D相 AlCuCo 准晶各向异性热电势的测量*

樊振军^{1,2}, 耿学文¹) 孔文婕³) 金贻荣²) 1(中国地质大学(北京)材料科学与工程学院,北京 100083) 2)(中国科学院物理研究所,北京 100190) 3)(广西师范大学物理与电子工程学院,桂林 541004) (2008年8月2日收到 2009年2月8日收到修改稿)

采用激光交流加热的方法测量了 D 相 AlCuCo 准晶周期与准周期两个方向的热电势,温度测量区间为 300— 1200 K.通过测量发现沿周期方向的热电势符号为负,沿准周期方向的热电势符号为正;沿周期方向在 1123 K (850 ℃)热电势有一个跳变;在高温区,热电势并不是单调变化的;实验所用方法能比较灵敏地测量材料相变时的 温度点.

关键词:AlCuCo准晶,高温,热电势,交流测量法 PACC:6590,7215J,7220P,6140M

1.引 言

无论从应用还是基础研究的角度 热电势都是 反映导体电子输运性质的重要物性之一,目前,对温 差电材料的研究主要集中在两个方面:一是通过合 成合金或复杂化合物直接获得高性能的体材 料1-3];二是利用纳米结构来提升优值,由于热电势 取决于电导对能量的导数 因而对费米面的结构十 分敏感,尽管这使得解释热电势的结果常常变得复 杂和困难 在很多情形它仍然可以给出诸如载流子 符号、电声子质量增强因子、电子散射性质、结构相 变等重要信息. 自 1984 年 Shechtman 等^[4]在急冷的 Al-Mn 合金中观测到五次对称衍射图 20 多年以来, 人们对准晶的研究无论是在实验上还是理论上都取 得了长足的进展,研究内容也从开始的结构特性和 弹性性质[56]发展到其他一些物理性能 研究结果表 明 准晶具有许多异常的性质^[7]. 十次准晶的结构 各向异性对电子的性能有重要的影响^[8]. Lin 等^{9]}对 AlNiCo 和 AlCuCo 十次准晶合金的研究中首次观察 到沿周期和准周期方向热电势符号相反,在液氮温 区以上,十次轴方向的热电势为一条通过原点的直 线 而在准晶面内的热电势在低温下明显偏离线性, Lin 等^{10]}认为这是电声子质量增强效应引起的,和

准晶面内电子的多声子散射增强相符.到目前为止, 关于准晶在 300 K 以上的输运性质的实验数据甚 少.高温热电势测量结果还未见报道.D相准晶 Alss Cuts Con 在高温下是稳定的准晶相,当温度降低 时它就转变为具有一种或两种近似相的大单胞的微 晶结构[11,12],热电势在通过准晶-晶体相变时,会不 会有反常变化 是一个值得关注的问题,尽管人们期 望热电势的高温和低温数据在理解包含在输运过程 中的物理时应互相补充,但是高温热电势的测量工 作比低温热电势少得多[13].高温实验不能与低温实 验一样方便的进行是原因之一,为了能够准确地测 量出高温时样品的热电势与温度的依赖关系,本实 验中设计了一套用调制激光加热样品实现热电势交 流测量的装置.用这套装置测量了 Pt 的高温热电 势 验证了其测量的准确性,并初步测量了 AlCuCo 准晶单晶从室温到 1200 K 的各向异性热电势.

2. 实验方法和结果

对于由 A , B 两根金属丝连接组成的热电偶,测量其热电势 S_{AB}有两种方法:积分法和微分法.这两种方法基于以下两个方程:

$$\Delta V = V_{\rm b} - V_{\rm a} = \int_{T_1}^{T_2} (S_{\rm B} - S_{\rm A}) dT$$
,

^{*}国家自然科学基金(批准号:10334080)资助的课题.

