碳掺杂闭口硼氮纳米管场发射第一性原理研究*

杨 敏 王六定节陈国栋 安博 王益军 刘光清

(西北工业大学应用物理系,西安 710072)

(2009年1月16日收到2009年2月5日收到修改稿)

运用第一性原理研究了闭口硼氮纳米管(BNNT)顶层掺碳体系(C@BNNT)的电子场发射性能.结果表明:随外电场增强 C@BNNT电子结构变化显著,态密度(DOS)向低能方向移动,碳原子的局域态密度(LDOS)在费米能级附近明显增大;赝能隙、最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)能隙减小;体系电荷移向帽端.DOS,HOMO/LUMO及 Mulliken电荷分析一致表明,与BNNT相比,C@BNNT电子场发射性能显著改善,且C@BNmore NT性能更优.

关键词:碳掺杂,硼氮纳米管,电子场发射,第一性原理 PACC:7125X,3100

1.引 言

碳纳米管(CNT)自 1991 年被 Iijima 发现以 来^[1] 因其优良的特性已在纳米电子学^[2,3]、储氢^[4,5] 及复合材料^[6]等领域显示出潜在的应用价值.鉴于 CNT 的物理化学性质极大地依赖于管径与螺旋 性^[7,8]且难以在实验中按需合成,因此制约着它在某 些特殊场合的实际应用.继 CNT 后人们成功地合成 出硼氮纳米管(BNNT)^{9]}.已有的理论和实验研究表 明:BNNT 的禁带较宽以及物理化学性质几乎不依 赖于管径,因而表现出不同于 CNT 的诸多特性,如 室温下常为半导体或绝缘体^[10,11]、高温抗氧化 等^[12],这些独特的物理化学性能使 BNNT 在某些特殊领域的应用优于 CNT;又掺杂体系 C@BNNT 的性质介于 CNT 与 BNNT 之间^[3-15].但迄今为止,少有 BNNT 与 C@BNNT 电子场发射的研究报道.本文运用 第一性原理系统地研究了两者的电子场发射性能.

2. 模型及计算方法

本文对顶层掺 C 的闭口(5,5)BNNT 进行电子 场发射理论研究.该体系帽端类似 C₆₀半球(四层共 30个原子,B,N 原子各 15个),开口端用氢饱和以 消除悬挂键对管端电子态的影响.图 1(a)与(b)为 BNNT 模型,图 1(c)和(d)为掺杂模型.根据帽端 B,

图 1 BNNT 及掺杂模型 (a)BNNT 主视图 (b)BNNT 俯视图 (c)C@Bmore NNT 俯视图 (d)C@BNmore NT 俯视图

^{*} 国家自然科学基金(批准号 50771082 60776822)和西北工业大学研究生创业种子基金(批准号: Z200969)资助的课题.

[†] 通讯联系人. E-mail:wangld@nwpu.edu.cn

N 原子数不同 將掺杂体系分为 C@B_{more} NNT 和 C@ BN_{more} NT(C@B_{more} NNT 代表掺杂体系中 B 原子多于 N 原子 C@BN_{more} NT 的意义类似)两种模型.

运用密度泛函理论(DFT)为基础的DMol3量子 化学程序进行计算.采用局域密度近似(LDA)下的 PWC形式优化体系几何结构,使其处于基态构型(共 100个原子).在体系能量计算中,交换关联势选择广 义梯度近似(GGA)下的PW91形式,原子轨道展开采 用双数值极化基组(DNP)基矢,截止半径选取4.5Å.

3. 分析及讨论

3.1. 形成能

定义掺杂体系形成能^{16]}为 C 原子取代 BNNT

中 B 或 N 原子后形成 C@ BNNT 所需要的能量,其表达式为

 E_{form} = (E_{doping} – E_{pure}) – (E_{C} – E_{X}),

其中 E_{pure} , E_{doping} 分别为掺杂前后体系的总能, E_{c} , E_{x} 分别为 C 原子与被取代原子的化学势, 其值由块 体材料总能对原子数取平均得到. 计算得到 C @ B_{more} NNT 和 C @ BN_{more} NT 的形成能分别为 1.342 eV 和 0.767 eV.

