,而对 Schulz 等人^[15]的实验结果,最近 Fiol 等人^[18]认为它 是一种由于动量转移分辨率不足的仪器效应.

最近研制并投入使用的先进反应显微镜¹⁹¹使 得人们可以记录高分辨率电子碰撞电离的 3D 图 像,即在(e_2e)实验中可得到出射电子能量≤15 eV 对所有方向的全微分截面(FDCS).其动量转移的分 辨率是离子碰撞电离实验分辨率的2至3倍.因此, 现在有可能检查电子碰撞电离是否在散射平面外存 在强电子出射,及微分截面受分辨率的影响.最近 Dürr等人^[20]研究了两种运动学情况下电子碰撞电 离的 3D 出射方式;一是小微扰参数、入射能量为 1 keV(类似于 Schulz 等人^[15]对离子碰撞的实验条

^{*} 山西省自然科学基金(批准号 20051008)和山西省回国留学人员基金(批准号 102-16)资助的课题.

[†] 通讯联系人. E-mail :jiaxf@sxnu.dns.edu.cn

件),在散射平面外发现了相对于离子碰撞电离情况 较弱的出射电子强度.二是减小入射能量到 102 eV, 在散射平面外,观察到了较1 keV 入射能量较强的 出射电子强度^[17],并与三体库仑波(3C),一阶和二 阶扭曲波方法(DWB1,DWB2)和收敛的密耦合近似 (CCC)理论结果进行了比较,结果不仅表明这几种 模型在垂直平面几何和实验结果定性符合得很好, 而且说明,虽然还没有关于在散射平面外离子碰撞 电离的理论模型,但 Schulz 等人离子碰撞电离的结 果并不是一种纯粹像 Fiol 等人^[18]强调的仪器效应. CCC 模型和 DWB 模型很好地解释了实验结果,但 DWB 模型过高估计了大动量转移时 binary 和 recoil 峰.3C 模型在散射平面内很好地预言了截面结构、 角度分布和峰的相对大小.但在散射平面外次级峰 的描述上完全失败.正像 Madison 等人^[21]论述的 3C 波函数无法描述当三个粒子很靠近时的情况.

基于共面几何中对中高能碰撞能量下应用较为 成功的三体库仑波模型^[3],Berakdar^[4]通过考虑三体 相互作用及屏蔽效应,引入三体库仑问题的动力学 屏蔽模型(DS3C),可有效地处理共面几何条件下低 入射能量碰撞问题.鉴于目前还没有非共面几何(特 别是垂直平面与垂直动量转移平面)条件下 DS3C 的理论结果,在这种特殊条件下 DS3C 的理论结果 能否定性或定量解释实验结果?影响截面的因素有 哪些?这些正是本文所要回答的问题.

2. 理论介绍

设入射电子的动量为 k₀ 与处于基态的 He 原 子碰撞后,散射电子和敲出电子的动量分别为 k₁ 和 k₂.考虑到两个出射电子的交换效应,那么这一过 程的全微分截面(FDCS)可表为

FDCS(
$$\mathbf{k}_{1}, \mathbf{k}_{2}$$
)
=(2π)⁴ $\frac{k_{1}k_{2}}{k_{0}} \left[\frac{3}{4} | f(\mathbf{k}_{1}, \mathbf{k}_{2}) - f(\mathbf{k}_{2}, \mathbf{k}_{1}) |^{2} + \frac{1}{4} | f(\mathbf{k}_{1}, \mathbf{k}_{2}) + f(\mathbf{k}_{2}, \mathbf{k}_{1}) |^{2} \right],$ (1)

式中 $f(k_1, k_2)$ 和 $f(k_2, k_1)$ 分别为直接散射振幅和 交换散射振幅 ,

 $f(\mathbf{k}_1, \mathbf{k}_2) = \phi_f^- |V_i| \phi_i^+$, (2) V_i 为入射电子和 He 原子靶在初通道的相互作用 势 即 $V_i = -\frac{2}{r_1} + \frac{1}{|r_1 - r_2|} + \frac{1}{|r_1 - r_3|}, \quad (3)$

式中 r_1 r_2 和 r_3 分别为入射电子(散射电子) 敲出 电子和束缚电子的位置矢量. ϕ_i^+ 是该体系入射道 渐近波函数 ,可表为具有动量 k_0 的平面波与 He 原 子基态波函数的乘积

$$\psi_{i}^{+}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) = (2\pi)^{-3/2} e^{ik_{0}\cdot\mathbf{r}_{1}} \varphi(\mathbf{r}_{2},\mathbf{r}_{3}), \quad (4)$$
$$\varphi(\mathbf{r}_{2},\mathbf{r}_{3}) = N(e^{-\alpha r_{2}-\beta r_{3}} + e^{-\beta r_{2}-\alpha r_{3}}), \quad (5)$$

 $\varphi(\mathbf{r}_2, \mathbf{r}_3)$ 为 He 原子基态波函数,其中 $\alpha = 2.163171$, $\beta = 1.188530$,N 是归一化常数.

