3C-SiC(001)(2×1)表面原子与电子结构研究*

刘 福 周继承† 谭晓超

(中南大学物理科学与技术学院,长沙 410083) (2008年11月12日收到 2009年4月13日收到修改稿)

采用广义梯度近似的密度泛函理论方法计算了 3C-SiQ 001)(2×1)表面的原子及电子结构.计算结果表明, 3C-SiQ 001)(2×1)表面为非对称性的 Si 二聚体模型 其二聚体的 Si 原子间键长为 0.232 nm.电子结构的计算结果 表明 .在费米能级处有明显的态密度 ,因此 3C-SiQ 001)(2×1)表面呈金属性.在带隙附近存在四个表面态带 ,一个 位于费米能级附近 ,一个位于费米能级以上 5 eV 处 ,另外两个位于费米能级以下的价带中.

关键词:碳化硅,密度泛函理论计算,原子结构,电子结构 PACC:7115,7320A

1.引 言

SiC 材料是一种宽带隙半导体材料,具有禁带 宽度大、击穿电压高、电子饱和漂移速率高、电子迁 移率高、热导率高、介电常数小、抗辐射能力强、化学 稳定性好等优良的物理化学性质,以及与硅集成电 路工艺兼容等特点,成为制造高温、高频、大功率、抗 辐射、不挥发存储器件及光电集成器件的优选材 料^[12].随着理论研究的不断深入及实验技术的不断 提高,对 SiC 表面原子和电子结构的理论和实验研 究也引起了人们极大的兴趣^[3].

SiC 是具有独特性质的 IV 族化合物半导体:沿着 Si-C 键存在电荷极化使得 SiC 是具有极化性质的 半导体,而其极化性质介于 GaAs 和 ZnSe 之间;四面 体的 SiC 存在着数百种的多型体,使得其具有广泛 应用前景;此外,由于其具有宽带隙和高硬度,SiC 被认为是最为适合在高温和高压下工作的电子器件 材料.SiC 与氮化物的晶格失配比较小,也是一种很 好的用来生长氮化物的基底材料.

在 3C-SiQ 001)表面上至今已发现了多种重构 现象,如(1×1)(2×1),(2×2)(3×2),(4×2) 等.Kaplan 在其开创性的工作^[4]中指出,在 1000 K 的 Si 熔融物中,会形成这样一个可逆的结构循环:

 $\mathcal{M}(1 \times 1)$ 的 C 终结的表面(类似石墨),变成 c(2 × 2)的 C 终结的重构结构 继而成为 (4×2) 或者 (2×1)的 Si 终结的重构结构 ,最后是富含 Si 的(3×2) 几何形态.基于实验上的研究,Dayan^[5]最先提出Si 端面的 SiQ 001)的表面原子是以 Si 二聚体的形式 有序排列的.对于 Si 端面的 3C-SiC (001)(2×1)重 构, Power 等⁶ 根据他们对低能电子衍射(LEED)实 验数据的动力学计算提出了一个键长为 0.231 nm 的二聚体模型,他们认为 3C-SiQ 001)(2×1)表面 原子的重构类似于 Si(001)(2×1)表面,二聚体的 两个 Si 原子在 z 方向有一定间距 因此被称为非对 称的二聚体模型.但 Sabisch 等⁷¹在关于 3C-SiC (001)(2×1)的第一性原理计算中,提出了与 Power 等不同的二聚体模型 其二聚体键长为 0.273 nm 而 且二聚体的两个 Si 原子在 z 方向的间距基本为零, 因此被称为对称的二聚体模型,徐彭寿等[8]利用缀 加平面波加局域轨道(APW + LO)的第一性原理方 法计算了 3C-SiQ(001)(2×1)表面原子结构,其二 聚体键长为 0.269 nm Si 原子在 z 方向上的间距为 零,得出了对称的二聚体模型,由此可见,对于 3C-Si((001)(2×1)重构表面的原子结构,至今未有定 论,本文基于广义梯度近似的密度泛函理论,计算了 3C-Si((001)(2×1) 表面的重构问题,希望通过理论 计算并与其他实验和理论结果进行比较 进一步确 定其表面结构的正确模型.

^{*} 国家自然科学基金(批准号 160371046)湖南省科技重大专项资助的课题.

[†] 通讯联系人.E-mail:jicheng@mail.csu.edu.cn

2. 计算方法

在表面结构的第一性原理计算中,我们通常采 用层晶超原胞模型.3C-SiQ 001)上下表面分别为 Si 端面和 C 端面,这样的层晶上下表面具有不同的结 构组成.这时,由于电荷转移或极化电荷的存在会在 层晶区内产生宏观电场,体内存在势场梯度^[9],层晶 的中间区域就不能很好地模拟真实体内的情况,从 而导致层晶模型的失败.为了克服以上的不足, Shiraish^[10]提出了一个用 H 钝化的层晶模型,即将 原本处于体态位置的原子端面由于截断而形成的悬 键全部用 H 原子饱和,这就避免层晶的上下表面之 间产生极化场,从而使体内的势场梯度尽量减小.计 算结果表明,采用 H 原子钝化后的层晶模型能很好 地计算极性面的原子和电子结构.

我们采用的第一性原理计算是在密度泛函理论 (DFT)局域密度近似(LDA)的框架下进行的.计算采 用 Wang 和 Perdaw 提出的广义梯度近似来描述交换 关联势,平面波截断能取 500 eV.二维布里渊区采用 7×11 的 Monkhorst-Pack 特殊样点来计算原子结构 弛豫,而电子结构计算采用 11×17 的 MonkhorstPack 特殊样点.在计算过程中,用H原子饱和的层 晶模型模拟真实表面.SiC 晶格常数取理论优化值 3.075 Å.层晶模型取8个原子层,真空层厚度取为 1.0 nm.层晶模型底面的C面用H原子饱和,并让H 原子和表面4层的Si和C自由弛豫,由此得到了一 个8层的层晶模型.

3. 表面原子结构

图 1 是 3C-SiQ 001)-(2×1)理想表面和重构表 面的顶视图和侧视图.图中给出了表示原子结构的 几个重要参数, d_1 表示二聚体原子之间的距离, d_2 , d_3 表示表面 Si 原子与次表层 C 原子的距离, Δd 表 示二聚体原子在 z 方向的距离.从表 1 的计算结果 可知, 3C-SiQ 001)(2×1)理想表面的两个 Si 原子 之间的距离为 0.3075 nm.弛豫后,表面的两个 Si 原子 之间的距离为 0.3075 nm.弛豫后,表面的两个 Si 原 子相互靠近并形成 Si-Si 键二聚体,其键长为 0.232 nm. d_2 为 0.182 nm, d_3 为 0.188 nm, Δd 为 0.011 nm,可知 3C-SiQ 001)(2×1)表面二聚体的两个 Si 原子由于高度不同,它们之间的键是非对称性的.我 们认为表面 Si 存在悬挂键,是极性表面,形成非对 称的二聚体,这与 Si(001)(2×1)表面重构结构

图 1 Si((001)(2×1)理想表面的顶视图(a)理想表面的侧视图(b)(2×1)重构表面的顶视图(c)(2×1)重构表面的侧视图(d)

类似.

从表1中可以看出,我们得到的 3C-SiC(001)-(2×1)的表面结构参数与与 Yan 等¹¹的理论计算 结果以及 Power 等根据 LEED 实验进行的动力学计 算所得结果比较接近,与 Sabics 等理论计算结果以 及徐彭寿等缀加平面波加局域轨道的第一性原理计 算差别较大, Yan 等通过第一性原理计算得到的二 聚体的键长 d_1 为 0.226 nm ,键的扭曲 Δd 为 0.005 nm. Power 等根据 LEED 实验进行的动力学计算研究 3C-SiQ 001)(2×1)表面得到表面 Si 原子二聚体的 键长 d₁ 为 0.231 nm,键的扭曲 △d 为 0.020 nm.本 文计算出 △d 为 0.011 nm 表明 3C-SiQ 001)(2×1) 表面为非对称性的 Si 二聚体模型. Sabicsh 等理论计 算表面 Si 原子二聚体的键长 d_1 为 0.273 nm ,键的 扭曲 Δd 为 0 的对称性 Si 二聚体模型. 徐彭寿等通 过缀加平面波加局域轨道的第一性原理计算,表面 Si 原子二聚体的键长 d_1 为 0.269 nm ,键的扭曲 Δd 为 0.得出对称性的 Si 二聚体模型. Sabicsh 等与徐彭 寿等都是通过一样的理论计算方法 赝势中 Si C 原 子间相互作用势更强,得到对称二聚体模型.Craig 等^{12]}采用基于经验参数的 MINDO 分子轨道方法, 得到表面 Si 原子二聚体的键长 d_1 为 0.233 nm ,键 的扭曲 $\Delta d = 0.020 \text{ nm}$. Craig 等计算表面的时候采用 了计算体态的一些经验参数,我们认为直接将体态 的经验参数应用到表面不是很准确,表面电子结构 对表面原子的弛豫非常敏感,下面通过表面电子结 构的研究来进一步确定 3C-SiQ 001)(2×1)表面再 构的结构模型.

结构	本文	수 하지 신기	·····································	*******	· · · · · · · · · · · · · · · · · · ·	·····································
参数	结果	XHM[0]	又 ƘNL /]	X MM II]	X MAL 12 J	XHV[8]
d_1/nm	0.232	0.231	0.273	0.226	0.233	0.269
d_2/nm	0.182		0.189		0.178	0.189
d_3/nm	0.188		0.189		0.185	0.189
$\Delta d/\mathrm{nm}$	0.011	0.020	0.000	0.005	0.020	0.000

表1	3C-Sif(001	$\gamma_{2\times 1}$	的表面结构参数
1.3.1	- SIG 001	A 4 A 1	

4. 表面电子结构

图 2 图 3 分别是 3C-SiQ 001)(2×1)表面 Si ,C 原子态密度曲线 图 4 是表面总态密度图.从图 4 可 以看出,费米能级处有非常明显的态密度,这说明 3C-SiQ 001)(2×1)表面具有典型的金属性质.从 图 2 图 3 可以进一步看出,底层 Si C 原子有明显的 带隙宽度,具有典型的非金属性质,费米能级附近的 态密度主要由表面 Si 原子和 C 原子构成.从图 2 看 出表面的 Si 在带隙及带隙附近有四个明显的表面 态带,一个正好位于费米能级附近,一个位于费米能 级以上 5 eV 处,处于导带中,另两个位于费米能级 以下,其中一个位于价带顶附近,另一个处于价带 中,这两个带相差 1 eV 左右.图 5 ,图 6 为表面 C ,Si 原子的分态密度图.从图中可以看出,费米能级附近 的那个表面带主要由 Si 的 s 电子和 p 电子构成,位 于费米能级以上 5 eV 处的表面带主要由 Si 的 p 电 子和 C 的 p 电子构成,而位于价带顶以下的两个表 面带主要由 Si 的 p 电子构成.

图 2 3C-Si(1 001)(2×1)表面 Si 原子态密度图(虚线是表面 Si 原子态密度)2 (点对应费)3 (点对应费)3 (1)3 (

图 3 SiC(001)(2×1)表面 C 原子态密度图(虚线是表面 C 原子态密度,实线是表面以下第8层 C 原子态密度,0 点对应费米能级)

图 7 为层晶模型所得到的能带结构.从图中可 以看出,有2条能带与费米能级相交,这2条能带与

图 4 SiQ(001)(2×1)表面总态密度图(0点对应费米能级)

图 5 3C-SiQ 001)(2×1)表面 C 原子分态密度图(实线为 s 态, 虚线为 p 态,点线为 d 态, 0 点对应费米能级)

图 6 3C-Si((001)(2×1)表面 Si 原子分态密度图(实线为 s 态, 虚线为 p 态,点线为 d 态, 0 点对应费米能级)

其他能带纠缠,杂化,并没有显著的带隙,导致 3C-Si((001)(2×1)表面呈金属性.在带隙及带隙附近 我们发现了四个明显的表面能带,从上到下依次是 σ^* , σ , π^* , π .上面两个带为空态,由 σ 键构成的成键

图 7 层晶模型的 3C-Si((001)(2×1)表面能带图(虚线对应费 米能级)

态和反键态.下面两个带为 π 键构成的成键态和反键态.在 $\theta = M$ 区间 σ^* σ 由理想 3C-SiQ 001)(2 × 1)表面的 Br 能带分裂而成; π^* π 由理想 3C-SiC (001)(2×1)表面的 D 能带分裂而成.这四个表面能带与理想表面的 Br 能带和 D 能带明显不同 ,但对称中心没变^[13].这四个表面能带和图 2 中的四个明显的表面峰——对应.我们的 3C-SiQ 001)(2×1) 表面能带色散曲线与 Kackell 等^[14]用 GW 方法计算的能带结构基本一致.他们用角分辨光电子能谱实验测量了区间的表面带的色散 ,发现和 π^* 色散基本符合.这也进一步证明了我们进行的第一性原理的结果基本是正确的.

5.结 论

本文采用广义梯度近似的密度泛函理论方法计 算了 3C-SiQ(001)(2×1)表面的原子及电子结构. 计算结果表明 3C-SiC(001)(2×1)表面为非对称性 的 Si 二聚体结构,二聚体 Si 原子间键长为 0.232 nm,键的扭曲为 0.011 nm.这与 Power 等由 LEED 实 验进行的动力学计算结果以及 Yan 等的理论计算结 果一致,与其他的理论计算方法有所差别.计算结果 表明,在费米能级处有明显的态密度,3C-SiQ(001)-(2×1)表面呈金属性.在带隙附近存在四个表面态, 一个位于费米能级附近,一个位于费米能级以上 5 eV 处,另外两个位于费米能级以下的价带中.在带 隙及带隙附近我们发现了四个明显的表面能带,分 别由 σ 键构成的成键态和反键态,π 键构成的成键 态和反键态组成.

- [1] Lei Y M , Yu Y H , Ren C X , Zou S C , Chen D H , Wong S P , Wilson I H 2000 Thin Solid Films 365 53
- [2] Sha Z D , Wu X M , Zhuge L J. 2005 Vacuum 79 250
- [3] Bermudez V M 1997 Phys. Stat. Sol. (b) 202 447
- [4] Kaplan R 1989 Surface Science 215 111
- [5] Dayan M 1986 J. Vac. Sci. Tech. A 4 38
- [6] Power J M , Wander A , Van Hove M A et al 1992 Surf. Sci. 260 L7
- [7] Sabisch M, Kruger P, Mazur A et al. 1996 Phys. Rev. B 53 13121
- [8] Xu P S, Pan H B, Li Y H 2005 Acta Phys. Sin. 54 5824 (in

Chinese)[徐彭寿、李拥华、潘海斌 2005 物理学报 54 5824]

- [9] Xie C K, Xu P S, Xu F Q, Pan H B 2002 Acta Phys. Sin. 51 2804 (in Chinese)[谢长坤、徐彭寿、徐法强、潘海斌 2002 物 理学报 51 2804]
- [10] Shiraishi K 1990 Phys. Soc. Jpn. 59 3455
- [11] Yan H , Smith A P , Jonsson H 1995 Surf. Sci. 330 265
- [12] Craig B I , Smith P V. 1990 Surf. Sci. 233 255
- [13] Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese)[姜振益、许小红、武海顺、 张富强、金志浩 2002 物理学报 51 1586]
- [14] Kackell P, Bechstedt F, Husken H et al 1997 Surf. Sci. 391 L1183

First-principles study on 3C-SiO 001 (2 × 1) surface atomic structure and electronic structure *

Liu Fu Zhou Ji-Cheng[†] Tan Xiao-Chao

(School of Physical Science and Technology, Central South University, Changsha 410083, China)

(Received 12 November 2008 ; revised manuscript received 13 April 2009)

Abstract

We calculate the atomic and electronic structure of 3C- SiQ 001 χ 2 × 1) using density functional calculations within the generalized gradient approximation. The calculated results show that the atomic structure of 3C-SiQ 001 χ 2 × 1) surface can be described by dissymmetrical Si dimmer model. The bond length of Si dimmer of 3C-SiQ 001 χ 2 × 1) surface is 0.232 nm. The calculated results of electronic structure show that a prominent density of states exists at the Fermi level , so the 3C-SiQ 001 χ 2 × 1) surface has the characteristics of metal. There are four surface state bands in the gap , one of which is located near the Fermi level , another at 5 eV above Fermi level , and the others in the valence bands below Fermi level.

Keywords: SiC , density functional calculation , atomic structure , electronic structure **PACC**: 7115 , 7320A

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60371046) and the Hunan Province Grand Science and Technology Special.

 $[\]dagger$ Corresponding author ,E-mail : jicheng@mail.csu.edu.cn