3.2. 结合能

报

结合能反映体系的稳定性.能量越小,体系越稳 定.表1给出了体系结合能随外加磁场 *E*_{add}的变化 表1数据表明,三种体系结合能随 *E*_{add}增大而减小, 其稳定性依次递增.

表1 体系结合能随 Eadd的变化

体系	$E_{\rm add} = 0.250 \text{ eV/Å}$	$E_{\rm add} = 0.375 \text{ eV/Å}$	$E_{\rm add} = 0.500 \ {\rm eV/\AA}$
	结合能/eV	结合能/eV	结合能/eV
BNNT	- 631.348	- 631.620	- 632.020
C@B _{more} NNT	- 632.357	- 632.930	- 633.930
C@BN _{more} NT	- 628.580	- 629.020	- 629.790

3.3. 电子结构分析

分析电子结构可深入研究各体系的场发射性 能.本文主要计算三种体系的态密度/局域态密度 (DOS/LDOS)、應能隙、最高占据分子轨道/最低未占 据分子轨道(HOMO/LUMO)及 Mulliken 电荷分布. 3.3.1.DOS/LDOS 与赝能隙

图 2 给出不同 E_{add} 下各体系的 DOS/LDOS,采用 峰分离技术^[17]确定的体系赝能隙见表 2. 由表 2 可 知 ,因 BNNT 具有半导体特性 ,赝能隙及费米能级 $E_{\rm F}$ 处的 DOS 随 E_{add} 变化幅度较小.随 E_{add} 增强 ,C@ B_{more} NNT 与 C@ BN_{more} NT $E_{\rm F}$ 处的 DOS 分别增加约 137%和 170%.特别地 , E_{add} 处于 0.250—0.375 eV/Å 范围、C@BN_{more} NT E_F 处的 DOS 变化显著,而当 E_{add} 在 0.375—0.500 eV/Å时,C@B_{more} NNT E_F 处的 DOS 增幅偏大.根据图 χ a)—(c),加载外电场的共同特 点是反键态峰位均朝低能方向移动,且电子占据反 键态几率增加,赝能隙减小,体系共价性减弱,表现 为 C@BNNT 的金属性增强,利于电子传输与转移, 与 Kim 等^[18]总结的规律相符.相同电场强度下,C@ BN_{more} NT 比 C@B_{more} NNT 赝能隙略大,但其 E_F 处 DOS 约为 C@B_{more} NNT 的两倍.相比之下,前者更利 于电子场发射,与文献[19]所得结论一致.如图 2 (d)—(g)所示,掺杂体系帽端及 C 原子 LDOS 在 E_F 附近出现峰值,并随电场增强而靠近 E_F ,即帽端和 C 原子对体系 E_F 处 DOS 影响显著.由图 χ h)可以

表 2 不同 E_{add} 下各体系 E_F 处 DOS 及赝能隙

体系	$E_{\rm add} = 0.2$	$E_{\rm add} = 0.250 \text{ eV/Å}$		$E_{\rm add} = 0.375 \text{ eV/Å}$		$E_{\rm add} = 0.500 \ {\rm eV/\AA}$	
	$E_{\rm F}$ 处 DOS/eV ⁻¹	赝能系/eV	$E_{\rm F}$ 处 DOS/eV ⁻¹	赝能系/eV	$E_{\rm F}$ 处 DOS/eV ⁻¹	赝能系/eV	
BNNT	5.138	4.544	4.457	4.381	4.421	4.000	
$C@B_{more}NNT\\$	2.787	4.980	2.911	3.619	6.603	2.395	
C@BN _{more} NT	4.614	5.388	11.920	4.245	12.452	3.674	