 ψ_{f}^{-} 为散射道渐近波函数 ,可表示为 $\psi_{f}^{-}(r_{1},r_{2},r_{3}) = \phi_{f}(r_{1},r_{2})\phi_{ion}(r_{3}),$ (6)

 He^+ 波函数可取为类氢离子波函数(Z=2)

$$\phi_{ion}(r_3) = \sqrt{\frac{8}{\pi}} e^{-2r_3}$$
, (7)

 $\phi(\mathbf{r}_1,\mathbf{r}_2)$ 为两个出射电子波函数可表示为^[3]

χ(**r**

 $\phi_{(}(\mathbf{r}_{1},\mathbf{r}_{2}) = M e^{ik_{1}\cdot\mathbf{r}_{1}} e^{ik_{2}\cdot\mathbf{r}_{2}} \chi(\mathbf{r}_{1},\mathbf{r}_{2}),$ (8) 式中,常量 M 为

$$M = \frac{1}{(2\pi)^{3}} \exp\left[-\frac{\pi}{2}(\alpha_{1} + \alpha_{2} + \alpha_{12})\right]$$

$$\times \Pi(1 - i\alpha_{1})\Pi(1 - i\alpha_{2})$$

$$\times \Pi(1 - i\alpha_{12}), \qquad (9)$$

$$_{1}, \mathbf{r}_{2}) = \prod_{j=1}^{2} {}_{1}F_{1}[i\alpha_{j}; 1 : -i(k_{j}r_{j} + \mathbf{k}_{j} \cdot \mathbf{r}_{j})]$$

$$x_{1}F_{1}[i\alpha_{12};1;$$

$$-i(k_{12}r_{12} + k_{12} \cdot r_{12})], \qquad (10)$$

₁ F₁ 为合流超几何函数 ,α_i(*i* = 1 ,2 ,12)称为索末菲 参量^[3] ,它可表示为

$$\alpha_{1} = -\frac{Z}{k_{1}},$$

$$\alpha_{2} = -\frac{Z}{k_{2}},$$

$$\alpha_{12} = \frac{1}{2k_{12}},$$
(11)

其中 $k_{12} = \frac{1}{2} (k_1 - k_2)$) 油上述 $\alpha_i (i = 1, 2, 12)$ 得到的末态波函数称为 3C 波函数.

然而 3C 波函数是(e,2e)反应中末态三体系统 波函数的 Schrödinger 方程的近似解,仅考虑了三个 两体库仑子系统间的相互作用,而没有考虑任意两 体间的相互作用因第三个粒子的存在而受到的影 响.当入射粒子能量比较低时,末态三体间的动力学 屏蔽(也就是出射电子间的动量关联效应)十分明 显^[4,22-24].为了研究本文中非共面几何中的动量关 联效应,我们采用文献 22,23]中的动力学屏蔽模型 (DS3C)Sommerfeld 参量的具体形式表为

$$\beta_{1} = Z_{1}/k_{1} ,$$

$$\beta_{2} = Z_{2}/k_{2} ,$$

$$\beta_{12} = Z_{12}/2k_{12} ,$$
(12)

