类钴氙离子入射 Ni 表面激发的 红外光谱线和 X 射线谱*

张小安¹²^{*} 杨治虎²) 王党朝¹) 梅策香¹) 牛超英¹) 王 伟²) 戴 斌¹) 肖国青²)

1) 咸阳师范学院物理系,咸阳 712000)
 2) 中国科学院近代物理研究所,兰州 730000)
 (2008 年 9 月 8 日收到 2008 年 12 月 25 日收到修改稿)

当高电荷态类钴氙离子(cobalt like -Xe, Xe²⁷⁺)入射金属 Ni 表面过程中,共振电子俘获释放势能完成中性化, 形成多激发态的 Xe 原子,其外壳层电子退激辐射红外光谱线.入射离子特殊的势能释放方式、离子动能和金属表 面引起离子增益的能量在极短的时间(飞秒量级)沉积靶平方纳米尺度的空间范围,引起靶表面原子激发和电离, 形成复杂组态之间的跃迁,特别是偶极禁戒跃迁(电四极跃迁、磁偶极跃)和 X 射线发射.单离子 X 射线产额随入射 离子的动能增加而增加.

关键词:高电荷态离子,红外光谱线,X射线,禁戒跃迁 PACC:3450D

1.引 言

高电荷态离子所具有的势能是剥离核外电子需 要电离能的总和,例如Th⁸⁰⁺势能为250 keV,如此高 势能的离子产生非常强的库仑(Coulomb)场,U⁹¹⁺离 子具有势能629.83 keV,它可以产生强度为2×10¹⁶ V/cm 的库仑场,这是目前其他外场无法达到的.高 电荷态离子在入射金属固体表面过程中发生许多新 颖的物理现象:大量电子发射(包括势能电子发射 potential electron emission 和动能电子发射 kinetic electron emission 2¹¹产生瞬态多激发态空心原子 (hollow atom),其退激辐射X射线²¹,在飞秒时间尺 度内,将其携带的能量沉积在靶表面纳米尺度的空 间,使靶原子激发产生复杂组态之间的跃迁.因此, 高电荷态离子与固体表面相互作用的研究成为近年 来广受关注的研究领域之一^[3,4].

经典 过 垒 模 型(the classical over-the-barrier model,简称 COB)对高电荷态离子与固体表面相互 作用的动力学过程作了较为成功的描述,该理论的 实验基础是 Auger 电子发射谱和空心原子内壳层的 X 射线发射谱.按照经典过垒模型,离子与表面相互 作用过程形成的空心原子其半径为 $r = \sqrt{2q}/W$,电 子轨道的主量子数为 $n \approx q/\sqrt{2W}$,例如在文献[5] 中,Ar⁹⁺离子入射 Au 表面,电子轨道的主量子数n= 10,即为 Ar 空心原子中电子所处于的最高激发态.在此高激发态下,仅有内壳层跃迁辐射的 X 射 线辐射谱(如 $K\alpha$ -X 射线谱),不足以说明高电荷态 离子在固体金属表面的中性化进程.另外,Faraggi 等^[6]对离子与表面相互作用的电子激发理论提出了 带结构基模型(band-structure-based model,简称 BSB),这对经典过垒模型提出了挑战.因此,要证明 空心原子确实存在,离子被中性化后的空心原子的 外壳层电子退激辐射光谱将成为直接证据.

另一方面,在光谱学中,电子偶极禁戒跃迁光谱 线以及 X 射线谱和谱线强度,在元素的丰度、电子 密度、等离子体物理和天体物理学研究中有着重要 应用.Ni I 和 Ni II 的特征光谱线,特别是偶极禁戒 跃迁的光谱线,是天体物理特别感兴趣的特征光谱 线,在日冕(solar corona),活动星系(active galaxies)的 核子活动、新星(novae)和超新星爆发遗迹(supernova

^{*} 国家自然科学基金(批准号:10574132)陕西省自然科学基金(批准号 2007A05)和咸阳师范学院引进人才计划(批准号 105XSYK103)资 助的课题。

[†] E-mail: zhangxiaoan2000@yahoo.com.cn

remnants)中存在 Ni I 和 Ni II 偶极禁戒跃迁的特征 光谱线.而 Ni 原子和 10 个 3d 电子组成最外闭壳层 的类 Ni 离子的产生丰度较大,能在较大的动态范围 实现粒子数反转,因而成为目前 X 射线激光材料的 热点研究领域⁷¹.

