高功率激光装置光束准直 系统新型远场监测技术*

丁 莉¹) 刘代中²^{*} 高妍琦²) 朱宝强²) 朱 俭²) 彭增云²) 朱健强²) 俞立钧¹)

1 (上海大学机械制造及其自动化学院,上海 200072)

2)(中国科学院上海光学精密机械研究所高功率装置物理联合实验室,上海 201800)

(2007年12月28日收到 2008年2月18日收到修改稿)

利用高功率激光装置空间滤波器小孔成像和取样光栅的衍射,设计出一套新型光路远场监测方案,并且在实验平台上进行了实验验证,实验结果表明:相对传统的远场监测方法,该远场监测系统通过侧面离轴光栅取样灵活利用空间,其调整平均误差为空间滤波器小孔直径0.9%,能够满足准直系统远场调整精度(<小孔直径5%)的要求.

关键词:激光技术,光束准直,光栅,远场 PACC:4280B,4280F,4280Q,4225F

1.引 言

激光惯性约束聚变装置是规模最大的一类高功 率激光系统,随着激光聚变技术的迅速发展,光束 口径和路数急剧增多,光路长度和元器件数目成倍 增长,自动准直的要求也越来越高,相应的光束准直 系统的空间却越来越少^[1,2].为了适应新一代激光聚 变装置对光束准直系统的要求,本文针对装置的光 束远场监测要求,设计出一套优化合理的远场监测 方案,能够节省空间排布,并且在实验平台上进行了 充分的实验验证,得到了满意的结果.这种远场调整 方案是利用光栅取样远场成像技术来实现光束指向 (角移)的调整,它可以挂靠在激光装置空间滤波器 侧壁上,使得光束准直系统空间排布更加灵活,而远 场准直精度也满足高功率激光器总体要求.

2. 光束远场准直原理

通常所说的远场调整泛指通过调整激光器空间 滤波器前面的反射镜来保证激光束准确穿过空间滤 波器的小孔,或者调整光束的焦斑中心位置实现对 激光束指向角度的调整等,本文主要介绍如何实现 激光束精确穿过滤波器小孔的远场准直.为了使激 光束焦斑准确穿过空间滤波器小孔的中心,必须设 法找到激光焦斑中心位置和滤波器小孔中心位置, 然后使两个中心重合^[3-5].

3. 新型远场监测技术

传统的远场探测系统一般都和激光光路同轴, 为了不影响主光路,其位置大多在反射镜后面,通过 反射镜的漏光来取样,如图1所示.主要远场监测调 整步骤是让小孔被照明,然后使小孔成像到远场探 测器上,由于小孔面也是激光束焦面所在位置,这样 激光束焦斑也同时成像到这个远场探测器上,通过 比较小孔中心和焦斑中心的误差,调整空间滤波器 前面的反射镜就能使两个中心重合,实现远场准直 调整⁶⁷¹.

本文介绍的新型远场监测技术则通过光栅离轴 取样,可以实现离轴的远场监测和调整.其具体监测 光路原理如图2所示,远场准直调整步骤如下.

第一步,得到远场基准即小孔(pinhole)的中心. 首先在小孔后面紧贴着小孔板放置一透射光栅 (insertable grating),该光栅尺寸比小孔略大,然后利 用 LED 非相干照明光源照明小孔,通过光栅的一级

^{*} 国家高技术研究发展计划(863)惯性约束聚变领域(批准号 2004AA845041)资助的课题.

[†] E-mail: dzhliu@mail.shcnc.ac.cn

图1 传统远场探测系统

或者二级衍射使小孔轮廓通过成像透镜(imaging lens)成像到远场探测器(far-field charge coupled device, FF CCD),然后通过计算机的图像处理得到 小孔的中心位置.

第二步 取得激光焦斑的中心.首先关闭照明光 源 激光的焦斑穿过小孔,通过光栅的衍射,同样成 像到 FF CCD 上,通过图像处理得到焦斑的中心.

第三步,使两个中心重合,通过反射镜 LM₁ 和 LM₂ 的调整,实现激光的焦斑中心和空间滤波器小 孔中心重合.

该方案适用于在主光路光轴方向上没有空间建 立远场探测系统情况下,可以在空间滤波器的侧壁 设置通过光栅取样的远场探测系统,其优点是可以 实现远场的离轴调整,灵活地在侧壁上挂靠,充分利 用空间滤波器的立体空间.

4. 实验研究

4.1. 实验方案

为了验证这种新型的远场监测方案的可行性, 设计了实验方案和传统的远场监测方法进行了实验 对比验证,实验方案设计光路如图3所示,主要包括

两部分光路,一部分是新型光栅远场离轴取样监测 光路,其远场探测器为 FFCCD₁,另外一部分是传统 的远场同轴取样检测光路,其远场探测器为 FFCCD₂,实验所使用普通黑白 CCD 的感光面积为 6.4 mm × 4.8 mm,像素点阵 768 × 576.