其中

$$Z_{12}(k_1, k_2) = [1 - (f \cdot g)^{2} a^{b_1}] a^{b_2} , \quad (13)$$

$$Z_{1}(k_1, k_2) = -Z_{\text{eff}} + (1 - Z_{12})$$

$$\times \frac{k_1^{1+a}}{(k_1^a + k_2^a) | k_1 - k_2 |} , (14)$$

$$Z_2(k_1 | k_2) = -Z_{\text{off}} + (1 - Z_{12})$$

$$\times \frac{k_{1}^{1+a}}{(k_{1}^{a}+k_{2}^{a})|k_{1}-k_{2}|}, (15)$$

$$f = (3 + \cos^{2}(4\alpha))/4 \, \tan \alpha = k_{1}/k_{2} ,$$

$$g = |\mathbf{k}_{1} - \mathbf{k}_{2}| \, (k_{1} + k_{2}) , \qquad (16)$$

$$b_1 = 2k_1k_2\cos(\theta_{12}/2)(k_1^2 + k_2^2),$$
 (17)

$$b_2 = g^2 \left[-0.5 + \frac{1}{4} \left(\sqrt{\frac{100Z_{\text{eff}} - 9}{4Z_{\text{eff}} - 1}} - 1 \right) \right]$$
, (18)

$$a = \frac{E_1 + E_2}{E_0},$$

$$Z_{\pi} = 1 + 0.8052 \exp(-1.2 \times E_2).$$
(19)

两个出射电子的相对角 $\theta_{12} = \cos^{-1} \hat{k}_1 \cdot \hat{k}_2$.由上 述 β_i (*i*=1,2,12)得到的末态波函数称为 DS3C 函 数.而对 3C 波函数索末菲参量的这种修正反映了 末态波函数中的动量相关效应.从本质上来说,它描 述了由于第三个粒子的存在而对两体库仑波函数产 生的影响,从而表示了三个两体库仑相互作用彼此 间的动力学屏蔽.

3. 结果与讨论

垂直)及垂直动量转移平面(敲出电子的运动和散射 平面内的动量转移垂直)非共面几何条件下,102 eV 的电子碰撞 He 单电离反应过程的全微分截面 (FDCS) 如图 1—3 所示.为了便于同其他数据进行 比较,我们已对图中 DS3C 结果乘上了一适当系数, 同时图中还给出了 Dürr 等人的实验结果和 CCC 理 论的计算结果^[17].

在图 1 和图 2 中,我们分别给出了出射电子能 量 E_2 为 10 eV和 5 eV,垂直平面几何条件下,散射 电子的散射角 θ_1 取四种不同固定值(8°,10°,15°, 20°)时,使用 DS3C和 3C模型得到能量为 102 eV的 入射电子碰撞 He(e 2e)反应的 FDCS 随敲出电子的 出射角 θ_2 (相对于入射方向)的变化曲线.从图 1、图 2 的实验数据可以看出,recoil 峰的角度位置接近于 入射轴,在 180°附近.它不仅出现在共面几何,而且 表明也出现在垂直平面几何.另外,在 70°和 290°附 近的两个小峰其相对于 recoil 峰的大小随散射角 θ_1 (或动量转移)的增加而增大,这样的峰结构与共面 几何条件下的情况完全不同,是截面一新的特征.

在图 1(a)和(b)中,DS3C,3C和 CCC 曲线都能 够较好地描述 FDCS 的结构特征,而 3C 结果在 recoil 峰处低于实验数据,DS3C比 3C 曲线在峰的位置及 大小更接近实验结果.随散射角的增大,从图 1(c) 和(d)中可以看出,DS3C 结果和 CCC 理论曲线几乎 都和实验结果重合,尤其在 $\theta_2 = 70^{\circ}$ 和 290°附近的两 个小峰处,与实验结果符合得很好.3C 曲线不仅过 高地估计了 recoil 峰,而且错误地给出在 70°和 290° 附近的两个峰的位置及相对大小,偏离了实验结果, 而 DS3C 结果大大改进了 3C 的这些不足.据 DS3C 模型与 3C 模型的差别表明,随着散射角(或动量转 移)的增大,非共面几何(垂直平面几何)中与碰撞体 系多体相互作用有关的动量关联效应逐渐增强(见 方程(13)-(15)),只有详细地考虑这种效应才能够 很好地预测峰的结构.