我们在兰州重离子加速器国家实验室 320 kV 高电荷态原子物理研究平台上用动能为 1360 keV ¹²⁹Xe²⁷⁺离子入射洁净的 Ni 固体表面,测量了相互作 用过程中 Xe²⁷⁺中性化后形成的高激发态 Xe 原子外 壳层电子退激辐射的红外光谱线和 Ni I 和 Ni II 的 偶极禁戒跃迁的红外光谱线.用不同动能¹²⁹Xe²⁷⁺离 子轰击 Ni 表面,测量了 Ni 原子的 LM-X 射线谱.

2. 实验装置和测量方法

图 1 是实验平台示意图.高电荷态离子¹²⁹ Xe²⁷⁺ 由 18 GHz 电子回旋共振离子源(ECRIS)提供.束流 引出后经高压系统加速 经过聚束器、四极透镜和光 栏 将离子引入实验平台,进入具有磁屏蔽的金属高 真空(真空度约为 10⁻⁵ mPa)的靶室与样品表面相互 作用.¹²⁹ Xe²⁷⁺离子束流的束斑直径控制在 10 nm 范 围 引出流强为微安量级 经过聚焦和准直后作用流 强为纳安量级 ,束流以 45°方向入射到经过净化处理 的化学纯度为 99.9% 的 Ni 表面. Ni 样品厚度为 0.5 mm 表面积为 20.4 mm × 22 mm.入射离子与 Ni 靶相互作用激发的光谱,利用美国 ARC(Acton Research corporation)公司生产的红外光谱仪 (Spectrapro-500i)测量,红外光谱仪的光栅常数为 600 g/mm,闪耀波长 1.6 µm,实验时我们选用 InGaAs 探测器,其有效范围为 800—1700 nm 积分时间为 3000 ms.红外光学窗口和单色仪入射狭缝与束流方向垂直,且与靶表面成 45°角.整个实验在暗室条件下完成的,以保证光谱测量的本底最小.

入射离子与固体表面相互作用所产生的 X 射 线谱利用 S(Li)探测器进行观测.实验装置在文献 [8]中作了详细描述.实验前利用标准的放射源 ²⁴¹Am和⁵⁵Fe 对探测器进行了刻度,其能量探测范围 为1—60 keV,当 X 射线能量为 5.89 keV 时,能量分 辨为 0.16 keV 相对探测效率为 93%.本实验中,探 测器与入射束流方向成 45°角,与靶表面垂直;探测 口是厚度为 0.05 mm 的 Be 窗.当 X 射线能量为 3 keV时,该 Be 窗的透射率约为 83%.探测器口径为 10 mm,距离靶点 80 mm,探测时间选为 5400 s.

3. 结果与讨论

3.1. 动能为 1360 keV 的¹²⁹ Xe²⁷⁺ 离子与 Ni 表面相互 作用产生的红外光谱线

图 2 给出了 1360 keV 的高电荷态离子¹²⁹ Xe²⁷⁺ 入射 Ni 表面过程中,离子中性化后形成的 Xe 原子 的 818.97 nm 谱线,是从能级 83889.97 cm⁻¹(电子组 态为 5p⁵(2 P°3/2)5d)到能级 96107.36 cm⁻¹(电子组 态为 5p⁵(2 P°3/2)8f)的跃迁,跃迁角动量为 1—2;而 Xe 原子 1436.44 nm 谱线是同一个上能级到 90849.44 cm⁻¹(电子组态为 5p⁵(2 P°3/2)4f)能级的跃 迁,跃迁角动量为 3—2;1187.13 nm 的谱线是从 82430.20 cm⁻¹(电子组态为 5p⁵(2 P°3/2)5d)能级到

图 1 兰州重离子加速器国家实验室 320 kV 高电荷态原子物理研究平台示意图

90849.44 cm⁻¹(电子组态为 5p⁵(2P°3/2)4f)能级的 跃迁,跃迁角动量为 1—2,三条谱线均为电偶极 跃迁.