图 2 不同 *E*_{add} 下各体系的 DOS 与 LDOS (a)BNNT 的 DOS (b)C@ B_{more} NNT 的 DOS (c)C@ BN_{more} NT 的 LDOS (d)C@ B_{more} NNT 帽端的 LDOS (e)C@ BN_{more} NT 帽端的 LDOS (f)C@ B_{more} NNT 中 C 原子的 LDOS (g)C@ BN_{more} NT 中 C 原子的 LDOS (h)*E*_{add} = 0.500 eV/Å 下三种体系 帽端的 LDOS

看出,在 E_{add} = 0.500 eV/Å时 C@BNNT 帽端 LDOS 在 E_F 附近出现弱峰 表明杂质态的引入可增大体系 E_F 处的 DOS.综上所述 $C@BN_{more}$ NT 更利于电子场发射. 3.3.2. HOMO/LUMO 及其能隙

图 3 给出了三种体系在 *E*_{add} = 0.500 eV/Å 下的 HOMO/LUMO 分布.对于 BNNT,HOMO/LUMO 分别位 于开口处与帽端,且 HOMO 聚集在 N 原子附近,而 LUMO 主要集中在 B—N 原子的成键方位,这与 Roohi 等^[20]的结论相符.特别在 C@ BNNT 体系中, HOMO/LUMO 均出现在帽端,与前者的 LUMO 分布 规律相似.不同 E_{add} 下各体系的能隙(HOMO— LUMO)见图 4(a).随 E_{add} 增加,能隙减小,有助于电 子从 HOMO 跃迁至 LUMO.图 4(b)给出了不同 E_{add} 下三种体系的有效功函数 E_{eff} (E_{eff} 定义为 E_F 与

图 3 体系在 *E*_{add} = 0.500 eV/Å 下的 HOMO/LUMO 分布 (a)与(b)分别为 BNNT 的 HOMO/LUMO 分布 (c)与(d)分 别为 C@B_{more} NNT 的 HOMO/LUMO 分布 (e)与(f)分别为 C@BN_{more} NT 的 HOMO/LUMO 分布

LUMO 的能级差^[21]).在相同电场强度下,C@BN_{more} NT 的能隙及 E_{eff} 最小,非常利于电子跃迁并向真空

发射.C@B_{more}NNT的能隙及有效功函数随 E_{add} 增加 几乎不变,其内在机理有待深入研究.

图 4 不同 E_{add} 下各体系的能系和有效功函数 (a)HOMO—LUMO (b) E_{eff}

3.3.3.Mulliken 电荷分析

表 3 是三种纳米管体系在不同 E_{add} 下帽端 Mulliken 电荷.由该表可知 随 E_{add} 增强 ,体系中电子 在帽端的聚集程度增加.与 BNNT 相比 , E_{add} 较强时 C@BNNT的聚集程度更高.多余电子填充导带, E_F向高能端移动,有助于降低表面势垒.因此, Mulliken 电荷分布进一步说明C@BNNT比BNNT场发射性 能更佳,与文献19J所得结论一致.

表 3 Mulliken 电荷分析

体系	$E_{\rm add} = 0.250 \text{ eV/Å}$	$E_{\rm add} = 0.375 \text{ eV/Å}$	$E_{\rm add}=0.500~{\rm eV/\AA}$	
	Mulliken 电荷/e	Mulliken 电荷/e	Mulliken 电荷/e	
BNNT	- 0.459	- 0.571	- 0.691	
C@B _{more} NNT	- 0.492	- 0.669	- 0.852	
C@BN _{more} NT	- 0.466	- 0.565	- 0.699	

4.结 论

运用第一性原理详细研究了顶层掺 C 的闭口 (55)BNNT 电子场发射性能.结果表明:随 E_{add}增 强,掺杂体系的 E_F 处 DOS 显著增大、赝能隙及 HOMO—LUMO 明显减小、 E_{eff} 降低、Mulliken 电荷在 纳米管帽端附近高度聚集.C@BNNT 改善了 BNNT 电子场发射性能,且 C@BN_{mum}NT 性能更优.