图 2 对应于敲出电子能量 E_2 为 5 eV, 垂直平面 几何条件下,不同动量转移时的情况,各理论曲线及 实验结果如图中所示.在图 χ a)中, DS3C 和 CCC 在 recoil 峰处很好地描述了实验结果,在 45°和 315°附 近的两个小峰处,它们基本上反映了实验事实. DS3C 在 θ_2 小于 60°和大于 310°处给出的值偏高, CCC 结果在 85°和大于 285°附近给出的值偏低.而 3C 结果不仅低估了 recoil 峰的大小,而且在 45°和 315°附近的两个小峰完全缺少及给出了不正确的峰

位置.随着动量转移的增大或散射角的增大,从图 (b)(c)和(d)中可以看出,3C结果同图((a)相反, 过高估了 recoil 峰的大小,且对两个小峰的描述完 全失败.同时可以看出,DS3C给出的结果在 recoil 峰 与两个小峰的相对大小更接近于实验事实;CCC结 果似乎高估了 recoil 峰的大小.不过由于在向前或 向后方向(0°,360°或180°)附近实验数据的缺少,很 难判断 DS3C和 CCC结果孰好孰劣,只能根据实验 结果在180°附近的变化趋势来推测.但可以肯定的 是在现在的几何条件下,由于 DS3C和 3C曲线的差 别较大,表明碰撞体系的多体相互作用及动力学屏 蔽变得较为突出,图中敲出电子的角度分布的实验 结果是对这一观点的有力支持.

为了更仔细地研究这一点,我们选择了垂直动 量转移平面几何.如图3所示,入射能量为102 eV的 电子碰撞 He 电离反应,敲出电子能量 $E_2 = 10 \text{ eV}$, 散射电子的散射角 $\theta_1 = 15^\circ$,FDCS 是敲出电子的出 射角 θ'_2 (定义为敲出电子运动方向与散射平面的夹 角, $\theta'_2 = 0^\circ$ 时对应于散射平面中的'向前'方向,可参 见文献 17 中的图 5 所示 的函数.这种特殊的非共 面几何条件的选择,至少有两个好处:一是从0°— 360°范围敲出电子的实验数据都可得到,可对理论 计算在所有角度范围内更为有效的检验,二是在这 种几何中, binary 和 recoil 峰的贡献很小, 可以更为 详细地研究入射电子和靶相互作用的高阶效应,如 图 3 所示 实验上在 $\theta_3 = 90^{\circ} \pi \theta_3 = 270^{\circ}$ 附近有两个 峰 对应于敲出电子出射垂直于散射平面时是两个 优惠方向,在高能电子和离子碰撞 He 电离反应中 也发现了这种类似的截面特征[20],对离子碰撞来 说 这种特征是由于入射离子靶核高阶相互作用的 结果^[25].同时,理论结果 Chen 和 Madison 的一阶扭 曲波^{[9,10,17} (DWB1-CM)和 3C 模型,在描述出射电子 截面角度分布和相对大小时完全失败 然而 二阶扭 曲波^[9,10,17]模型(DWB2-CM)大大改进了计算结果与 实验结果的符合程度,因为 DWB1-CM 的计算中考 虑了入射电子-靶核在初末通道中的相互作用,现在 的几何条件下实验上观察到的双峰结构并不能唯一 地解释为入射电子-靶的散射.事实上 DS3C 模型也

图 2 (a)-(d)图注同图 1,但 E₂ = 5 eV

3462

图 3 垂直于 q 平面几何条件下,入射电子能量为 102 eV,散射 角 $\theta_1 = 15^\circ$,电子碰撞 He 单电离的完全微分截面(黑点:Dürr 等 人相对实验数据^[17] 粗实线:DS3C 结果;细实线:3C 结果;点线 DWB1-CM 结果^[17];虚线:DWB2-CM 结果^[17])

大大改进了 3C 结果,与实验结果有相同的角度分 布,只是相对大小在峰处较实验结果低.表明,实验 中末通道存在强烈的三体动力学关联效应.

4.结 论

无论在垂直平面几何条件下,还是在垂直动量 转移平面几何条件下,DS3C模型的计算结果整体上 与实验符合得很好.动量转移越大时,DS3C理论结 果与实验结果符合得越好.对于较大的动量转移, 3C结果因给出的截面角分布与实验结果不一致,严 重偏离实验结果.说明修正后的 3C模型同样适用 于计算非共面几何(垂直平面与垂直动量转移平面) 条件下电子碰撞 He 原子电离反应的 FDCS,能够很 好地预测峰的结构.

DS3C 模型所得结果虽然总体上与实验结果符 合得较好,但与实验仍存在一些偏差,垂直动量转移 平面几何条件下在 $\theta'_2 = 70^{\circ}$ 和 290°附近两个次峰 处,DS3C 曲线给出的理论值偏小,造成这些不足可 能的原因是,初通道入射电子与中性靶原子之间的 短程作用及出射道多体动力学关联缺乏更仔细地考 虑,这也许是今后研究的方向之一.