实验步骤:

 利用传统的远场监测方法使得小孔中心和激 光焦斑中心重合。

先关闭发光二极管 LED.打开半导体激光器 laser,波长 1053 nm,在主光路的空间滤波器前插入 照明透镜使激光照满整个小孔,小孔直径 2 nm,厚 度 0.2 nm,使小孔 1:1 成像于 FFCCD₂,获取小孔的 图像,通过计算机图像处理方法(阈值法、重心法等) 精确计算出小孔的中心^[8,9];再移出照明透镜,使激 光焦斑成像于 FFCCD₂,再通过上述的图像处理方法 精确计算出焦斑的中心,调整 LM₁或者 LM₂ 使激光 焦斑与小孔中心重合,由于激光焦斑的抖动,两个中 心不可能完全重合,实验把两个中心重合误差控制

图 3 光栅取样实验示意图

F

7

在3个像素以内.

2)利用新型远场监测方法检验小孔中心和焦斑 中心是否重合

插入光栅 使光栅完全罩住小孔 实验所用的是 15 mm × 15 mm, 透射光栅 255 线/mm,光栅常数 d 为 3.922 um,为了使得激光一级衍射进入远场探测成 像系统 根据透射式光栅的衍射方程

$$d(\sin\theta_i + \sin\theta_k) = K\lambda$$
, (1)
式中, d 为光栅常数, θ_i 为入射角度, θ_k 为衍射角
度, K 为衍射级次, λ 为入射光波长,当取一级衍射
时, K 为1,远场成像系统(包括远场探测器 FFCCD_i
和成像透镜 1)和激光光轴夹角计算为 15.58°(arc
sin(λ/d)),打开 LED 照明光源,通过准直透镜后准
直为平行光照满小孔,使小孔 1:1 成像于 FFCCD_i.
实验所用 LED 为波长 470 nm 的蓝色照明光,为使照
明光的一级衍射角度和激光的一级衍射角度一致,
根据上述的衍射方程式得出照明光入射方向与激光
光轴的夹角为 8.55°.这样就使激光通过小孔以后的
一级衍射焦斑和照明光通过小孔的一级衍射图样同
时成像于 FFCCD_i.再通过前面介绍的图像处理方法
精确分别计算出小孔的中心和焦斑的中心.

4.2.实验结果

利用上述实验步骤1)即传统远场监测方法得 到远场小孔和焦斑图像如图 4 所示 其中(a)是小孔 图像、(b)是焦斑图像;由实验步骤2)即新型远场监 测方法得到的图像如图 5 所示,其中(a)是小孔图 像、(b)是焦斑图像、(c)是调整后的小孔和焦斑 图像.

由图可以看出图 5(a)所示小孔图像是椭圆状 的 主要是由于在新型远场监测方法中的小孔照明 是采用斜照明 这与小孔板厚度和照明光入射角度

相关 如果小孔板厚度薄、照明光入射角度小,对小 孔中心定位影响较小.反之,则影响较大,需要根据 具体参数计算来修正这个中心定位误差,本实验照 明光入射方向与激光光轴的夹角为 8.55° 小孔板厚 度仅为 0.2 mm,误差影响较小,不用修正.

图 4(a) 是激光照明小孔成像得到的小孔图像, 图 5(a) 是 LED 非相干照明光源照明小孔成像得到 的小孔图像,不难看出,采用 LED 照明得到的小孔 图像更加清晰 易于计算机图像处理 小孔中心定位 更加精确.

实验室气流、平台蠕动、机械振动等外界因素容 易造成实验误差,为了准确记录小孔中心和焦斑中 心 实验对两种方法的小孔图像、焦斑图像每间隔 10 min 记录一组实验数据,然后通过计算机图像处 理得到中心像素坐标值,共记录10次,如表1所示。 传统远场监测方法得到的小孔中心坐标像素平均值 为(470.348)、焦斑中心坐标像素为(468.1.346.8), 中心坐标像素误差为 2.25 像素 按 1:1 成像计算两 ₽

表 1	实验结题

远场探测器	FFCCD ₂		FFCCD ₁	
	小孔中心	焦斑中心	小孔中心	焦斑中心
坐标(像素)	(470,348)	(468,346)	(327,337)	(328 ,338)
	(470,348)	(468,346)	(327,335)	(328 ,335)
	(470,348)	(468,346)	(327,335)	(329 ,337)
	(470,348)	(468,346)	(327,335)	(327,336)
	(470,348)	(468,347)	(327,335)	(328,336)
	(470,348)	(468,347)	(327,335)	(327,337)
	(470,348)	(470,348)	(327,335)	(327,336)
	(470,348)	(469,349)	(327,335)	(328 ,337)
	(470,348)	(469,346)	(327,335)	(327 ,338)
	(470,348)	(467,347)	(327,335)	(327 ,338)
平均值(像素)	(470 ,348)(468.1 ,346.8	≬ 327 ,335.2)(328.6 336.7)
中心间距(像素) 2.25		2.19		

