α -Mg₃Sb₂的电子结构和力学性能*

余伟阳1) 唐壁玉127 彭立明3) 丁文江3)

1) 湘潭大学材料与光电物理学院,低维材料及其应用技术教育部重点实验室,湘潭 411105)

2)(广西大学化学与化工学院,南宁 530004)

3) 上海交通大学材料科学与技术学院, 经合金精密成型国家工程研究中心, 上海 200030)

(2008年12月20日收到2009年1月6日收到修改稿)

运用第一性原理研究了 Mg-Sb 合金中典型沉淀相 α -Mg₃ Sb₂ 的几何、电子结构和力学性能.结构优化得到的晶 格常数和形成能与实验值符合很好.电子结构分析表明 ,具有半导体性质的 α -Mg₃ Sb₂ 带隙为 0.303 eV ,是间接带隙 半导体.通过计算得到了 α -Mg₃ Sb₂ 的弹性常数 ,进而得到模量、泊松比等力学参数 ,对力学参数进行分析发现 , α -Mg₃ Sb₂ 有很好的延展性而塑性相对较差.通过对 α -Mg₃ Sb₂ 施加应变前后态密度的变化分析 ,发现对于六角结构的 α -Mg₃ Sb₂ ,与剪切模量相关的 $C_{11} + C_{12}$, $C_{33}/2$ 和与体模量相关的 $C_{11} + C_{12} + 2C_{13} + C_{33}/2$ 对体积变化不保守 ,而 ($C_{11} - C_{12}$)4和 C_{44} 对体积变化保守.

关键词: $_{\alpha}$ -Mg₃Sb₂,第一性原理,电子结构,力学性能 PACC:7115A,7115M,7125,6220

1.引 言

Mg 合金作为一种轻质低能耗结构材料,近些年 在汽车工业和航空航天领域受到越来越广泛的关 注^[1-5].20世纪90年代以来,全世界在汽车领域的 Mg 合金消费量以每年15%的速度递增^{6]}.然而大多 数商业 Mg 合金的强度不能满足一般结构材料的强 度需求,因此 Mg 合金在作为结构材料方面的应用 还很有限.为了克服这一缺点 科研人员尝试了各种 方法和技术以拓展 Mg 合金的应用范围.研究发现 掺入稀土元素可以形成高强度沉淀相以提高 Mg 合 金的力学性能^{7]},但是大多数稀土元素都很昂贵,这 就限制了稀土 Mg 合金的实际应用.

Sb 是一种很好的合金掺入材料,实验研究表 明 在 Mg 合金中掺入 Sb 可以提高其室温及高温力 学性能^[8-13].所以研究 Mg-Sb 合金具有重要意义.从 合金相图^{14.45]}可知,Mg-Sb 合金体系中存在熔点为 (1245±5)℃的金属间化合物 Mg₃Sb₂ 沉淀相,Mg₃Sb₂ 有以下两种结构 温度在 930 ℃以下的低温 α -Mg₃Sb₂ 相和温度高于 930 ℃ 的高温 β -Mg₃Sb₂ 相.由于 α -Mg₃Sb₂具有热电性质和半导体属性 ,近几年来备 受关注 ,大多数研究的焦点集中在 α -Mg₃Sb₂ 的电子 结构和热电性质上^[16,17],迄今为止作者尚未发现有 关力学性能的报道.所以 ,系统地研究 Mg-Sb 合金中 典型沉淀相 α -Mg₃Sb₂ 的电子结构和力学性能具有 重要意义.

本文利用基于密度泛函理论的平面波赝势方 法,计算了 Mg-Sb 合金中典型沉淀相 α-Mg₃Sb₂ 的晶 格常数和形成能,并对 α-Mg₃Sb₂ 的态密度(DOS) 电 荷密度和能带结构进行了分析.然后通过应变能与 应变之间的关系,计算了 α-Mg₃Sb₂ 的弹性常数 *C_{ij}*, 进而得到体模量、剪切模量、杨氏模量、泊松比和各 向异性常数等力学参数.根据这些力学参数,分析讨 论了 α-Mg₃Sb₂ 延展性和塑性等力学性能.最后分析 了在施加应变前后 DOS 的变化,以研究与剪切模量 和体模量相关的弹性常数的线性组合对α-Mg₃Sb₂体 积变化的保守性.

