B 位等价掺杂 SrBi₄Ti₄O₁₅铁电材料的性能研究

单 Π^{1} 朱 Π^{2} 金 M^{2} 陈小兵²^{*}

1 (扬州工业职业技术学院电子信息工程系 杨州 225002)
 2 (汤州大学物理科学与技术学院,汤州 225002)
 (2008 年 5 月 5 日收到 2008 年 12 月 23 日收到修改稿)

采用了传统的固相烧结工艺,制备了不同 Zr 和 Hf 掺杂量的 SrBi₄Ti_{4-x}Zr_xO₁₅(x = 0.00 0.03, 0.06 0.10 0.20) 和 SrBi₄Ti_{4-x}Hf_xO₁₅(x = 0.00 0.005, 0.015 0.030 0.060)的陶瓷样品.用 X 射线衍射对其微结构进行了分析,并测量 了其铁电、介电和压电性能.结果发现 Zr 和 Hf 的掺杂未改变 SrBi₄Ti₄O₁₅(SBTi)的晶体结构.与 *B* 位高价掺杂(V, Nb)相比,等价的 Zr 和 Hf 掺杂同样可以提高 SBTi 陶瓷的铁电性能,随着掺杂量的增加,SrBi₄Ti_{4-x}Zr_xO₁₅(SBTZ)和 SrBi₄Ti_{4-x}Hf_xO₁₅(SBTH)样品的剩余极化($2P_r$)先增大后减小,在 x = 0.03 时同时达到了最大值,分别为 21.7 和 27.1 μ C/cm² 与 SBTi 相比 2*P_r*分别增加了 42%和 80%,铁电性能显著提高.同时还发现,同族元素 Zr⁴⁺ 和 Hf⁴⁺ 虽然有相 同的化合价和相近的离子半径,但是相同的掺杂量下对 SBTi 陶瓷的铁电性能的影响却相差很大,这需要更进一步的研究.SBTZ和 SBTH 样品的压电性能随着掺杂量的增加先增大后减小,压电系数在 x = 0.03 时同时达到了最大值,分别为 15.5 和 17.3 pC/N.

关键词: $SrBi_4Ti_{4-x}Zr_xO_{15}$, $SrBi_4Ti_{4-x}Hf_xO_{15}$, 铁电性能, 介电性能 PACC: 7780

1.引 言

由于在非易失性随机存储器(NvRAMs)方面广 阔的应用前景,铁电材料已成为近二十年来材料领 域的研究热点之一11.其中层状钙钛矿结构铁电材 料 (bismuth layer-structured ferroelectrics, 简称 BLSFs),因其良好的抗疲劳性能,是目前铁电 NvRAMs应用研究的主要候选材料^[2].这种材料的 通式是(Bi₂O₂)⁺(A_{m-1}B_mO_{3m+1})⁻,其中A为+1, +2 或 +3 价离子, B 为 +3, +4 或 +5 价离子, m 为 类钙钛矿层中氧八面体 BO6 的层数,类钙钛矿层 (Bi₂O₂)⁺(A_{m-1}B_mO_{3m+1})⁻ 与铋氧层(Bi₂O₂)⁺沿晶 轴 c 方向交替排列^[34].铁电极化主要来源于类钙钛 矿层,铋氧层起绝缘层与空间电荷库的作用56]. SrBi₄Ti₄O₁(SBTi)是一种典型的层状钙钛矿结构铁 电材料 剩余极化较大(单晶极化强度方向沿 a 或 b 轴时 $2P_r = 58 \ \mu C/cm^2$ \int^{71} 热稳定性能好(相变温度) 达520 ℃)⁸¹.但由于 Bi 在高温时容易挥发,在材料 制备中易形成 Bi 空位,随之产生氧空位,影响材料