图 4 FFCCD2 采集图样 (a)小孔(b)焦斑

图 5 FFCCD1 采集图样 (a)小孔(b)焦斑;(c)小孔和焦斑

个中心实际间距为 18.7 µm ,而新型远场监测方法得 到的小孔中心坐标像素平均值为(327,335.2) 焦斑 中心坐标像素为(328.6,336.7),中心坐标像素误差 为 2.19,按 1:1 成像计算两个中心实际间距为 18.2 µm,误差为小孔直径的 0.9%,而激光器远场调整精 度总体要求为小孔直径的 5%.由此可以看出,在利 用传统远场监测方法是焦斑中心和小孔中心基本重 合的条件下,新型远场监测方法得到的焦斑中心和 小孔中心也基本重合,其误差小于激光器远场调整 精度总体要求.

5.结 论

692

本文充分考虑到高功率激光装置远场探测系统 在空间上灵活排布的需求,对基于光栅衍射成像的 远场探测系统进行了原理分析和实验验证,结果表 明 相对传统的远场监测方法,该新型远场监测系统 通过侧面离轴光栅取样灵活利用空间,其调整平均 误差为空间滤波器小孔直径的0.9%,能够满足准 直系统远场调整精度(<小孔直径5%)的要求.

- [1] Liu D Z, Zhu J Q, Xu R F et al 2004 High Power Laser and Particle Beams 16 582 (in Chinese)[刘代中、朱健强、徐仁芳等 2004 强激光与粒子束 16 582]
- [2] Liu D Z, Xu R F, Fan D Y 2004 High Power Laser and Particle Beams 16 582 (in Chinese)[刘代中、徐仁芳、范滇元 2004 强激 光与粒子束 16 1161]
- [3] Chen QH, Xu RF, Peng ZY et al 1995 Acta Optica Sinica 15 531
 (in Chinese)[陈庆浩、徐仁芳、彭增云 等 1995 光学学报 15 531]
- [4] He W, Chen Q H, Xu R F et al 1999 Acta Optica Sinica 19 1279

(in Chinese)[何 为、陈庆浩、徐仁芳 等 1999 光学学报 19 1279]

- [5] Arsdall P J, Holloway F W, McGuigan D L et al 1984 Proc of SPIE 483 54
- [6] Boege S J , Bliss E S , Chocol C J et al 1997 Proc of SPIE 3047 248
- [7] Holdener F R , Ables E , Bliss E S et al 1997 Proc of SPIE 3047
- [8] LüFN, Liu DZ, Xu RF 2005 Optical Technique 31 335 (in Chinese)[吕凤年、刘代中、徐仁芳 2005 光学技术 31 335]
- [9] Liu D Z , Zhu J Q , Xu R F et al 2004 Optical Engineering 43 2066

New far-field detection technique for beam alignment system in high power laser facility *

Ding Li¹) Liu Dai-Zhong²[†] Gao Yan-Qi²) Zhu Bao-Qiang²)

Zhu Jian²) Peng Zeng-Yun²) Zhu Jian-Qiang²) Yu Li-Jun¹)

1 🕽 Department of Mechanical Engineering , Shanghai University , Shanghai 200072 , China)

2 X Shanghai Institute of Optics and Fine Mechanics , the Chinese Academy of Sciences ,

National Laboratory on High Power and Physics , Shanghai 201800 , China)

(Received 28 December 2007; revised manuscript received 18 February 2008)

Abstract

The laser beam automatic alignment system is applied to a high power laser facility for inertial confinement fusion. The farfield detection is a key technique of the automatic alignment system. Utilizing the image of spatial filter 's pinhole of the high power laser system and diffraction of sampling grating , a new method for far-field detection of laser beam is proposed and fully demonstrated on the experimental system. The experimental results indicate that , unlike the traditional method , this far-field detection system can fully use the space through off-axial grating sampling , and the average far-field alignment error is less than 0.9% of spatial filter pinhole diameter , which meets the alignment system requirements of less than 5% of spatial filter pinhole diameter.

Keywords : laser technique , beam alignment , grating , far-field PACC : 4280B , 4280F , 4280Q , 4225F

^{*} Project supported by the National High Technology Research and Development Program for Inertial Confinement Fusion of China (Grant No. 2004AA845041).

[†] E-mail: dzhliu@mail.shcnc.ac.cn