图 2 ¹²⁹ Xe²⁷⁺ 入射 Ni 表面产生的红外光谱线

在图 2 中 ,我们标识出观测到的被高电荷态离 子¹²⁹Xe²⁷⁺ 激发的 Ni ↓ 和 Ni Ⅱ 的偶极禁戒跃迁的光 谱线. Ni 原子的 1165.28 nm 的谱线是从能级 13521.35 cm⁻¹到能级 22102.33 cm⁻¹的跃迁,两能级 的电子组态为 3d⁸(1D)4s²和 3d⁸(1G)4s²,跃迁角动 量为 2-4,是偶极禁戒跃迁(电四极(E2)跃迁),跃 迁速率为 4.1×10⁻⁴/s;Ni [] 的 1135.63 nm 谱线,是 从能级 14995.57 cm⁻¹到能级 23796.18 cm⁻¹的跃迁, 两能级的电子组态为 3p⁶3d⁸(³F)4s 和 3p⁶3d⁸(¹D) 4s 跃迁角动量为 5/2 - 3/2 ,是电四极跃迁,跃迁速 率为 2.6×10⁻⁵ 同时也是磁偶极跃迁,跃迁速率为 5.7×10⁻². Ni Ⅱ的 1335.52 nm 谱线, 是从能级 25036.38 cm⁻¹到 32523.54 cm⁻¹的跃迁,两能级的电 子组态为 3p⁶3d⁸(1D)4s 和 3p⁶3d⁸(1G)4s,跃迁角动 量为 5/2-7/2 ,是磁偶极(M1)跃迁 ,跃迁速率为 2.3 ×10⁻⁶/s;同时也是电四极(E2)跃迁,跃迁速率为 2×10⁻⁵/s.本次实验测量到的谱线列于表1中. •外光谱的测量中 ,由于积分时间 3000 ms ,背景

噪声影响较大,我们利用该谱仪的分析程序,对背景 作了简单扣除,实验误差小于10%.

3.2. 不同动能的¹²⁹ Xe²⁷⁺ 离子入射 Ni 产生的 X 射线谱

用动能从 350 到 600 keV 的129 Xe27+ 离子分别入 射 Ni 表面 激发表面原子的 X 射线谱,对于 X 射线 谱的识别,以美国国家标准技术局光谱数据库(NIST Atomic Spectra Database)的数据为依据.图 3(a)为 600 keV的¹²⁹ Xe²⁷⁺ 离子激发的 X 射线谱,用 GaussAmp 拟合,峰位在1.76 keV,峰计数 5960.53 ;同 样 图 3(b)-(d)分别为动能 E_K为 550,500 和 450 keV 的¹²⁹ Xe²⁷⁺ 离子入射 Ni 表面激发的 Ni 原子的 X 射线谱 属于 $L_1 M_4$, $L_1 M_5$, $L_1 N_1$ 和 L_1 端的跃迁 ,跃 迁能量参考值分别为 1.00762 ,1.0083 ,1.01565 和 1.02413 keV 我们的测量值为 1.76 keV 实验误差小 于3%.由于S(Li)探测器的分辨能力所限,不能精 细分辨出 Ni 原子的上述跃迁,测量值比参考值大的 原因主要是这种激发方式中存在着势垒隧穿效应以 及相互作用过程中引起的能级位移,使 Ni 原子的 LM-X 射线的能量偏大.

X 射线谱的半高宽(FWHM)用 ζ 表示,单位为 keV , $ζ = 2 \sqrt{\ln 4} w$, w 是 GaussAmp 拟合的半高宽, 2 $\sqrt{\ln 4}$ E GaussAmp 拟合的转换系数.利用下式可以 计算出单离子 X 射线产额

$$W = \frac{C}{N} = 2.7 \times 10^{-6} \times \frac{q \times \zeta \times A}{I_{\text{beam}} \times \Delta T} , \quad (1)$$

其中 *C* 为总计数 ,*N* 为总粒子数 ,*q* 是入射离子的 电荷态 ,*A* 是峰计数 ,*I*_{beam}是用靶电流强度表示的束 流强度(单位 :nA).根据(1)式计算的结果在图 4 中 给出 ,并进行了指数拟合.从图 4 可以看出 ,单离子 X 射线产额随入射离子的动能增加接近指数增加.