- [1] Ehrhardt H, Schulz M, Tekaat T, Willmann K 1969 Phys. Rev. Lett. 22 89
- [2] Lahmam-Bennani A 1991 J. Phys. B: At. Mol. Opt. Phys. 24 2401
- [3] Brauner M ,Briggs J S ,Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265
- [4] Berakdar J 1996 Phys. Rev. A 53 2314
- [5] Jones S , Madison D 2000 Phys. Rev. A 62 042701
- [6] Reid R H G ,Bartschat K ,Raeker A 1998 J. Phys. B 31 563
- [7] Fang Y ,Bartschat K 2001 J. Phys. B 34 L19
- [8] Bellm S ,Lower J ,Bartschat K 2006 Phys. Rev. Lett. 96 223201
- [9] Chen Z J , Madison D H , Whelan C T , Walters H R 2004 J. Phys.
 B: At. Mol. Opt. Phys. 37 981
- [10] Chen Z J Madison D H 2005 J. Phys. B: At. Mol. Opt. Phys. 38 4195
- [11] Rescigno T N ,Baertschy M ,Isaacs W A ,McCurdy C W 1999 Science 286 2474
- [12] Bray I 2002 Phys. Rev. Lett. 89 273201
- [13] Haynes M A ,Lohmann B 2001 Phys. Rev. A 64 044701
- [14] Bartschat K , Vorov O 2005 Phys. Rev. A 72 022728
- [15] Schulz M , Moshammer R , Fischer D , Kollmus H , Madison D H , Jones

S ,Ullrich J 2003 Nature (London) 422 48

- [16] van Boyen R W ,Watanabe N ,Cooper J W ,Doering J P ,Moore J H , Coplan M A 2006 Phys. Rev. A 73 032703
- [17] Dürr M ,Dimopoulou C ,Dorn A ,Najjari B ,Bray I ,Fursa D V ,Chen Z J ,Madison D H ,Bartschat K ,Ullrich1 J 2006 J. Phys. B : At. Mol. Opt. Phys. 39 4097
- [18] Fiol J Otranto S Olson R E 2006 J. Phys. B : At. Mol. Opt. Phys. 39 L285
- [19] Fischer D ,Moshammer R ,Schulz M ,Voitkiv A ,Ullrich J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3555
- [20] Dürr M , Dimopoulou C , Najjari B , Dorn A , Ullrich J 2006 Phys. Rev. Lett. 96 243202
- [21] Madison D H ,Fischer D ,Foster M ,Moshammer R ,Jones S ,Ullrich J 2003 Phys. Rev. Lett. 91 253201
- [22] Berakdar J 1996 Aust. J. Phys. 49 1095
- [23] Berakdar J ,Brrggs J S ,Bray I ,Fursa D V 1999 J. Phys. B: At. Mol. Opt. Phys. 32 895
- [24] Zhang S M , Chen Z J , Xu K Z 1999 Acta Phys. Sin. 48 453 (in Chinese) [张穗萌、陈长进、徐克尊 1999 物理学报 48 453]
- [25] Schulz M ,Moshammer R ,Fischer D ,Ullrich J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 L311

Fully differential cross sections for **102** eV electron-impact ionization of helium in non-coplanar geometry *

Sun Shi-Yan Jia Xiang-Fu[†] Shi Wen-Qiang Li Xiong-Wei

(Institute of Modern Physics ,School of Physics and Information Engineering , Shanxi Normal University ,Linfen 041004 ,China)

(Received 14 October 2007; revised manuscript received 19 November 2007)

Abstract

DS3C model is applied to study single ionization of helium by 102 eV electron impact. Fully differential cross sections are calculated at different scattering angles of θ_1 (8° ,10° ,15° ,20°) for the perpendicular plane geometry. The results of 3C and CCC model were compared with experimental data , which shows that DS3C model can give a successful description of the (e, 2e) process for noncoplanar geometry qualitatively , indicating the existence of strong dynamic correlations effect between the three particles in the final channel for noncoplanar geometry.

Keywords : noncoplanar geometry , single ionization , fully differential cross section **PACC** : 3480D , 3450H

6期

^{*} Project supported by the Natural Science Foundation of Shanxi Province , China (Grant No. 20051008) and the Science Foundation for Returnee of Shanxi Province of China (Grant No. 02-16).

[†] Corresponding author. E-mail ;jiaxf@sxnu.dns.edu.cn