^{*} 国家自然科学基金(批准号 50861002)湖南省自然科学基金(批准号 08JJ6001)材料设计与制备技术湖南省重点实验室开放课题(批准 号:KF0803)和广西大学科研基金(批准号:X071117)资助的课题.

[†] 通讯联系人. E-mail:tangbiyu@xtu.edu.cn

2. 计算方法

本文使用基于密度泛函理论^[18]的 VASP^[19-21]计 算程序,价电子-核之间的相互作用采用投影缀加平 面波^[22]来描述,电子交换关联函数使用 Perdew-Wang 91 交换关联泛函的广义梯度近似^[23-25].对平 面波的截断能量 E_{cut} 和电子波矢量 k 进行收敛性测 试后, E_{cut} 值设置为 400 eV, Monkhorst-Pack 方法^[26]下 布里渊区取样为 8×8×6(Γ 点为中心).晶格结构 优化采取共轭梯度(conjugate-gradient)算法^[27],利用 共轭梯度直接最小化 Kohn-Sham 能量函数的方法对 晶格常数和原子位置进行弛豫和自洽运算,当作用 在所有未束缚原子上的 Hellmann-Feynman 力小于 0.1 eV/nm 时认为体系优化完成.总能和 DOS 计算 采用布洛赫修正的四面体方法.

3. 计算结果及讨论

3.1. 晶格结构和稳定性

α-Mg₃Sb₂属于反 α-La₂O₃结构类型^[28,29],其空间 群为 $P\overline{3}m$ I(No.164),Pearson符号为 hP5,每个原胞 含有 5 个原子.在 α-Mg₃Sb₂的初始原胞中,Mg(1)和 Mg(2)原子分别占据 2*a*和 2*d*位,Sb原子占据 2*d* 位,如图1所示.首先进行全弛豫计算以确定原子的 精确位置,优化结果如下:Mg(1)位于 2*a*(0,0,0), Mg(2)位于 2*d*(0.3333,0.6667,0.3669),Sb 位于 2*d* (0.3333,0.6667,0.7738)Wycoff 位置.接着利用 BirchMurnaghan 状态方程³⁰¹拟合得到了晶格常数,结果 如表 1 所列.本文计算得到的 α -Mg₃Sb₂ 原子位置和 晶格常数与文献 31,32 给出的实验结果符合相当 好.计算得到晶胞体积 130.296 × 10⁻³ nm³,比文献 [32 的结果仅偏大 0.009%.因此,本文所采用的计 算参数是可行的,计算结果也是可信的.为了下面计 算的需要,将本文和文献 33,34 得到的 Mg 和 Sb 的 晶格常数及总能也一并列于表 1.

为了分析 α -Mg, Sb₂ 的稳定性,根据下式计算其 形成能:

$$\Delta H = \frac{1}{x + y} \left(E_{\text{tot}}^{A_x B_y} - x E_{\text{tot}}^{A} - y E_{\text{tot}}^{B} \right), \quad (1)$$

式中, $E_{tot}^{A_x B_y}$ 代表 α -Mg₃Sb₂ 在平衡态时的总能, E_{tot}^A 和 E_{tot}^B 分别表示物质 A 和 B 在固态单质情况下的总 能, α 和y分别代表每个原胞中含原子 A 和 B 的个 数.根据表 1 中的计算结果, α -Mg₃Sb₂ 的平均每个原 子形成能 $\Delta H = -0.982$ eV,与文献 35—40 得到的 结果相符. α -Mg₃Sb₂ 具有负的形成能,表明 α -Mg₃Sb₂ 是比较稳定的.

图 1 α -Mg₃Sb₂ 的晶格结构

	a/nm	b/nm	c/nm	总能/eV	形成能/eV	数据来源	
$\alpha\text{-}Mg_3Sb_2$	0.4558	_	0.7242	- 2.952	- 0.982	本文	
	0.4582	_	0.7244			文献 31]	
	0.4559		0.7227			文献 32]	
Mg	0.3190		0.5177	- 1.529	—	本文	
	0.3177	—	0.5172			文献 33]	
Sb	0.4254	0.1123		- 2.633	—	本文	
	0.4299	0.1125	_			文献 34]	

表 1 α -Mg₃Sb₂ 以及纯 Mg Sb 的晶格常数、总能和形成能

3.2. 电子结构

图 2 给出了六角结构的布里渊区及其高对称

线.在图 2 中,沿箭头方向高对称点在倒易空间的位置坐标依次为 H(- 1/3 2/3,1/2),K(- 1/3 2/3,0), M(0,1/2,0),G(0,0,0),A(0,0,1/2)和 L(0,1/2,