的铁电性能.用高价离子取代类钙钛矿层中 B 位的 Ti 即 B 位掺杂 ,是改善材料铁电性能的有效方法 之一. Noguchi 等^[9,10]报道了利用少量的高价阳离子 (如 V⁵⁺,W⁶⁺) 取代 B 位 Ti⁴⁺ 离子可以显著地提高 Bi₄Ti₃O₁₂(BIT)的铁电性能,作者认为利用 V⁵⁺ 或 ₩⁶⁺进行 B 位掺杂,通过化合价中和,可以降低氧 空位浓度,从而减弱了畴界钉扎,导致了剩余极化 (2P,)的提高.据报道,利用少量的 Nb⁵⁺, V⁵⁺ 掺杂 层状钙钛矿铁电材料 SrBia Tia Ous(SBTi) 同样可以改 善材料的耐压性能和铁电性能^{11,12]}.而对于 B 位等 价掺杂,并不能通过化合价的中和来降低氧空位的 浓度.Li 等^{13]}报道了利用等价阳离子(Zr⁴⁺,Hf⁴⁺)取 代 B 位 Ti⁴⁺ 离子也可以显著地提高 Bi₄Ti₃O₁₂(BIT) 的铁电性能,作者认为利用等价 Zr4+ 和 Hf4+ 进行 B 位掺杂,由于掺杂离子比 Ti⁴⁺离子半径大,造成 TiO_e 八面体倾斜变大,使得剩余极化提高,SBTi和 BIT 结 构极其相似。因此 Zr 和 Hf 掺杂 SBTi 也可能是一种 改善其性能的有效方法,本文主要研究了等价 Zr 和 Hf 掺杂对 SBTi 的电性能的影响 结果表明在适当的 掺杂量下 SBTi 的电性能得到了明显的提高.

[†] 通讯联系人.E-mail xbchen@yzu.edu.cn

2.实验

用传统的固相烧结工艺制备了 $SrBi_4Ti_{4-x}Zr_xO_{15}$ (x = 0.00, 0.03, 0.06, 0.10, 0.20 χ SBTZ-x)和 $SrBi_4Ti_{4-x}Hf_xO_{15}$ (x = 0.00, 0.005, 0.015, 0.03, 0.06 χ SBTH-x)的陶瓷样品. 原料为高纯度的 $SrCO_3$, Bi_2O_3 , TiO_2 , HfO_2 和 ZrO_2 ,由于 Bi 在高温时易 挥发,为了补偿烧结过程中 Bi 的损失,配料时 Bi 过 量 5%.将各原料粉末按化学计量配比混合,球磨 24 h,将球磨后的粉末在800 °C下预合成 8 h;再经充分 研磨后压成直径为 12 mm、厚度为 1 mm 左右的圆 片 经 1160—1180 °C烧结 4 h 后制成陶瓷样品.

用 X 射线衍射仪(M03XHF22型,Cu 靶, $\lambda = 0.154056$ nm)对样品结构进行了分析.对样品进行 了拉曼光谱的测量,激光拉曼光谱所用 Ar⁺ 激光束 波长 $\lambda = 514.5$ nm,用三光栅光谱仪(Jobin Yvon 公 司,T64000型)分离散射光.将样品分别磨至 0.1— 0.2 mm,0.5 mm 左右,抛光后涂上氧化银银浆,在 500 ℃下还原 4 h 制成上下测量电极.用铁电性能测 试仪(LC Precision)测量样品在室温下的铁电性能, 用低频阻抗分析仪(HP4192A)测量了不同频率下样 品的介电常数随时间的变化曲线,确定相变温度 T_c .将样品磨至 0.5 mm 左右,抛光后涂上氧化银银 浆,在800 ℃下还原 20 min 制成上下测量电极,置于 160 ℃的硅油中用 100 kV/cm的电场极化 15 min,用 压电系数分析仪(ZJ-2)测量样品的压电系数 d_{33} .

3. 结果与讨论

3.1. 微观结构

图 1 为烧结后的 SBTZ-*x* 和 SBTH-*x* 陶瓷样品在 常温下的 X 射线衍射(XRD)谱.可以看出 层状钙钛 矿相都已形成,没有出现其他杂相.XRD 谱的形状 随 Zr 和 Hf 掺杂量的增加几乎没有变化,这说明 Zr 和 Hf 掺杂未改变 SBTi 的晶体结构.这可能与 Zr,Hf 的掺杂量相对较少有关.此外还发现,在少量掺杂的 情况下 (119)(020)(0018)等衍射峰向大角度方 向有移动,说明样品的晶格常数在少量的掺杂情况 下减小,这可能是因为 Zr⁴⁺ 和 Hf⁴⁺ 离子半径大于 Ti⁴⁺ 离子半径(Zr⁴⁺:0.072 nm,Hf⁴⁺:0.071 nm, Ti⁴⁺:0.0605 nm),SBTi 中部分 Ti⁴⁺ 离子被 Zr⁴⁺ 和 Hf⁴⁺离子取代后,引起了 SBTZ-*x* 和 SBTH-*x* 微观结构略有变化.

图 1 SBTZ-x和 SBTH-x 样品的 X 射线衍射谱

3.2. 拉曼光谱

图 χ a) (b)为 SBTZ-x 和 SBTH-x 在常温下的 拉曼光谱.在约 21,55,94,153,268,560,866 cm⁻¹处 可以看到几个明显的拉曼峰,这与 Kojima 等^{14,15}]的 报道相符合,从图中可以看出拉曼谱的形状包括频 移与强度,不受 Zr 和 Hf 掺杂的影响,这表明掺杂未 改变材料的基本结构,与 X 射线衍射得到的结果一 致,但是我们发现 Zr 和 Hf 的掺杂都导致了一些拉 曼峰的宽化 表 1 列出了 SBTZ-x 和 SBTH-x 在 55, 268,560,866 cm⁻¹处的4个拉曼模的半高宽.在55 cm⁻¹处,对应 Bi₂O₂ 层的拉曼模的半高宽,几乎不受 Zr和Hf掺杂的影响,而其他3个TiO。八面体的拉 伸或扭曲模,有宽化的趋势.Zhu 等^{16]}报道在268, 560 866 cm⁻¹处拉曼模的半高宽宽化与局部离子分 布无序和晶格畸变有关.因此,我们观察到的3个与 TiO₆ 八面体相关模的宽化可能是由于 + 4 价的 Zr⁴⁺ 和 Hf⁴⁺ 取代 TiO₆ 八面体中心 + 4 价的 Ti⁴⁺ 后,被取 代位置周围的晶格畸变程度有所增加,局部电场失 去平衡.这使材料中的局部结构发生改变,局部应力 增加 所以导致拉曼峰的宽化.

3.3. 铁电性能

图 3(a)(b)为 SBTZ-x 和 SBTH-x 在室温下的 电滞回线,测量时外加电场为 170 kV/cm,内插图

图 2 SBTZ-x和 SBTH-x 样品的拉曼光谱 (a)SBTZ-x,(b)SBTH-x

拉曼位移/cm ⁻¹	SBTZ-0.00	SBTZ-0.03	SBTZ-0.06	SBTZ-0.10	SBTZ-0.20	SBTH-0.00	SBTH-0.005	SBTH-0.015	SBTH-0.03	SBTH-0.06	
55	21.4	22.1	22.1	22.1	22.1	21.3	21.3	21.3	21.3	21.3	
268	30.5	30.5	29.8	29.8	31.1	32.9	35.5	35.5	35.5	32.3	
560	41.5	44.6	42.8	42.8	44.6	40.6	42.1	45.2	48.5	48.5	
866	23.9	24.5	24.5	24.5	24.5	23.6	28.7	28.7	28.7	30.1	

图 3 SBTZ-x 和 SBTH-x 样品的电滞回线 内插图为 2P_x 随 x 的变化关系.(a)SBTZ-x,(b)SBTH-x

为剩余极化与掺杂量 x 的关系.图 4 为 SBTi ,SBTZ-0.03 和 SBTH-0.03 样品在室温下的电滞回线 $,2P_r$ 分别为 15.1 $,21.7 ,27.1 \, \mu$ C/cm².可见 随掺杂量 x 的 增加 ,SBTZ-x 和 SBTH-x 样品的剩余极化 $(2P_r)$ 都是 先增大,后减小,在x = 0.03时 $2P_r$ 同时达到了最大 值,分别为21.7和 27.1μ C/cm²,与SBTi相比, $2P_r$ 分别增加了42%和80%.曾经有人报道过利用少量 的高价阳离子 Nb⁵⁺,V⁵⁺掺杂层状钙钛矿铁电材料 SrBi₄Ti₄O₁₅,可以使得剩余极化 2 P_r 增加近 2 倍^[11,12].与此相比,我们认为 *B* 位等价掺杂对剩余 极化的影响虽然没有 *B* 位高价掺杂对剩余极化的 影响大,但 *B* 位等价掺杂同样也可以提高 SBTi 陶瓷 的铁电性能.

B 位掺杂一般可以提高剩余极化,其原因主要 有两种解释:一种认为由于掺杂离子比 Ti⁴⁺ 离子半 径大,造成 TiO。 八面体倾斜变大,使得剩余极化提 高 :另一种认为由于电荷补偿作用 高价掺杂可有效 降低氧空位的浓度 减少畴界钉扎的几率 从而提高 剩余极化. B 位等价(Zr , Hf) 掺杂同样可以提高剩余 极化.从电荷补偿作用来看,Zr⁴⁺,Hf⁴⁺与Ti⁴⁺有相 同的化合价 并不能通过化合价的中和来降低氧空 位的浓度.所以 B 位等价(Zr,Hf)掺杂提高 2P,的原 因有可能是因为掺杂离子 Zr⁴⁺(0.072 nm)和 Hf⁴⁺ (0.071 nm)离子半径比 Ti⁴⁺(0.0605 nm)离子半径要 大,当少量掺杂时造成 TiO₆ 八面体倾斜变大,晶格 畸变程度明显增加 从而提高了样品的剩余极化.同 时我们还发现同处第Ⅳ副族元素的 Zr⁴⁺ 和 Hf⁴⁺ 虽 然有着相同的化合价和相近的离子半径,但是 SBTH-x 的 $2P_r$ 增加了近 80% ,远超过了 SBTZ-x (42%). 虽然 Hf 比 Zr 多一个周期, 但是由于镧系紧 缩现象 镧系元素的离子半径随原子序数增大而逐 渐减小,导致 Hf 离子半径甚至比 Zr 离子半径更小 一点,因此 SBTH 中剩余极化的提高不能简单地归 结为由于掺杂离子半径不同于 Ti 离子半径而引起 的 TiO₆ 八面体的畸变,可能还存在着其他尚未确定 的原因.1992年 Cohen 等^[17]提出共价键在铁电体氧 化物的铁电性和结构畸变方面扮演着重要的角色. Shimakawa 等^{18]}通过中子衍射精修了 BiT 的晶格结 构 并指出在费米能级以下 Ti 的 3d 轨道与 O 的 2p 轨道强烈杂化 共价键的距离一般比离子键的距离 短 强的杂化增强了Ti—O共价键 使得晶格结构畸 变 从而在位移型的铁电体中产生出铁电极化.Li 等^{13]}指出,虽然 Zr⁴⁺和 Hf⁴⁺ 具有相同的价态和离子 半径,可是它们的最外层电子轨道不同,当它们失去 最外层的4个电子进入八面体内部后,与O的2p轨 道进行杂化的分别是 Ti 的 3d 轨道 Zr 的 4d 轨道和 Hf的 5d 轨道,而由于杂化轨道的不同而导致了 Hf—O键与Zr—O键和Ti—O键相比有更强的共价性, 从而使得晶格结构畸变增大,这有可能是导致 SBTH 剩余极化提高的一个原因.结合拉曼光谱中与 TiO。 八面体有关的拉伸或扭曲模出现宽化的结果 局部

结构和应力的变化,可能正是由于杂化轨道的不同 引起的.这个问题尚需要进一步研究.

图 4 SBTi, SBTZ-0.03 和 SBTH-0.03 的电滞回线

3.4. 介电性能

通过测量铁电材料介电常数 є 随温度 *T* 的变 化 ,可以确定居里温度 *T*_c ,图 5(a) (b)反映了 SBTZ-*x* 和 SBTH-*x* 样品 ,在测量频率 *f* = 116 kHz 时 , 介电常数 є 随温度 *T* 的变化关系 .内插图分别为居 里温度 *T*_c 与掺杂量 *x* 的关系 . SBTi 的 *T*_c 为 518 ℃ 基本与文献报道的一致(*T*_c = 520 ℃)¹⁹]. SBTZ-*x* 和 SBTH-*x* 样品的 *T*_c 随着掺杂量 *x* 的增加 , 变化不是很明显 .在 *x* = 0.03 时 ,*T*_c 分别达到了最 大值524 ℃和534 ℃ ,居里温度的升高是由于 Zr 和 Hf 掺杂引起 SBTi 的结构畸变程度变大 ,这说明在 *x* = 0.03 时 ,晶格畸变程度相对最大 .

3.5. 压电性能

图 ((a)(b)为 SBTZ-x 和 SBTH-x 样品的压电 系数 d_{33} 随掺杂量的变化.从图中看出,随掺杂量 x 的增加,SBTZ-x 和 SBTH-x 样品的压电系数 d_{33} 都是 先增大,后减小,在 x = 0.03 时 d_{33} 同时达到了最大 值,分别为 15.5 和 17.3 pC/N,这与剩余极化随掺杂 量变化的变化趋势很相似.这是因为由公式 $d_{33} = 2Q\epsilon_{0}\epsilon_{r}P_{r}$ 可以看出影响压电系数大小的主要因素是 介电常数 ϵ 和剩余极化 $2P_{r}$. ϵ 越大 $2P_{r}$ 越大,压电 系数就越大.而在 x = 0.03 时,SBTZ-x 和 SBTH-x 样品的 $2P_{r}$ 和 ϵ 都分别达到最大值,这导致了样品 在 x = 0.03 时压电系数有最大值.

图 5 SBTZ-*x*和 SBTH-*x*样品在频率为 116 kHz 时介电常数 ε 随温度 *T*的变化关系 内插图为居里温度随掺杂量的变化关系 (a)SBTZ-*x*, (b) SBTH-*x*

图 6 SBTZ-x 和 SBTH-x 样品的压电系数(d33)随掺杂量 x 的变化关系 (a)SBTZ-x ,(b)SBTH-x

4.结 论

B 位 Zr 和 Hf 等价掺杂 SrBi₄Ti₄O₁₅ 未改变 SBTi 的晶体结构 ,少量的掺杂导致了一定程度上的晶格 畸变.在掺杂量 x = 0.03 时 ,SBTZ-x 和 SBTH-x 样品 的剩余极化 2*P*,和压电系数 d_{33} 同时达到了最大值, 分别为 21.7 和 27.1 μC/cm²,15.5 和 17.3 pC/N. 氧空 位浓度的降低并不是提高剩余极化的唯一原因,由 于掺杂离子比 Ti⁴⁺离子半径大,造成 TiO₆ 八面体倾 斜变大,同样可以提高剩余极化,另外杂化轨道的不 同也有可能导致剩余极化提高.而样品的压电性能 的提高可能主要是掺杂引起的剩余极化和介电常数 的增加共同作用所致.