- [1] Iijima S 1991 Nature 354 56
- [2] Ouyang M ,Huang J L ,Lieber M 2001 Science 292 702
- [3] de Heer W A , Chatelain A , Ugarte D 1995 Science 270 1179
- [4] Dillon A C Jones K M ,Bekkedahl T A ,Kiang C H ,Bethune D S , Heben M J 1997 Nature 386 377
- [5] Mpourmpakis G ,Froudakis G E 2007 Catalysis Today 120 341
- [6] Hafner M M J H , Rinzler A G , Colbert D T , Smalley R E 1996 Nature 384 147
- [7] Hamada N Sawada S , Oshiyama A 1992 Phys. Rev. Lett. 68 1579
- [8] Saito R ,Fujita M ,Dresselhaus G ,Dresselhaus M S 1992 Phys. Rev. B 46 1804

- [9] Chopra N G ,Luyken R J ,Cherrey K ,Crespi V H ,Cohen M L ,Louie S G Zettl A 1995 Science 269 966
- [10] Blase X ,Rubio A ,Louie S G ,Cohen M L 1994 Europhys. Lett. 28 335
- [11] Rubio A , Corkill J L , Cohen M L 1994 Phys. Rev. B 49 5081
- [12] Suryavanshi A P ,Yu M ,Wen J ,Tang C ,Bando Y 2004 Appl. Phys. Lett. 84 2527
- [13] Terrones M ,Romo-Herrera J M ,Cruz-Silva E 2007 Materials Today 10 5
- [14] Li F ,Xia Y Y Zhao M W ,Liu X D ,Huang B D Ji Y J Song C 2006 Phys. Lett. A 357 369

- [15] Guo C S , Fan W J , Chen Z H , Zhang R Q 2006 Solid State Communications 137 549
- [16] Zhou J Z , Wang C Y 2005 Chin. Sci. Bull. 50 2706 (in Chinese) [周俊哲、王崇愚 2005 科学通报 50 2706]
- [17] Chen G D , Wang L D , Zhang J Q , Cao D C , An B , Ding F C , Liang J K 2008 Acta Phys. Sin. 57 7164 (in Chinese) [陈国栋、王六定、 张教强、曹得财、安 博、丁富才、梁锦奎 2008 物理学报 57 7164]
- [18] Kim C ,Kim B ,Lee S M 2002 Phys. Rev. B 65 18

- [19] Chen G D , Wang L D , An B , Yang M 2009 Acta Phys. Sin. 58 254 (in Chinese)[陈国栋、王六定、安 博、杨 敏 2009 物理学报 58 254]
- [20] Roohi H ,Bagheri S 2008 Journal of Molecular Structure-Theochem. 856 46
- [21] Zhang L 2006 Investigation on the Field Emission Properties of Carbon Nanotube (M.S. Thesis) (Changchun: Jilin University) (in Chinese) [张莉 2006 碳纳米管的场发射性质研究(硕士学 位论文)(长春:吉林大学)]

First-principles study on field emission of C-doped capped single-walled BNNT *

Yang Min Wang Liu-Ding[†] Chen Guo-Dong An Bo Wang Yi-Jun Liu Guang-Qing (*Department of Applied Physics ,Northwestern Polytechnical University ,Xi 'an* 710072 ,*China*) (Received 16 January 2009 ; revised manuscript received 5 February 2009)

Abstract

The electron field emission properties of C-doped capped single-walled BNNT (C @ BNNT) are investigated by firstprinciples study. The results show that with the increase of the applied electric field, the electronic structure of C @ BNNTchanges significantly the density of states (DOS) shifts towards the low energy position the local density of states (LDOS) at the Fermi level increases dramatically the energy gap between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) decreases drastically and the electrons congregate to the capped side. The investigations of DOS ,HOMO/LUMO and Mulliken population analysis indicate that , compared with pristine BNNT , the field emission properties of C @ BNNT, especially of C @ BN_{more} NT, are greatly improved.

Keywords : carbon atom doping , BNNT , electron field emission , first-principles PACC : 7125X , 3100

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 50771082, 60776822) and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No. Z200969).

[†] Corresponding author. E-mail:wangld@nwpu.edu.cn