图 2 六角结构的第一布里渊区及其高对称线

1/2).图 3 给出了 $_{\alpha}\text{-Mg}_{3}\text{Sb}_{2}$ 的能带结构以及总 DOS , 费米能级在能量零点处.由图 3 可知,六角结构 α-Mg₃Sb₂呈现半导体性质,其带隙为 0.303 eV. Imai 等^[41]采用 TB-LMTO-ASA 方法计算出的带隙值为 0.410 eV 比本文的计算值高 35.313% :而利用赝势

方法计算出的带隙值为 0.210 eV,比本文的计算值 低 30.693%. Busch 等^[42]得出的 α-Mg₃Sb₂ 带隙实验 值为 0.820 eV 比本文的结果大 1.706 倍.目前半导 体带隙的理论计算结果之间存在一定的偏差 这主 要与势能的选择有关,而理论计算结果与实验结果 也存在较大的偏差,主要是计算方法本身的原因所 造成,对此研究者已有讨论^[43,44].文献 43,44 指出, 在局域密度泛函理论中,求解 Kohn-Sham 方程没有 考虑体系的激发态 使得价带及其以上的能级位置 偏低 而价带及以下的能级与实验一致 这就导致基 本带隙宽度比实验值小,但是作为一种有效的近似 方法 计算结果的相对值还是可信的 不影响对能带 和电子结构的分析.从图3中还可以看出 最小的带 隙为从价带顶的 M 点到导带底的 G 点(即 Γ 点), 说明 α-Mg,Sb,属间接带隙半导体.

α-Mg₃Sb₂的总 DOS 和分 DOS 如图 4 所示. 从图 4 可 以 看 出,在 费 米 能 级 附 近 α-Mg₃Sb₂ 的总 DOS 有一个 窄 的 波 谷,表 明 α -Mg_aSb_y 为间接带隙半导体,这与上述能带结构的分析 结果相符.从分 DOS 可以看出,远离费米能级 - 11.000— - 8.200 eV 之 安 是 Sb 的 5s 态

图 3 α -Mg₃Sb₂ 沿高对称线上的能带结构和总 DOS 费米能级 E_F 位于能量零点处 (α)能带结构 (b)总 DOS

对总 DOS 的贡献; - 5.000-0.000 eV 之间,主要 是 Sb的 5p 态对总 DOS 的贡献.费米能级附近 的价带主要由 Sb 原子的 5s 和 5p 轨道组成, 其宽度分别为 2.681 和 5.201 eV; 导带主要由 Mg 原子的 3s 和 3p 杂化轨道组成,其宽度为 4.117 eV.

图 4 α -Mg₃Sb₂的总 DOS 和分 DOS 费米能级 E_F 位于能量零点处

α-Mg₃Sb₂的电荷密度如图 5 所示.从图 5 可以 看到 "Mg 原子与 Sb 原子间的电荷密度最小值等于 背景电荷密度 ,由此可以判断 "Mg 与 Sb 之间是通过 离子键相连接 ;而 Mg (1)位原子与 Mg (2)位原子以 及 Sb 原子与 Sb 原子间的电荷密度最小值大于背景 电荷密度 ,因此 Mg (1)与 Mg (2)之间以及 Sb 与 Sb 之 间是通过共价键相连接.电荷密度分布能够表征原 子间键合的情况 ,Kuroiwa 等^[45]认为 ,当成键的两个 原子间最低电荷密度与背景电荷密度相等时 ,原子 间主要是离子键作用 ,而当两个原子间最低电荷密 度高于背景电荷密度时 ,则主要是共价键作用.这与 本文得到的结果一致.

3.3. 力学属性

我们引入畸变的原胞以便计算 α-Mg₃Sb₂ 的弹性常数 弹性应变能的公式为

$$U = \frac{\Delta E}{V_0} = \frac{1}{2} \sum_{i}^{6} \sum_{j}^{6} C_{ij} e_i e_j.$$
 (2)

这里 $\Delta E = E_{tot}(V_0, \gamma) - E_{tot}(V_0, 0)$ 为发生畸变前 的初始原胞与畸变后的原胞能量之差; V_0 为初始原 胞的体积;由 Voigt 的标示法^[46]可知, $C_{ij}(i, j = 1, 2,$ … 6)是一个 $m \times 6$ 矩阵(m 是独立的弹性常数的 个数); γ 是施加在初始原胞上的变形量,文中取 γ = ± 0.02n(n = 0—4).由于晶格的对称性,六角结 构有 5 个独立的弹性常数,即 C_{11} , C_{12} , C_{13} , C_{33} 和