- Zhao M L, Wang C L, Zhong W L, Zhang P L, Wang J F 2002
 Acta Phys. Sin. 51 420 (in Chinese] 赵明磊、王春雷、钟维烈、
 张沛霖、王矜奉 2002 物理学报 51 420]
- [2] Park B H , Kang B S , Bu S D , Lee J , Jo W , Noh T W 1999 Nature 401 682
- [3] Irie H, Miyayama M, Kudo T 2001 J. Appl. Phys. 90 4089

- [4] Yang P X, Deng H M, Zhu J H 1998 Acta Phys. Sin. 47 1222 (in Chinese)[杨平雄、邓红梅、褚君浩 1998 物理学报 47 1222]
- [5] Kim S K ,Miyayama M , Yanagida H 1996 Mater . Res. Bull. 31 121
- [6] Araujo C , Cuchiaro J D , McMillan L D , Araujo C , Cuchiaro J D , Macmillan L D , Scott M C , Scott J F 1995 Nature 374 627
- [7] Lrie H, Miyayama M 2001 Appl. Phys. Lett. 79 251
- [8] Noguchi Y , Miyayama M , Kudo T 2000 Appl . Phys . Lett . 77 3639
- [9] Noguchi Y , Miyayama M 2001 Appl . Phys . Lett . 78 1903
- [10] Noguchi Y , Miwa I , Goshima Y , Miyayama M 2000 Jpn . J . Appl . Phys . 39 L1259
- [11] Yao Y Y , Song C H , Bao P , Su D , Lu X M , Zhu J S , Wang Y N 2004 J. Appl. Phys. 95 3126

- [12] Zhu J , Mao X Y , Chen X B 2004 Solid State Commun. 129 707
- [13] Li W, Gu J, Song C H, Su D, Zhu J S 2005 J. Appl. Phys. 98 114104
- [14] Kojima S , Imaizumi R , Hamazaki S , Takashige M 1994 Jpn. J. Appl. Phys. 33 5559
- [15] Kojima S , Imaizumi R , Hamazaki S , Takashige M 1995 J. Mol. Struct. 384 37
- [16] Zhu J, He J H, Chen X B 2005 J. Sichuan Vniversity 42 63 (in Chinese) [朱 骏、何军辉、陈小兵 2005 四川大学学报 42 63]
- [17] Cohen R E 1992 Nature **358** 136
- [18] Shimakawa Y, Kubo Y, Tauchi Y, Asano H, Kamiyama T, Izumi F, Hiroi Z 2001 Appl. Phys. Lett. 79 2791
- [19] Irie H , Miyayama M 2001 Appl . Phys . Lett . 79 251

Effect of *B*-site equal-valent doping on ferroelectric properties of SrBi₄Ti₄O₁₅ ceramics

Shan Dan¹) Zhu Jun-Chuan²) Jin Can²) Chen Xiao-Bing²)[†]

1 X Department of Electronic Information Engineering , Yangzhou Polytechnic Institute , Yangzhou 225002 , China)

2 X College of Physics Science and Technology , Yangzhou University , Yangzhou 225002 , China)

(Received 5 May 2008; revised manuscript received 23 December 2008)

Abstract

The structures and properties of Zr and Hf-modified SrBi₄Ti₄O₁₅(SBTi) ceramics were investigated. We find that the basic crystal structure is not changed after the substitution of equal-valent cations Zr^{4+} and Hf^{4+} for the Ti⁴⁺ ions at *B* site in SBTi. Compared with the higher-valent cation doping (V, Nb), Zr^{4+} and Hf^{4+} substitution can also improve the ferroelectric property of SBTi. The enhancement of remnant polarization ($2P_r$) by Hf^{4+} doping is obviously larger than that by Zr^{4+} doping , though these two cations have almost the same radius. This indicates that the reduced concentration of oxygen vacancy is not the only reason responsible for the improvement of the $2P_r$ in the *B* site doping , and other uncertain reasons should also be considered. The piezoelectric properties of these ceramics are investigated briefly. The tendency of piezoelectric constant changing with the doping dosage is nearly consistent with the tendency of $2P_r$. Meanwhile , the dielectric properties of these ceramics are investigated slightly with the doping amount , which implies that the good thermal stability of SBTi is not sacrificed.

Keywords : $SrBi_4 Ti_{4-x} Zr_x O_{15}$, $SrBi_4 Ti_{4-x} Hf_x O_{15}$, ferroelectric property, piezoelectric properties **PACC** : 7780

[†] Corresponding author. E-mail : xbchen@yzu.edu.cn