[†] E-mail:fanzj@cugb.edu.cn

 $\frac{\mathrm{d}(\Delta V)}{\mathrm{d}T_2} = S_{\mathrm{AB}}(T_2) = S_{\mathrm{B}}(T_2) - S_{\mathrm{A}}(T_2).$

以上第一个方程为积分法,第二个方程为微分法. AB 表示热电动势的方向, T_2 为测量端温度.在积分 法中 热电偶的一个节点温度 T_1 保持固定,测量热 电动势函数 ΔV 随另一个节点温度 T_2 的变化,则差 值给出热电势 S_{AB} .如果金属 A 是标准的,例如,铅 或铂,那么就可以求出待求的另一金属的热电势值 $S_{R}(T_2)$.

在微分法或增量法中,在两个节点间要维持一 个小的温差 $\Delta T = T_2 - T_1$,同时变化平均温度.这 样 我们得到随温度变化的 $S_{AB}(T) = \Delta V / \Delta T$.应用 这种技术要求 ΔT 足够小,使得在这一温度间隔内 S_A 和 S_B 都没有大的变化;同时 ΔT 足够大,在这一 温度间隔内产生一个测量精度要求的电压差.

积分法需要的装置和电子器件相当简单,因为 T₁可以是冷浴的温度,如液氮或液氦,节点浸入冷 液中,在升温中低温端的温度不用测量.另一方面, 当测量温度在4.2—80 K或77.7和300 K时积分法 需要大的温度梯度.因此,这一方法最适合长的丝状 样品.因为丝状样品一般是多晶,所以积分法给出的 一般是热电势的平均值.

通常在物性研究中,特别是各向异性的单晶的 测量中,大都用的是微分法.本实验中我们研究的 AlCuCo准晶是二维准晶,*ab*面内原子排列成准周期 序,*c*轴方向是周期性的结构,所以二维准晶具有明 显的各向异性,而且实验中的样品是单晶,所以我们 选用微分法测量样品的热电势.

在直流微分法中,样品两端建立一个稳定的温 差 △*T*.这个方法的缺点是,为了满足测量精度的要 求,常常需要 △*T*比较大,很难避免杂散和寄生讯号 的干扰,需要逐点测量等.本实验中我们所建立的交 流调制方法,则可以避免上述缺点,实现高温热电势 的连续测量.其测量方框图见图 1.

样品的环境温度由高温加热炉控制,样品夹持 及加热装置都放入可抽真空的系统中,以防止高温 时样品氧化^[14],激光照射在样品顶部产生实验所需 的温差,温差大小由镍铬康铜热电偶测量.锁相 SR830给出一个频率为 f_1 的触发信号到 HP33120A 信号发生器,信号发生器选用 Trig Burst 的工作方 式,每收到一个触发信号,就产生一个频率为 f_2 的 矩形波信号输入到激光器作为调制信号,激光照射 到样品的顶部产生的温差 ΔT 的变化频率为 f_1 ;锁

图 1 热电势测量回路图

相 SR830 给出的频率为 f₁ 的单发信号作为参考信 号同时输入到锁相放大器 SR850 ,利用锁相放大器 SR830 和 SR850 在 f₁ 的频率下分别测量样品-铜线 , 镍铬-康铜两端的热电势.实验中可以通过调节频率 f₁ 和 f₂ 而调节激光加热的占空比 ,从而可以防止在 热端产生热积累 ,保证在样品两端建立起连续稳定 的温差.由于实验中采用了交流调制的测量方法 ,大 大提高了测量的精度 ,可以使我们仔细地研究样品 热电势的细致行为.