图 5 计算得到的 α-Mg₃Sb₂(010)面的电荷密度

C44.基矢 R 表示如下:

$$\mathbf{R} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\sqrt{3}}{2}a & \frac{1}{2}a & 0 \\ -\frac{\sqrt{3}}{2}a & \frac{1}{2}a & 0 \\ 0 & 0 & c \end{pmatrix}.$$
 (3)

在方程(2)中引入如表 2 所列的应力张量 δ_{ii} (未列

出 $\delta_{ij} = 0$),分别得到描述应变能 U 与应变 γ 关系的 方程 ;忽略 γ 的高次项 ,得到如表 2 中的 U 与 γ 的 二次函数关系 ,其中二次项系数为各个弹性常数的 线性组合.分别依次在各个平衡晶胞上施加 $\gamma =$ ±0.02n(n = 0-4)的畸变 ,得到了一组描述畸变之 后 U 与 γ 关系的方程 ,然后对方程进行二次函数拟 合(如图 6 所示),提取二次项系数就得到了弹性常数的线性组合方程,解这些方程就得到了 5 个独立的弹性常数值,分别为 C₁₁ = 77.333 GPa, C₁₂ = 40.651 GPa, C₁₃ = 20.394 GPa, C₃₃ = 76.498 GPa, C₄₄ = 9.155 GPa.可以看出,所得的弹性常数满足文献[47]给出的力学稳定性标准.

表 2 计算六角结构 α-Mg₃Sb₂ 的弹性常数所施加的应力参数 以及由方程(2) 得到的能量

应力	δ_{11}	δ_{22}	δ_{33}	δ_{44}	δ_{55}	δ_{66}	$\Delta E/V_0$ (忽略 γ^2 以上的高阶项)
ð ⁽¹⁾	0	0	0	0	0	γ	$\frac{1}{4}(C_{11} - C_{12})\gamma^2$
ð ⁽²⁾	γ	γ	0	0	0	0	$(C_{11} + C_{12})\gamma^2$
§ ⁽³⁾	0	0	γ	0	0	0	$\frac{1}{2}C_{33}\gamma^2$
§ ⁽⁴⁾	0	0	0	γ	γ	0	$C_{44} \gamma^2$
8(5)	γ	γ	γ	0	0	0	$\left(C_{11} + C_{12} + 2C_{13} + \frac{1}{2}C_{33} \right) \gamma^2$

图 6 α -Mg₃Sb₂ 的晶格总能 U 作为畸变参数 γ 的二次函数拟合曲线

从计算所得的弹性常数,可以通过 Voigt 方法⁴⁶¹ 得到 α-Mg₃Sb₂ 的体模量 B、剪切模量 G、杨氏模量 Y以及泊松比 ν 和各向异性因子 A 等力学参数.如果 体积变化时 c/a 是定值 那么约束体模量 B° 为

$$B^{c} = \frac{C_{33}(C_{11} + C_{12}) - 2C_{13}^{2}}{C_{s}}, \qquad (4)$$

式中 $C_s = C_{11} + C_{12} + 2C_{33} - 4C_{13}$. 如果体积变化时 c/a 也变化 那么体模量 B 为

$$B = \frac{2}{9} (C_{11} + C_{12} + 2C_{13} + \frac{1}{2}C_{33}). \quad (5)$$

剪切模量可以由以下公式得到:

$$G = \{ C_{44} [C_{44} (C_{11} - C_{12}) / 2]^{1/2} \}^{1/2}.$$
 (6)

杨氏模量 Y 和泊松比 ν 可以根据 Cline 等^{48]}提供的公式

$$Y = \frac{\left[\begin{array}{c} C_{33} \left(C_{11} + C_{12} \right) - 2C_{13}^2 \mathbf{I} C_{11} - C_{12} \right)}{C_{11} C_{33} - C_{13}^2}, (7)$$

$$\nu = \frac{C_{12} C_{33} - C_{13}^2}{C_{11} C_{33} - C_{13}^2}.$$
 (8)

得到.各向异性因子 A 可以由以下公式得到:

$$A = \frac{2C_{44}}{C_{11} - C_{12}}.$$
 (9)

计算结果列于表 3.

表 3 α -Mg₃Sb₂的体模量、剪切模量 G、杨氏模量 Y、

泊松比 ν 以及各向异性因子 Α

B/GPa	$B^{\rm c}/{\rm GPa}$	B_0/GPa	G/GPa	B/G	Y/GPa	ν	Α
43.782	43.260	44.65	12.953	3.380	54.648	0.292	0.499

从表 3 可以看出,计算所得的自由体模量 B、约 束体模量 B° 以及通过 Murnaghan-Birch 方程^[49] 拟合 得到的体模量 B_0 非常接近,分别为 43.782 A3.260 和 44.65 GPa. Pugh^[50]发现 B/G 的大小可以表征物 质的延展性,B/G 愈大延展性愈好,其临界点为 1.75.本文中 B/G = 3.380,大于 1.75,表明 α-Mg₃Sb₂ 具有很好的延展性.除了 B/G, C_{11} – C_{12} 也是表征材 料力学性能的重要物理量^[51], $C_{11} - C_{12}$ 越小 杨氏模 量 Y 越低,材料的塑性越好.本文中 $C_{11} - C_{12} =$ 36.682 GPa 杨氏模量 Y = 54.648 GPa,两者都较高, 表明 α -Mg₃Sb₂ 的塑性相对较差.另外,泊松比 ν 也 被用来衡量晶格的切变稳定性,其范围通常为 – 1— 0.5,泊松比越大物质的塑性越好.大多数物质的泊 松比计算值很接近 0.25,表明大多数物质原子间主 要是中心力场相互作用^[52].计算所得 α -Mg₃Sb₂ 的 泊松比为 0.292,略大于 0.25 且远小于 0.5,表明 α -Mg₃Sb₂原子间的作用接近于中心力场且 α -Mg₃Sb₂ 的塑性相对较差.本文的计算结果与文献 53 54 ph 实验结果相符.

最后还分析了 α -Mg₃Sb₂ 在施加应变前后 DOS 的变化,所得结果如图 7 所示.由图 7 可以看出, 对于六角结构的 α -Mg₃Sb₂,与剪切模量相关的 $C_{11} + C_{12}$, $C_{33}/2$ 和与体模量相关的 $C_{11} + C_{12} + 2C_{13} + C_{33}/2$ 在施加应变前后 DOS 发生偏离,表 明其对体积变化不保守;而($C_{11} - C_{12}$)/4 和 C_{44} 在施加应变前后 DOS 基本重合,表明其对体积变 化保守.

图 7 α -Mg₃Sb₂ 在不同应变($\gamma = \pm 4\%$)下的总 DOS 实线表示未发生应变时的 DOS 点线表示发生 – 4% 应变时的 DOS 短划线表示发生 + 4% 应变时的 DOS

4.结 论

本文利用基于密度泛函理论的平面波赝势方法,研究了 Mg-Sb 合金中典型沉淀相 α -Mg,Sb₂ 的几 何结构、电子 DOS、能带结构以及弹性常数和力学性 能.得到的晶格常数与实验值符合很好.通过分析能 带结构,发现具有半导体性质的 α -Mg,Sb₂ 带隙为 0.303 eV,在已有文献提供的数据范围内,为间接带 隙半导体.DOS 分析表明 Sb 的 s 态和 p 态对总 DOS 的贡献较大.电荷密度成键分析表明,Mg 与 Sb 间为 离子键,而 Mg 与 Mg 和 Sb 与 Sb 间为共价键.力学 属性计算得出了 α -Mg,Sb₂ 的 5 个独立的弹性常数 C_{ij} ,进而得到体模量、剪切模量、泊松比和各向异性 因子等力学参数,对力学参数进行分析发现, α -Mg₃Sb₂ 具有很好的延展性而塑性相对较差.最后分 析了施加应变前后 DOS 的变化,发现对于六角结构 的 α -Mg₃Sb₂,与剪切模量相关的 $C_{11} + C_{12}$, $C_{33}/2$ 和 与体模量相关的 $C_{11} + C_{12} + 2C_{13} + C_{33}/2$ 对体积变 化不保守,而($C_{11} - C_{12}$)/4 和 C_{44} 对体积变化保守.

衷心感谢湘潭大学材料与光电物理学院和广西大学化 学化工学院提供的机时保证和技术支持 感谢上海交通大学 材料科学与技术学院、轻合金精密成型国家工程研究中心提 供实验支持.

- [1] Potzies C ,Kainer K U 2004 Adv. Eng. Mater. 6 281
- [2] Sajuri Z B , Umehara T , Miyashita Y , Mutoh Y 2003 Adv. Eng. Mater. 5 910
- [3] Schumann S ,Friedrich H 2003 Mater. Sci. Forum 51 419
- [4] Mordike B L ,Kainer K U 1998 Proceedings of the Magensium Alloys and Their Applications (Frankfurt: Werkstoff-Information Sgesellschaft) pp304—311
- [5] Kainer K U 2003 Magnesium Alloys and Technology (Weinheim: Wiley-VCH GmbH & KGaA) pp210—223
- [6] Aroule P 1998 IMA-55 A Global Vision for Magnesium (Washington : International Magnesium Association) pp36—46
- [7] Mordike B L Ebert T 2001 Mater. Sci. Eng. A 37 302
- [8] Yuan G Y , Sun Y S , Ding W J 2000 Scripta Mater . 43 1009
- [9] Yuan G Y, Zeng X Q, Lü Y Z, Ding W J, Sun Y S 2001 J. Mater. Eng. 458 (in Chinese)[袁广银、曾小勤、吕宜振、丁文 江、孙扬善 2001 材料工程 458]
- [10] Yuan G Y , Sun Y S , Ding W J 2001 Mater . Sci . Eng . A 38 308
- [11] Ma Y Q , Chen R S , En-Hou H 2007 Mater . Lett . 61 2527
- [12] Balasubramani N Srinivasan A Pillai U T S Raghukandan K Pai B C 2008 J. Alloys Compd. 455 168
- [13] Wang Q ,Chen W ,Ding W ,Zhu Y ,Mabuchi M 2001 Metall. Mater. Trans. 32 787
- [14] Varma A , Mukasyan A S 1992 ASM Handbook (Vol. 3) p1104
- [15] Stefano C , Aleksey N K , Franklin H C 2005 Calphad 29 155
- [16] Kajikawa T ,Kimura N ,Yokoyama T 2003 Proceedings of the 22nd International Conference on Thermoelectrics (Weinheim : Wiley-VCH) pp305—308
- [17] Condron C L ,Kauzlarich S M ,Gascoin F Snyder G J 2006 J. Solid State Chem. 179 252
- [18] Kohn W Sham L 1965 Phys. Rev. A 140 1133
- $\left[\begin{array}{c}19\end{array}\right]$ Kresse G , Hafner J 1994 Phys . Rev . B $\mathbf{49}$ 14251
- [20] Kresse G ,Furthmüller J 1996 Comput. Mater. Sci. 6 15

- [21] Kresse G 2003 Vienna Ab Initio Simulation Package (Weinheim: Wiley-VCH)
- [22] Blochl P E 1994 Phys. Rev. B 50 17953
- [23] Kresse G Joubert D 1999 Phys. Rev. B 59 1758
- [24] Perdew J P , Wang Y 1992 Phys. Rev. B 45 13244
- [25] Perdew J P , Chevary J A , Vosko S H , Jackson K A , Pederson M R , Singh D 1992 Phys. Rev. B 46 6671
- [26] Monkhorst H J Pack J D 1976 Phys. Rev. B 13 5188
- [27] Press W H , Teukolsky S A , Vetterling W T , Flannery B P 1996 Numerical Recipes in FORTRAN 90 : The Art of Parallel Scientific Computing (2nd Ed.) (New York : Cambridge University Press) pp102—150
- [28] Zintl E ,Husemann E 1933 Z. Phys. Chem. 21 138
- [29] Martinez-Ripoll M ,Haase A ,Brauer G 1974 Acta Cryst. B 30 2006
- [30] Birch F 1978 J. Geophys. Res. 83 1257
- [31] Balakumar T ,Medraj M 2005 Calphad 29 24
- [32] Faraz A , Taras K , Yurij M 2007 J. Solid State Chem. 180 24
- [33] Zhong Y ,Liu J ,Witt R A Sohn Y ,Zikui L 2006 Scripta Mater. 55 573
- [34] Qiu A N Jiang Y J ,Zhang L T ,Wu J S 2006 *Chin*. J. Nonferr. Met. 16 10(in Chinese)[邱安宁、蒋意靖、张澜庭、吴建生 2006 中国有色金属学报 16 10]
- [35] Rao Y K , Patil B V 1971 Metall . Trans . 2 1829
- [36] