粉末材料堆积的物理模型与仿真系统*

·钟文镇¹) 何克晶²^{*} 周照耀¹) 夏 伟¹) 李元元¹)

1)《华南理工大学机械与汽车工程学院 广州 510641)

2) 华南理工大学计算机科学与工程学院 广州 510641)(2008 年 12 月 17 日收到 2009 年 4 月 23 日收到修改稿)

研究了粉末材料堆积过程仿真的物理模型和系统,并探讨了适合多种不同粒径颗粒混合堆积过程仿真的高性能计算方法.在该仿真系统中,考虑了重力、接触力、阻尼力、摩擦力和范德瓦耳斯力等多种作用力的影响,集成了多种接触力模型和阻尼模型,使其适用于三维大规模粉末材料堆积过程的计算机仿真.利用该系统对粉末材料领域中的两个典型应用进行了模拟研究.模拟了两种相同密度不同粒径颗粒(粒径比为10)的混合堆积过程.当小颗粒数为大颗粒数的300倍时,得到最大的堆积密度(体积分数)为0.82.另外,还模拟了两种不同密度相同粒径颗粒的混合堆积过程.当堆积结束时,出现了明显的分离(segregation)现象和团聚现象.所研究的物理模型和仿真系统既可用于粉末材料堆积过程研究,亦可用于普通的球形物体堆积过程的模拟研究.

关键词:粉末堆积,物理模型,仿真系统,离散元法 PACC:0320,4610

1.引 言

粉末冶金技术不仅能够用于生产高性能、高精 度的机械零部件,而且具有低能耗、低成本、低污染、 高效率和近净成形等优点,适应现代社会的发展方 向,因而在全球制造业的变革中蓬勃兴起,赢得了学 术界和工业界的广泛关注.在粉末冶金工艺流程中, 粉末堆积工序的技术水平对最终产品的品质有着重 要影响.因此,改进堆积技术是该领域的一项重要 课题^[1].

由于粉末具有一定的形状,在被松散地倾泻进 入模具后相邻粉末的表面之间不会完全贴合,从而 自然地存在一定孔隙.这种状态下粉末的体积分数 称为松装密度或堆积密度.粉末松装密度及其分布 状况对压制过程中的压力传递有着较大影响,从而 最终影响到生坯的密度及其分布.为使粉末生坯密 度更高,通常要求达到尽可能高的堆积密度.为了实 现这一目标,可以将不同粒径的粉末按照一定配比 混合使用,使小粒径粉末能够填充大粒径粉末之间 的孔隙,从而提高整体的堆积密度.但是在混合配比 时,不同粉末的粒径及选取比例目前尚无定论,生产 实践中只能根据经验来确定配比方案.

粉末材料与传统材料有着很大的不同^[2].在外 力作用下 粉末材料会流动并且不能保持固定形状, 这是粉末材料与传统固体材料最大的不同.同时 粉 末材料的流动属性与流体也有很大不同.当粉末流 动或者被施加压力的时候,粉末材料的密度将发生 变化.粉末材料的这些特殊属性需要研究者使用新 的模型和思想来对它进行研究.

Cundall 等³¹提出了离散元法并成功地应用在 水泥的堆积过程中.离散元法同样适用于其他粉末 材料的研究,并且随着计算机技术的发展,在其他领 域也得到了广泛的应用^[4,5].本文所提出的仿真系统 将多重网格接触检测方法^[6]与离散元法结合起来, 将粉末颗粒视为球形,考虑重力、接触力、阻尼力、摩 擦力、范德瓦耳斯力等多种作用力的影响,集成多种 接触力模型和阻尼模型用于研究粉末颗粒在三维空 间中的随机堆积问题.本文利用该系统对两个实际 应用问题进行了模拟研究,得到了相同密度不同粒 径的二元混合颗粒的最大堆积密度及相应的配比方 案,还研究了不同密度相同粒径的均匀混合颗粒在

^{*} 国家重点基础研究发展计划(批准号:2007CB616905),国家自然科学基金(批准号:10805019)和广东省自然科学基金(批准号: 8451064101000083)资助的课题.

[†] 通讯联系人. E-mail:kejinghe@ieee.org

随机堆积过程中的分离(segregation)现象.

2. 物理模型

在离散元法中,颗粒的运动遵循牛顿运动力学的基本方程.

2.1. 牛顿动力学方程

模型中考虑的作用力有法线方向上的接触力 $F_{en,ij}$ 、法线方向上的阻尼力 $F_{dn,ij}$ 、切线方向上的接 触力 $F_{s,ij}$,范德瓦耳斯力 $F_{v,ij}$ 和万有引力.这些力均 能引起颗粒的平移运动.由于 $F_{s,ij}$ 是唯一作用线不 通过质心的力,因此,只有 $F_{s,ij}$ 能导致颗粒转动.在 每个模拟时间步 Δt 内,球形颗粒 i 的运动学方程为

$$m_i \frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = \sum_j (\boldsymbol{F}_{n,ij} + \boldsymbol{F}_{s,ij} + \boldsymbol{F}_{v,ij}) + m_i g , (1)$$

$$I_i \frac{\mathrm{d}\omega_i}{\mathrm{d}t} = \sum_j (\mathbf{R}_i \times \mathbf{F}_{s,ij}), \qquad (2)$$

$$\boldsymbol{F}_{n,ij} = \boldsymbol{F}_{cn,ij} + \boldsymbol{F}_{dn,ij} , \qquad (3)$$

式中 , m_i , v_i , I_i 和 ω_i 分别是颗粒 i 的质量、速度、转动惯量和角速度 , R_i 是从颗粒 i 的中心指向接触点的向量 ,它的模等于颗粒的半径 R_i .图 1 给出了两种颗粒碰撞示意图及相关符号的意义.

图 1 两种颗粒碰撞示意图

当且仅当两个颗粒法线方向的重叠量 *ξ_n*满足 以下关系时才认为它们是相互接触的:

 $\begin{aligned} \xi_n &\equiv R_i + R_j - |\mathbf{x}_i - \mathbf{x}_j| > 0 , \quad (4) \\ \text{式中 } \mathbf{x}_i \ \mathbf{n}_{\mathbf{x}_j} \ \text{分别是颗粒} \ i \ \mathbf{n}_j \ \text{的空间坐标矢量} . \end{aligned}$

2.2. 力学模型

许多模型均研究了相互碰撞的两个球体法线方

向和切线方向的力学属性,不同的模型有不同的适 应领域.

2.2.1. 法线方向力学模型

模型 I 模型 I 为线性弹性-阻尼(linear springdashpot)模型.在线性弹性-阻尼模型中,法线方向的 受力可表示为

$$\boldsymbol{F}_{cn,ij} = k_n \boldsymbol{\xi}_n \boldsymbol{\hat{n}}_{ij} , \qquad (5)$$

$$\boldsymbol{F}_{\mathrm{dn},ii} = -\gamma_n \dot{\boldsymbol{\xi}}_n \hat{\boldsymbol{n}}_{ii} , \qquad (6)$$

式中 \hat{n}_{ij} 是从颗粒j指向颗粒i的单位向量 k_n 为法 向刚度 γ_n 为法线方向的阻尼系数.模型 I 的优点 在于它的解析解是已知的 ,比如法线方向的恢复 系数 ϵ_n (法线方向碰撞后与碰撞前的相对速率之 比)为

$$\varepsilon_n = \exp\left(-\frac{\gamma_n}{2m_{\text{eff}}}t_n\right).$$
(7)

这里 m_{eff}为碰撞时颗粒的有效质量,

$$m_{\rm eff} = \frac{m_i m_j}{m_i + m_j}$$
;

t。为碰撞的持续时间,

$$t_n = \pi / \sqrt{\frac{k_n}{m_{\text{eff}}} - \left(\frac{\gamma_n}{2m_{\text{eff}}}\right)^2} . \qquad (8)$$

碰撞过程中两颗粒法线方向的最大重叠量为

$$\xi_{n,\max} \leqslant | v_n | t_n/\pi , \qquad (9)$$

式中 $|v_{n}|$ 为碰撞前两颗粒法线方向的相对速率.

模型 Ⅱ 模型 Ⅱ 为 Hertz 模型.在 Hertz 模型中, 两颗粒之间的接触力由下式定义:

$$\boldsymbol{F}_{cn,ij} = \tilde{k}_{n} \xi_{n}^{3/2} \hat{\boldsymbol{n}}_{ij}$$
, (10)

式中 \tilde{k}_n 为法向非线性刚度. \tilde{k}_n 与材料的弹性属性 以及颗粒半径的关系为

$$\tilde{k}_n = \frac{4}{3} \sqrt{R_{\text{eff}}} E_{\text{eff}} , \qquad (11)$$

式中,R_{eff}为颗粒有效半径,

$$R_{\rm eff} = \frac{R_i R_j}{R_i + R_j};$$

 E_{eff} 为有效杨氏模量. E_{eff} 与颗粒的杨氏模量 E 和泊 松比 $_{\nu}$ 的关系为

$$\frac{1}{E_{\text{eff}}} = \frac{1 - \nu_i^2}{E_i} + \frac{1 - \nu_j^2}{E_j}.$$
 (12)

在 Hertz 模型中,碰撞持续时间 t_n 与碰撞的初 始相对速率 $|v_n|$ 相关,即

$$t_n = 3.21 \left(\frac{m_{\text{eff}}}{\tilde{k}_n} \right)^{2/5} | \mathbf{v}_n |^{-1/5}.$$
 (13)

 $F_{en,ij} + F_{dn,ij} = \tilde{k}_n \xi_n^{3/2} \hat{n}_{ij} - \gamma_n \dot{\xi}_n \hat{n}_{ij}$. (14) 模型II 模型III 为 Kuwabara-Kono 模型. 为了使 模型更符合实际情况, Kuwabara 等^[7]在 Hertz 模型的 基础上假设材料是黏弹性材料,而不是弹性材料,从 而进一步扩展了 Hertz 模型. 文献 7 指出,为了与实 验更为符合(14)式中的耗散因子应形如 $\xi_n^{1/2} \dot{\xi}_n$. 随 后, Brilliantov 等^[8]给出了下列耗散常数与基本材料 属性之间的函数关系:

$$F_{cn,ij} + F_{dn,ij} = \tilde{k}_n \left(\xi_n^{3/2} \hat{n}_{ij} - \frac{3}{2} B \xi_n^{1/2} \xi_n \hat{n}_{ij} \right),$$

$$B = \frac{1}{3} \frac{\left(3\eta_2 - \eta_1 \right)^3}{3\eta_2 + 2\eta_1} \left[\frac{\left(1 - \nu^2 \right) \left(1 - 2\nu \right)}{E\nu^2} \right],$$
(15)

式中 η_1 和 η_2 为两种颗粒材料的黏滞系数^[8].

模型Ⅳ 模型Ⅳ为 Walton-Braun 法线方向力学 模型.Walton 等^[9,10]从塑性形变的性质出发,得到了 以下关系:

$$\boldsymbol{F}_{n,ij} = \begin{cases} k_1 \, \hat{\xi}_n \, \hat{\boldsymbol{n}}_{ij} & (\dot{\xi}_n \ge 0), \\ k_2 (\xi_n - \xi_0) \, \hat{\boldsymbol{n}}_{ij} & (\dot{\xi}_n < 0), \end{cases}$$
(16)

式中 ξ_0 为永久塑性形变.在 Walton-Braun 法线方向 力学模型中,恢复系数 $\epsilon_n = \sqrt{k_1/k_2}$.

模型 ¥ 模型 ∀ 为迟滞阻尼模型.在迟滞阻尼 模型中 法线方向的受力为

$$\boldsymbol{F}_{cn,ij} = k_n \boldsymbol{\xi}_n \hat{\boldsymbol{n}}_{ij} , \qquad (17)$$

$$\boldsymbol{F}_{\mathrm{d}n,ij} = - \gamma_n \operatorname{sgr}(\dot{\boldsymbol{\xi}}_n) \boldsymbol{F}_{\mathrm{c}n,ij}. \qquad (18)$$

迟滞阻尼模型(模型 Ⅴ)与 Walton-Braun 模型(模型 Ⅳ)^{10]}有相似的性质和结果.

2.2.2. 切线方向力学模型

在分析法线方向的相互作用力时,假设颗粒是 精确的球形.然而,实际的颗粒不可能是完美的球 体,而是有一些复杂的表面纹理(见图2).由于表面 纹理的存在以及碰撞产生的颗粒形变,从而产生了 切线方向作用力.

图 2 通过气雾化法生成的粉末颗粒形状

模型 VI 模型 VI 为 Hertz-Mindlin 模型. Mindlin 等¹¹¹在 Hertz 模型的基础上,分析了两个弹性球体 之间的切线方向作用力. 切线方向位移增量 $\Delta \xi_s$ 对 应的切线方向作用力增量为

 $\Delta \boldsymbol{F}_{s,ij} = 8 a \boldsymbol{G}^* \,\theta_k \Delta \boldsymbol{\xi}_s \boldsymbol{\hat{s}}_{ij}$

+ $(-1)^{k} | \mu (1 - \theta_{k}) \Delta F_{cn,ij} | \hat{s}_{ij}$, (19)

式中,a 为接触半径, ξ_s 为切线方向的相对位移, \hat{s}_{ij} 为两个相互接触颗粒切线方向的单位矢量, μ 为滑动摩擦系数,k = 0,1,2 分别对应于加载、卸载和卸载后重新加载的情况.

如果 | $\Delta F_{s,ij}$ | $< \mu$ | $\Delta F_{en,ij}$ | ,则有 $\theta_k = 1$. 如果 | $\Delta F_{s,ii}$ | $\ge \mu$ | $\Delta F_{en,ii}$ | 则有

$$\theta_{k} = \begin{cases} \left(1 - \frac{F_{s,ij} + \mu \Delta F_{en,ij}}{\mu F_{en,ij}}\right)^{1/3} & (k = 0), \\ \left(1 - \frac{(-1)^{k} (F_{s,ij} - F_{s,ij}^{k}) + 2\mu \Delta F_{en,ij}}{2\mu F_{en,ij}}\right)^{1/3} & (k = 1, 2), \end{cases}$$
(20)

式中 G* 是剪切模量当量,

$$G^* = \frac{2 - \nu_1}{G_1} + \frac{2 - \nu_2}{G_2}.$$
 (21)

这里 G_1 和 G_2 分别是两颗粒的剪切模量 , $F_{s,ij}^k$ 是考 虑了卸载或重新加载历史的切线方向接触力 ,在每 一时间步更新 $F_{s,ij}^k = F_{s,ij}^k - (-1)^k \mu \Delta F_{en,ij}$. 由此可 见 ,由切线方向位移增量 $\Delta \xi_s$ 引起的切线方向力增 量 $\Delta F_{s,ij}$ 不仅依赖于加载历史 ,也受到法线方向接 触力的影响.

模型 WI 模型 VII 为库仑摩擦力模型.在库仑滑 动摩擦力模型中,允许的最大摩擦力为法线方向接 触力与摩擦系数的乘积,即

$$\boldsymbol{F}_{s,ij} = -\mu + \boldsymbol{F}_{n,ij} + \operatorname{sgn}(v_s) \hat{\boldsymbol{s}}_{ij}. \quad (22)$$

模型Ⅲ 模型Ⅲ为 Haff-Werner 模型. Haff 等^{12]} 将(22)式与一个黏滞性摩擦系数结合起来,得到 $F_{s,ij} = -\min(+\gamma_s v_s + \mu F_{n,ij} + \log(v_s)\hat{s}_{ij}), (23)$ 式中 γ_s 为切线方向的阻尼系数.

模型IX 模型IX为 Cundall-Strack 模型. Cundall-Strack 模型^[3]假设两个球体相互接触时,有一个虚 拟的弹簧被放置在接触点上,由此得

$$F_{s,ij} = -\min(|k_s\xi_s|, |\mu F_{n,ij}|) \operatorname{sgn}(v_s) \widehat{s}_{ij},$$
(24)

式中 , k_s 为切向刚度 , ξ_s 为两球体从开始接触 t_0 时 刻 \mathfrak{D} t_1 时刻在切线方向的重叠量 ,

$$\xi_{s} = \int_{t_{0}}^{t_{1}} v_{s}(t) dt. \qquad (25)$$

模型 X 模型 X 为 Walton-Braun 切线方向力学 模型. Walton 等^[10]提出的切线方向力学模型假定在 每一时间步法线方向接触力的变化很小,不足以显 著地影响切线方向的作用力. Walton-Braun 模型的差 分形式为

$$\Delta \boldsymbol{F}_{s,ij} = \tilde{k}_s \Delta \boldsymbol{\xi}_s \hat{\boldsymbol{s}}_{ij} . \qquad (26)$$

当 F。增加时,有

$$\tilde{k}_{s} = k_{s}^{0} \left(\frac{\mu \boldsymbol{F}_{n} - \boldsymbol{F}_{s}}{\mu \boldsymbol{F}_{n} - \boldsymbol{F}_{s}^{*}} \right)^{1/3} , \qquad (27a)$$

当 F、减少时,有

$$\tilde{k}_{s} = -k_{s}^{0} \left(\frac{\mu F_{n} + F_{s}}{\mu F_{n} + F_{s}^{*}} \right)^{1/3}.$$
 (27b)

这里, k_s^0 为初始的切向刚度, 切线方向作用力 F_s^* 初始时为零, 当 F_s 改变方向时, 设 F_s^* 为 F_s . 2.2.3. 范德瓦耳斯力

除了接触力、重力和摩擦力之外 颗粒间还存在 着范德瓦耳斯力

$$\boldsymbol{F}_{v,ij} = \frac{A}{6h^2} \frac{R_i R_j}{R_i + R_j} \hat{\boldsymbol{n}}_{ij} , \qquad (28)$$

式中 ,A 为 Hamaker 常数 ,h 为两颗粒表面之间的距离.若颗粒的粒径相对较大 ,则颗粒之间的范德瓦耳斯力基本可忽略 ;否则 ,颗粒之间的范德瓦耳斯力影响较大.

3. 系统功能

本文提出基于离散元法的仿真系统,实现了对 粉末材料随机堆积过程的计算机模拟.仿真系统主 要包括模型设定、颗粒属性配置、初始条件和边界条 件设置、仿真结果输出和可视化等功能.

根据实际问题的具体特征,可从本系统支持的 模型库中选取合适的力学模型.模型确定后,根据选 定的模型可设置相应的参数,包括模拟时间步长、初 始阶段包含的模拟步数、最大模拟步数、重力加速度 及其持续时间、摩擦系数等.

颗粒属性包括颗粒的材料属性、数量、半径等. 颗粒的材料属性包括密度、法向刚度、切向刚度、泊 松比、法线方向和切线方向的阻尼系数等.本仿真系 统支持大规模颗粒动力学仿真,所支持的最大颗粒 数量只受限于系统的内存容量和允许的计算时间. 所以,利用本仿真系统不仅可以模拟单一粒径颗粒 的动力学过程,还可以模拟较为复杂的二元及多元 颗粒的动力学过程.

初始条件描述了初始时颗粒的空间位置、运动 状态和受力情况.边界条件规定了边界的形状、边界 所受的外力以及边界的运动规律.本文的仿真系统 支持三种类型的边界条件.第一类为常用简单形体 边界,比如平面边界、长方体边界、圆柱边界、圆锥边 界和漏斗状边界等.第二类为由形如 *z* = *f*(*x*,*y*)的 函数定义的曲面边界.第三类为凸多边形组合边界, 通过对多个凸多边形进行组合从而构成复杂的边 界形状.对于每一种边界条件,本文的仿真系统均 可单独设置其物理属性,如刚度、阻尼系数等.同 时,本仿真系统还可为每一边界单独设置相应的 运动方程.

在具体仿真中,可以根据实际情况设定需要输 出的仿真数据以及相应的输出时间间隔.可供设 置输出的数据包括颗粒的编号、质量、半径、最大半 径、转动惯量、空间坐标、速度、角速度、角加速度、 弹性势能、重力势能、转动动能、平动动能等.除 此之外,仿真系统还支持颗粒堆积密度的计算输 出.仿真系统还可以自动监控仿真过程的状态, 若因配置问题出现运行错误,将会给出相应的调 试信息.

4. 模型求解

离散元法的求解过程可分为三个步骤,第一步 为接触检测.接触检测是离散元法中十分关键的环 节,该环节检查颗粒间的接触情况以及颗粒和边界 间的接触情况.只有相互接触的物体之间才存在接 触力.接触检测通常是对多个离散物体进行模拟的 过程中最消耗计算资源的一个步骤^[3].按照物体的 空间坐标在物理内存中的存储方式分类,主要有空 间排序法和空间散列法两大类的接触检测方法.如

 $\mathrm{S}\,25$

果直接地检测系统中所有潜在的两两接触,时间复 杂度为 O(N²). 空间排序方法的时间复杂度为 $O(N\log N)$ 空间散列方法的时间复杂度为 O(N). 但空间散列方法对于系统中颗粒大小的概率分布情 况非常敏感 如不同颗粒的粒径比) 本文采用多重 网格接触检测方法来进行快速接触检测⁶¹.多重网 格接触检测方法的时间复杂度为 O(N),并且它对 于系统中颗粒的粒径比不敏感,第二步是根据接触 检测情况计算颗粒间的接触力.利用选取的切线方 向力学模型和法线方向力学模型计算出每一颗粒的 接触力、阻尼力和摩擦力 再加上范德瓦耳斯力和重 力 就是每一颗粒所受的总作用力 第三步为积分求 解新的速度和空间坐标,将第二步中所求得的各种 作用力代入到(1)(2) 武中 求得角加速度和线加速 度 然后再利用牛顿运动方程进行积分就可以求 得新的角速度和线速度,最后再进行积分可求得 颗粒新的空间坐标,在下一时间步重复上述步骤, 直至满足仿真结束条件.图3给出了模型求解的 流程.

5. 后处理可视化

模型求解输出的结果只是一些文本或二进制格 式的数据文件,这些数据记录了仿真过程中颗粒的 空间坐标、运动状态和受力情况.为了对颗粒堆积过 程有直观的了解,降低发现重要规律和属性的难度, 本仿真系统支持仿真结果的可视化输出.

系统支持曲线图和三维视图结果输出,也支持 动态显示技术,具体包括堆积密度、能量衰减等关键 属性的曲线图显示,颗粒的速度、加速度和力链分布 等矢量的三维视图显示,颗粒堆积过程的动态图形 显示等.系统还支持对三维视图和动态视图沿任意 轴线方向的切片,以及对单个颗粒的运动轨迹跟踪 显示.

对大规模仿真所产生的海量三维数据进行可 视化较为耗时.本文采用并行技术将需要三维可 视化的数据进行分解,然后将分解后的数据分配 给不同的计算节点,分别进行可视化或渲染处理, 最后将可视化结果进行合并,形成堆积过程的三 维动画.

6. 系统应用

粉末材料的堆积过程对众多粉末技术和工艺均 有较大影响.在粉末冶金工艺中,堆积过程决定了粉 末压制开始时的松装密度和颗粒分布的均匀性,从 而影响到压制完成后的生坯密度.在烧结过程中,生 坯密度又将影响到最终产品的质量和性能.提高堆 积后的松装密度和颗粒分布的均匀性是获得高质 量粉末冶金零件的基本要求,但是因为对粉末材 料堆积过程的研究较为欠缺,工业界主要依靠经 验来选择配比方案和堆积方案.为了深入研究粉 末材料堆积过程的内在机理,提高松装密度和堆 积完成后颗粒分布的均匀性,降低颗粒分离现象的 影响,本文模拟了相同密度不同粒径的二元粉末 的堆积过程和不同密度相同粒径的二元粉末的堆 积过程.

6.1. 相同密度不同粒径的二元粉末堆积模拟

降低粉末冶金产品的孔隙度,提高产品密度,改 进产品的机械性能和加工性能,一直是科研工作和 实际生产的努力方向.粉末的充模环节和压制环节 均对产品的最终密度有着重要影响.本文利用粉末 堆积仿真系统模拟了两种不同粒径颗粒的混合堆积 密度随 *N_s*/*N_b* 的变化关系,其中 *N_s* 为小颗粒数,*N_b* 为大颗粒数.

法线方向的力学模型采用迟滞阻尼模型,切线 方向的力学模型采用 Cundall-Strack 模型^[3].模拟分 为初始阶段和沉淀阶段两个阶段.引入初始阶段的 目的是为了对颗粒的初始位置进行特别处理.如果 随机地指定颗粒的位置,将不可避免地产生重叠,从 而导致堆积模拟开始后的不稳定性.为了避免初始 时的颗粒重叠,在初始阶段引入一个增长过程.在初 始阶段开始时,所有的颗粒半径被初始化为零,目标 半径服从指定的分布.这些颗粒被随机分布到一个 矩形容器中,由重力引起的加速度被设为零.然后, 颗粒开始增长并相互接触,相应的接触被检测并处 理.当颗粒半径达到它们的目标半径时,生长过程结 束.在沉淀阶段,重力的影响被激活,颗粒在重力和 颗粒间相互作用力的影响下进行平动和转动.颗粒 间会发生相互碰撞以及与边界发生碰撞,系统能量 会由于阻尼和摩擦的影响而减少,所有颗粒最终将 达到稳定状态.在本应用中,模拟的时间步长为10 μ s,初始阶段的模拟步数为2×10⁴步(0.2 s),总的 模拟步数为3×10⁵步(3 s),模拟所用的其他参数如 表1所列.

表1 相同密度不同粒径的二元粉末堆积过程模拟的参量取值

参量	取值	参量	取值
$k_n/N \cdot m^{-1}$	10 ⁷	$k_s/N \cdot m^{-1}$	10 ⁷
μ	0	γ_n	0.7
$\rho/\text{kg}\cdot\text{m}^{-3}$	7800	$g/m \cdot s^{-2}$	9.8

大颗粒半径 R_b 和小颗粒半径 R_s 分别为 5 cm 和 5 mm.大颗粒数 N_b 为 2000,小颗粒数 N_s 为 2 × 10⁴ 到 10⁶.颗粒初始时所处的矩形容器的体积为所 有颗粒总体积的两倍.容器长宽高的比例为 1:1:2 A个竖直面采用周期边界,没有上表面的边界条件,下 表面的物理属性与颗粒相同.

图 4 描述了不同颗粒配比方案下的堆积密度. 使用 10⁴ 个单一粒径的颗粒,模拟得到的堆积密度 为 0.636 这与 Scott 等^[14]的经典实验值 0.637 符合 很好.在文献 14 的实验中,把小球灌注到一个大容 器中,摇动该容器以得到最大密度,然后将结果外推 以减少有限容器带来的影响.当 N_s/N_b = 300 时,达 到最大的松装密度 0.824.本应用中的结果表明,不 同粒径颗粒的混合堆积能获得比单一粒径颗粒更高 的堆积密度.

6.2. 不同密度相同粒径的二元粉末堆积模拟

粉末冶金中的合金粉末是由两种或者两种以上 的不同粉末混合而成,不同种类的粉末颗粒具有不 同的密度.为了考察不同密度对粉末堆积过程的影 响,本文模拟了不同密度相同粒径的二元粉末的堆 积过程.

本应用所采用的物理模型与以上相同.与上述 类似,模拟也分为初始阶段和沉淀阶段两阶段.在本 应用中,模拟的时间步长为 50 µs ,初始阶段的模拟

图 4 堆积密度与颗粒配比之间的关系 颗粒粒径比 $R_{\rm b}/R_{\rm s}$ = 10 大颗粒数 $N_{\rm b}$ = 2000

步数为 4000 步(0.2 s),总的模拟步数为 6×10^4 步 (3 s),模拟所用的其他参数如表 2 所列. ρ_L 为小密 度颗粒的密度, ρ_H 为大密度颗粒的密度, N_L 为小密 度颗粒数, N_H 为大密度颗粒数.

表 2 不同密度相同粒径的二元粉末堆积过程模拟的参量取值

参量	取值	参量	取值
$k_n/\mathrm{N}\cdot\mathrm{m}^{-1}$	10 ⁷	$k_s/\mathrm{N}\cdot\mathrm{m}^{-1}$	107
μ	0	γ_n	0.7
$N_{ m L}$	3000	N_{H}	3000
$\rho_{\rm L}/{\rm kg}\cdot{\rm m}^{-3}$	1200	$ ho_{\rm H}/{\rm kg}\cdot{\rm m}^{-3}$	7800
R/m	0.02	$g/m \cdot s^{-2}$	9.8

图 5 是颗粒堆积过程动画中的三幅典型截图, 其中的浅灰色为小密度颗粒,深灰色为大密度颗粒, 两种颗粒的半径相同.图 5(a)所示为颗粒在容器中 随机分布,也就是初始阶段完成后的状态,此时两种 颗粒混合得十分均匀.图 5(b)所示为颗粒在重力作 用下自由下落的状态,也就是沉淀阶段中的某一状态,从图中可看出上半部分的颗粒还在继续下落, 而下半部分的颗粒已经变得较为密集.图 5(c)所 示为堆积完成后的最终状态,在垂直方向可观察 到较为明显的分离现象,较多的轻颗粒分布在上 表面.

图 6 给出了堆积完成后上表面的最终状态和下 底面的最终状态.图 6(a)中小密度颗粒占绝大多 数,而图 6(b)中大密度颗粒占多数,且观察到了较 为明显的团聚现象.图 5 和图 6 说明,因为密度的不 同,虽然在堆积开始时两种颗粒混合十分均匀,但 是在堆积结束时垂直方向仍然会出现明显的颗粒 分离现象,而在上表面和下表面会有较明显的团聚

S 26

图 5 不同密度的二元混合颗粒的下落过程 (a)初始状态 (b)下落过程 (c)最终状态

图 6 最终状态的顶视图和底视图 (a)顶视图,(b)底视图

现象.

7.结 论

本文提出了一个基于离散元法的粉末材料堆积 过程仿真系统,详述了所采用的物理模型和模型求 解方法,概述了系统结构和功能.利用本仿真系统可 以模拟球形颗粒在三维空间中的堆积过程,研究相 应的动力学过程和最终密度分布状态.利用本仿真 系统模拟了相同密度不同粒径的二元混合粉末的堆 积过程以及不同密度相同粒径的二元混合粉末的堆 积过程.根据模拟结果得出单一粒径颗粒的松装密 度为 0.64. 两种不同粒径颗粒 粒径比是 10 混合堆 积 ,且当小颗粒数是大颗粒数的 300 倍左右时 ,得到 的最大松装密度为 0.824. 在对不同密度颗粒进行 混合堆积时 ,即使在开始时两种颗粒混合十分均匀 , 但是在堆积结束时垂直方向仍然会出现明显的颗粒 分离现象 ,而在上表面和下表面会有较明显的团聚 现象.

本文的物理模型和仿真系统具有广泛的适用 性,可以应用于通用的离散元模拟,主要的应用领域 包括粉末冶金业、农业、建筑业和采矿业等工业生产 领域,也可应用于雪崩、沙漠迁移、滑坡和泥石流等 自然灾害预测与防治领域.

- [1] Wu C Y , Cocks A C F 2004 Powder Metall 47 127
- [2] Peng Z, Hou MY, Shi QF, Lu K Q 2007 Acta Phys. Sin. 56 1195 (in Chinese)[彭政、厚美瑛、史庆藩、陆坤权 2007 物理 学报 56 1195]
- [3] Cundall P A , Strack O D L 1979 Geotechnique 29 47
- [4] Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚、王光谦 2008 物理学报 57 4667]
- [5] Zhang Q Y, Wu Y Y, Peng Z, Liu R, Lu K Q, Hou M Y 2006 Acta Phys. Sin. 55 6203 (in Chinese)[张权义、吴耀宇、彭 政、刘 锐、陆坤权、厚美瑛 2006 物理学报 55 6203]
- [6] He K J , Dong S B , Zhou Z Y 2007 Phys. Rev. E 75 036710
- [7] Kuwabara G , Kono K 1987 Jpn . J . Appl . Phys . 26 1230

- [8] Brilliantov N V, Spahn F, Hertzsch J M, Poschel T 1996 Phys. Rev. E 53 5382
- [9] Walton O R 1982 Proceedings of the Fourth International Conference on Numerical Methods in Geomechanics (Rotterdam: A. A. Balkema) p1261
- [10] Walton O R , Braun R L 1986 J. Rheol 30 949
- [11] Mindlin R D, Deresiewicz H 1953 J. Appl. Mech. 20 327
- [12] Haff P K , Werner B T 1986 Powder Techn . 48 239
- [13] Williams J R, Connor R O 1999 Arch. Comput. Meth. Eng. 6 279
- [14] Scott G D, Kilgour D M 1969 J. Phys. D 2 863

Physical model and simulation system of powder packing *

Zhong Wen-Zhen¹) He Ke-Jing²[†] Zhou Zhao-Yao¹) Xia Wei¹) Li Yuan-Yuan¹)

1 X School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China)

2) School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China)

(Received 17 December 2008; revised manuscript received 23 April 2009)

Abstract

The physical model and the computational system for powder packing process simulation are presented, and the high performance computing methods of simulating the random packing of mixed particles with different sizes are studied. In the simulation system the effects of gravity, contact forces, damping, friction, van der Waals force etc are take into account, therby forming several kinds of mechanical models and damping models. The system is very suitable for the three-dimensional simulation of large scale powder packing process. Finally, to demonstrate the usefulness of the simulation system, two typical applications are presented in the paper. One is to simulate the random packing of binary mixture with size ratio 10, and when the number of small particles is 300 times as large as that of big particles, the maximal packing density (volume fraction) is achieved to be 0.824, and the other is to simulate the random mixed packing dynamics of particles with two different densities. The segregation phenomenon and clustering phenomenon take place obviously after the packing process has come to an end. The physical model and the simulation system presented in this paper are not only suitable for the study of powder packing process, but also applicable to the packing process simulation of spherical objects.

Keywords: powder packing , physical model , simulation system , discrete element method **PACC**: 0320 , 4610

^{*} Project supported by the State Key Development Program for Basic Research of China (Grant No. 2007CB616905), the National Natural Science Foundation of China (Grant No. 10805019) and the Natural Science Foundation of Guangdong Province, China (Grant No. 8451064101000083).

[†] Corresponding author. E-mail : kejinghe@ieee.org