准晶在 300 K 以上的输运性质的实验数据甚 少^[7].Fettweis 等^{15]}通过高分辨 X 射线衍射实验发 现 D 相准晶 Al₆₃Cu_{17.5}Co_{17.5}Si₂ 在高温是稳定的准晶 相 当温度降低时它就转变为具有一种或两种近似 相的大单胞的微晶结构^{11,12]},而且这种转变是可逆 的,热电势在通过准晶-晶体相变时,电子的输运性 能会不会有反常变化 是研究者关心的问题.然而高 温测量存在许多困难 高温时许多金属容易氧化 低 温时的一些接触方法不适用 温度控制相对较难等. 为了解决上述问题 我们设计了上面提到的用调制 激光加热样品 用交流法测量样品的热电势 这种方 法与传统的直流法测量材料热电势的方法比较有许 多优点 适宜于测量小的样品、可以测量晶体的各向 异性,可以连续地测量热电势对温度的依赖关系,为 了检验这种新的测量方法的准确性 我们测量了标 准样品 Pt 的室温到 1200 K 的热电势 实验结果证明 这种方法有比较高的精度[14]

图 2 是我们实验所用 AlCuCo 准晶样品 ab 面的 电子衍射图,从中明显看出 D 相准晶的 10 次对称 性,图 3 为 AlCuCo 准晶的粉末 XRD 图,该图也说明 所测的样品为单相 D 相准晶.

为了找出准晶-晶体转变的大概温度,我们首先

图 2 AlCuCo 准晶 ab 面电子衍射图

图 3 AlCuCo 准晶 XRD 图

用差热分析法测量了 AlCuCo 准晶样品的热性能.结 果没有看到明显的准晶-晶体相变,如果存在这种相 变,则相变潜热也很小,差热分析法无效.

实验中用上述装置测量 AlCuCo 十次准晶的热 电势时,对样品的扫温范围是 300—1200 K,分别对 样品的周期方向和准周期方向进行了测量.测量周 期方向时,选择自然生长的单晶,将其垂直于十次轴 的端面磨平整,且保证两个端面与十次轴严格垂直, 以消除准周期方向热电势对周期方向热电势的影 响.为了测量准周期方向样品的热电势,先用金刚石 刀片将 AlCuCo 准晶沿垂直于十次轴方向切成约 1 mm 厚的薄片,然后将薄片磨成细条状,在磨制的 过程中也应保证细条样品的端面与准晶面垂直.准 备好的样品的长度约为 5 mm,端面边长约 0.5 mm.

图 4 是名义成分 Al₆₅ Cu₁₂ Co₂₃的准晶沿周期方向 热电势与温度的关系 和低温行为不同,可以看出在 高温区准晶的热电势并不是单调变化的,在 300—

图 4 准晶周期方向热电势-温度关系 内插图是相变点处的放 大显示

图 5 准晶准周期方向热电势-温度关系

1200 K的温区内热电势的符号为负,在1123 K (850 ℃)热电势有一个跳变,说明在这一温度发生 了晶体近似相-准晶的相变.图4右上角的内插图是 对相变点处的详细显示.图 5 是名义成分 Ales Cule Cole的准晶沿准周期方向热电势与温度的测 量关系,在300—1200 K的温区内热电势的符号为 正 热电势随温度变化是非单调的 然而热电势在整 个测量温区内没有发现类似周期方向的跳变.由于 准周期方向测量的数据噪声较大 需要进一步的实 验确认.本实验发现文献 16 所确定的 AlCuCo 准晶 的热电势符号可能是错误的.实际上,沿周期方向热 电势符号为负 准周期方向热电势符号为正,实验中 发现的准晶-晶体的相变温度为 1123 K(850 ℃) 略 高于 Fettweis 等^[15]的测量结果 800 ℃,可能是由于 Si 元素的加入对准晶结构的微小调整,从而使得 Al, Cu17, Co17, Si, 结构熵的增大, 使得转变温度略低.

与确定相变点的差热分析的方法相比,本实验所设 计的激光调制交流法测量材料的热电势,可以得到 样品结构的微小变化的信息,采用交流法测量细小 样品的热电势的方法更能准确地确定材料的相 变点.

3.结 论

本实验采用激光加热的交流法,测量了 D 相 (十次)Al_{cs} Cu₁₆ Co₁₉准晶样品从室温到 1200 K 的高 温热电势.因为 D 相准晶是二维准晶,所以我们对 其周期与非周期两个方向的热电势进行了测量.通 过测量表明,十次准晶热电势在高温下的各向异性 和低温情形一致.在周期方向热电势于1100 K 附近 能观察到比较明显的跳变,但是在准晶面内测量的 结果噪声稍大,没有看到热电势的跳变.

本实验工作是在中国科学院物理研究所张殿琳院士的 指导与帮助下完成的,在此深表感谢;同时也感谢中国科学 院物理研究所景秀年与李山林在实验过程中给予的帮助.

- [1] Yu B L, Tang X F, Qi Q, Zhang Q J 2004 Acta Phys. Sin. 53 3130
 (in Chinese)[余柏林、唐新峰、祁 琼、张清杰 2004 物理学报 53 3130]
- [2] Jiang J, Li Y L, Xu G J, Cui P, Wu T, Chen L D, Wang G 2007 Acta Phys. Sin. 56 2858 (in Chinese)[蒋 俊、李亚丽、许高杰、 崔 平、吴 汀、陈立东、王 刚 2007 物理学报 56 2858]
- [3] Deng S K , Tang X F Zhang Q J 2007 Acta Phys. Sin. 56 4983 (in Chinese) [邓书康、唐新峰、张清杰 2007 物理学报 56 4983]
- [4] Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951
- [5] Peng Y Z 2000 Chin. Phys. 9 764
- [6] Li X F ,Fan T Y 2002 Chin . Phys . 11 266
- [7] Wang R H ,Hu C Z ,Gui J N 2004 Quasicrystal Physics (Beijing: Science Press)(in Chinese)[王仁卉、胡承正、桂嘉年 2004 准

晶物理学(北京科学出版社)]

- [8] de Laissardiere G T ,Fujiwara T 1994 Phys. Rev. B 50 9843
- [9] Lin S Y ,Li G H ,Zhang D L 1996 Phys. Rev. Lett. 77 1998
- [10] Lin L L 2000 (Ph. D. Dissertation) (Beijing : Institute of Physics , Chinese Academy of Sciences) (in Chinese) [林岚岚 2000 (博士 学位论文)(北京:中国科学院物理研究所)]
- [11] Launois P 1990 Europhys. Lett. B 13 629
- [12] Hiraga K Sun W ,Lincoln F J ,Kaneko M ,Matsuo Y 1991 Jpn. J. Appl. Phys. 30 2028
- [13] Vedernikov M V 1977 Thermoelectricity in Metallic Conductors (New York and London : Plenum Press) p71
- [14] Fan Z J Zhang D L 2005 Chin . Phys. 14 1533
- [15] Fettweis M, Launois P, Reich R, Wittmann R, Denoyer F 1995 Phys. Rev. B 51 6700
- [16] Lin S Y , Wang X M , Zhang D L 1990 Phys. Rev. B 41 9624

Fan Zhen-Jun¹^{(2)†} Geng Xue-Wen¹) Kong Wen-Jie³ Jin Yi-Rong²

1 X School of Materials Science and Engineering , China University of Geosciences , Beijing 100083 , China)
 2 X Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China)

3 X College of Physics and Electronic Engineering ,Guangxi Normal University ,Guilin 541004 ,China)

(Received 2 August 2008; revised manuscript received 8 February 2009)

Abstract

The thermopower of decagonal AlCuCo quasicrystal was measured in the periodic and quasiperiodic direction by laser heating alternating current measurement method in the temperature range of from 300 K to 1200 K. We found that the thermopower is negative in the periodic direction and positive in the quasiperiodic direction. The thermopower hopps at 1123 K($850 \, ^{\circ}$ C) along the periodic direction. The change of the thermopower is not monotonic at high temperature. The measurement method we used is sensitive to the phase transition point.

Keywords : AlCuCo qasicrystal , high temperature , thermopower , alternating current measurement method PACC : 6590 , 7215J , 7220P , 6140M

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10334080).

[†] E-mail : fanzj@cugb.edu.cn