3.3. 讨论

P,由于积分时间 3000 ms,背景 根据经典过垒模型(classic over-barrier model,简表1 Ni 原子和 Ni 离子偶极禁戒 M1 和 E2)跃迁以及 Xe²¹⁺ 中性化后退激辐射红外光谱线

粒子	测量值/nm	NIST 值 ^{a)} /nm	跃迁能级/cm ⁻¹	电子组态	跃迁角动量	跃迁类型
Ni I	1165.28	1165.05	13521.35-22102.33	$3d^{8}(^{1}D)4s^{2}-3d^{8}(^{1}G)4s^{2}$	2—4	<i>E</i> 2
Ni II	1135.63	1135.97	14995.57-23796.18	$3p^{6}3d^{8}(^{3}F)As-3p^{6}3d^{8}(^{1}D)As$	5/2-3/2	E2/M1
Ni II	1335.52	1335.26	25036.38-32523.54	$3p^{6}3d^{8}(^{1}D)4s-3p^{6}3d^{8}(^{1}G)4s$	5/2-7/2	M1/E2
Xe I	818.97	818.29	83889.97—96107.36	5p ⁵ (² P° _{3/2})5d—5p ⁵ (² P° _{3/2})8f	1—2	E1
Xe I	1187.13	1187.44	82430.20-90849.44	5p ⁵ (² P° _{3/2})5d—5p ⁵ (² P° _{3/2})4f	3—2	E1
Xe I	1436.44	1436.49	83 889.97—90 849.44	5p ⁵ (² P° _{3/2})5d—5p ⁵ (² P° _{3/2})4f	1-2	E1

a) NIST 数据库.

图 3 129 Xe²⁷ + 离子入射 Ni 产生的 X 射线谱 (a) E_K = 600 keV ,(b) E_K = 550 keV ,(c) E_K = 500 keV ,(d) E_K = 450 keV

图 4 单离子 X 射线产额随入射离子动能的变化

称 COB)⁹¹,高电荷离子在其逼近金属表面过程中, 当运动至临界距离

$$R_{c} = \frac{\sqrt{8q+2}}{2W} , \qquad (2)$$

其中 q 为入射粒子的电荷态, W 为金属的脱出功, 入射离子与金属表面间的势垒高度低于费米面,金 属导带的电子共振转移到入射离子的高激发空态 上,首先进入离子的空置能级其主量子数为^[10]

$$n \approx \frac{q}{\sqrt{2W}} \frac{1}{\sqrt{1 + \frac{0.5}{\sqrt{8q}}}} , \qquad (3)$$

形成空心原子,空心原子是短寿命的多激发态原子, 它通过自电离、Auger退激和光辐射退激、自电离和 Auger退激发射电子,而光辐射退激、发射涵盖红外 到 X 射线波段的光谱.

当 Xe²⁷⁺ 离子入射 Ni 表面,开始中性化的临界 距离由(2)式可得 R_e = 40 a.u., 电子进入 Xe²⁷⁺ 离子 最高的空置轨道的主量子数可由(3)式得出 n = 31. 中性化后,多激发态的 Xe 原子退激,在较高激发态 的电子大多通过自电离、Auger 退激,到达较低激发 态的电子通过光辐射退激.由于我们的光谱仪探测 范围所限,本次实验中测量 Xe²⁷⁺入射到 Ni 金属表 面中性化后的多激发态 Xe 原子级联退激过程中, 电子退激到 83889.97 *8*2430.20 cm⁻¹能级,向较低的 96107.36和 90849.44 cm⁻¹能级退激辐射的近红外 光谱. 另一方面,在高电荷态离子逼近金属表面过程 中,俘获电子中性化过程中释放所携带的势能 (Xe²⁷⁺,势能为 1.57 keV)携带的动能(350— 600 keV)和金属表面引起的离子增益的能量

$$\Delta E = \frac{Wq^{\frac{3}{2}}}{4\sqrt{2}} , \qquad (4)$$

其中 W 是金属 Ni 的功函数, q 是 Xe 离子的电荷 态.由(4)式可以得 △E = 123.94 eV.入射离子在飞 秒时间尺度内将这些能量沉积在 1 nm² 尺度的空间 范围 引起靶表面原子激发和离化 产生原子和离子 复杂组态之间的跃迁 特别是偶极禁戒跃迁 电四极 跃迁、磁偶极跃)和 X 射线发射.我们实验测量的 Nil 的电四极跃迁辐射的红外谱线 1165.28 nm 的上 能级(电子组态 $3d^{8}(^{1}D)4s^{2}$)NIST 数据库中的值为 13521.35 cm⁻¹, 而在文献[11]中, Quinet 和 le Dourneuf考虑了组态相互作用,用相对论 Hartree-Fork (HFR) 近似计算出该上能级为 13508.0 cm⁻¹, 其跃迁辐射的波长为 1165.05 nm,用 Hartree-Fork 计 算的跃迁速率为 7.23 × 10⁻⁴/s,用 SUPERSTRUCTURE(SST)程序计算的跃迁速率为 1.36×10⁻⁴/s ;在本实验中 根据 NIST 数据库这个值 应为 4.1 × 10⁻⁴/s, 说明用 Hartree-Fork 计算要相对准 确 本实验测量的 Ni II的 1135.63 nm 是电四极跃迁, 跃迁速率为 2.6×10⁻⁵/s 同时也是磁偶极跃迁,跃迁 速率为 5.7 × 10⁻²/s 文献 11 仲给出了分别用 HFR 和 SST 计算的磁偶极跃迁速率 ,分别为 5.68×10^{-2} / $s 6.41 \times 10^{-2}/s$. 就我们所知,关于该谱线的电四极 跃迁速率以及本实验测量的 1335.52 nm 的电四极 跃迁速率和磁偶极跃迁速率 除了本工作根据 NIST 数据库给出的值外,没有其他工作的报道.

在本实验中,测量的 Ni 原子的 LM-X 射线值为 1.76 keV,而 NIST 数据库中的最大值为 1.02413 keV,其差异来源于我们采用的高电荷态离子的激发 方式,在这种激发方式中,靶表面原子被溅射,同时 处于与入射离子(类钴氙离子与 Ni 原子有较相近的 电子结构)的库仑场中,电子云交叠较多,共振激发 的概率增大,从而引起原子能级的展宽.这个展宽应 用量子力学 WKB 近似,给出黄金规则表达式^[10]

$$\Gamma = \pi \sum_{k} |V_{ak}|^2 \delta(\varepsilon - \varepsilon_k), \qquad (5)$$

其中 V_{ak} 为能级 |a| 和 |k|之间的矩阵元.在强库仑场中 靶原子 p 电子态与 d 电子态杂化 发生取向的变化 ,使低角动量的电子能级下移 ,而较高角动量的电子能级上移 ,这样就引起原子能级展宽 . 另外 ,被溅射激发的邻近表面的原子共振退激引起能级展宽^[10].这些原因引起的能级展宽 ,应该在几十个电子伏特量级 ,在此条件下 ,能级展宽的计算是比较复杂的 ,用 WKB 近似和自洽场局域密度近似 (self consistent field local-density approximation ,简称 SCF LDA)也只能对电子结构相对简单的(如 Na ,K)原子能级展宽进行估算 . 我们的结果只能从上述几个方面作定性的解释 ,要定量的解释 ,还需要做更多的工作.

¹²⁹Xe²⁷⁺属于类钴离子,外壳层电子组态 3d⁷4s² 与靶原子 Ni 的外壳层电子组态 3d⁸4s² 电子组态相 近,质量数 Xe 离子为 129,原子 Ni 的质量数为 65, 在离子与靶原子碰撞过程中,离子的动量转移靶原 子的多,使靶原子激发,单离子的动能愈大,激发的 靶原子愈多,所以单离子 X 射线产额高达 10⁻⁸量级 且随入射离子动能的增加而增加.

4.结 论

高电荷态离子¹²⁹ Xe²⁷⁺ 入射金属 Ni 表面过程中, 中性化形成多激发态的 Xe 原子,外壳层电子退激 辐射红外光谱线,说明了经典过垒模型描述的高电 荷态离子在固体表面中性化进程是正确的.入射离 子特殊的势能释放方式和离子动能和金属表面引起 离子增益的能量在极短的时间内(飞秒量级)沉积在 靶平方纳米尺度的空间范围,引起靶表面原子激发, 形成复杂组态之间的跃迁.特别是偶极禁戒跃迁(电 四极跃迁、磁偶极跃)和 X 射线发射.单离子 X 射线 产额随入射离子的动能增加而增加.

衷心感谢兰州重离子加速器国家实验室人员的辛勤工 作,为该项目实验提供高品质束流。

- [1] Stöckl J, Suta T, Ditroi F, Winter H P, Aumayr F 2004 Phys. Rev. Lett. 93 263201
- [2] Winter H P , Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys.
 32 R39

- [3] Schenkel T, Hamza A V, Barnes A V, Schneider D H, Banks J C, Doyle B L 1998 Phys. Rev. Lett. 81 2590
- [4] Lemell C , Stöckl J , Burgdörfer J , Betz G , Winter H P , Aumayr F 1998 Phys. Rev. Lett. 81 1965
- [5] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23
- [6] Faraggi M N , Gravielle M S , Alducin M , Juaristi J I , Silkin V M 2005 Phys. Rev. A 72 012901
- [7] Xu K Z 1998 Advanced Physics of Atom and Molecule (Beijing: Science Press)p160(in Chinese)[徐克尊 1998 高等原子分子 物理学(北京 科学出版社)第 160页]
- [8] Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhu K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 0803 (in Chinese)[杨治虎、宋张勇、崔 莹、张红强、阮芳芳、邵健雄、 杜 娟、刘玉文、朱可欣、张小安、邵曹杰、卢荣春、于得洋、陈 熙萌、蔡晓红 2008 物理学报 57 0803]
- [9] Burgdöfer J , Lerner P , Meyer F W 1991 Phys . Rev . A 44 5674
- [10] Nordlander P , Tully J C 1990 Phys. Rev. B 42 5564
- [11] Quinet P , le Dourneuf M 1996 Astron. Astrophys. Suppl. Ser. 119 99

Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface*

Zhang Xiao-An¹⁽²⁾[†] Yang Zhi-Hu²⁽⁾ Wang Dang-Chao¹⁽⁾ Mei Ce-Xiang¹⁽⁾

Niu Chao-Ying¹) Wang Wei²) Dai Bin¹) Xiao Guo-Qing²)

1 X Department of Physics , Xianyang Normal University , Xianyang 712000 , China)

2 🕽 Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , China)

(Received 8 September 2008; revised manuscript received 25 December 2008)

Abstract

The highly charged ions¹²⁹ Xe^{27+} impacting on Ni surface are neutralized by resonant capturing of electrons of metallic conduction band and release of potential energies. The multiply excited Xe atoms are formed and the outer-shell electrons are deexcited by emitting infrared photons. In the process, within femtoseconds, the projectile total energies are deposited on the target surface (on the nanometers scale), which excites and ionizes the target atoms. The characteristic transitions between complex configurations of atoms and ions occur, especially the characteristic forbidden transition (M1 and E2) of Ni I and Ni II, and the X-ray emission. The increasing of X-ray yield per ion with kinetic energies of projectile was found.

Keywords : highly charged ion , infrared spectrum , x-ray , forbidden transition PACC : 3450D

10 期

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10574132), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2007A05), and the Talent Recruitment Introduce Program of Xianyang Normal University, China (Grant No. 05XSYK103).

[†] E-mail: zhangxiaoan2000@yahoo.com.cn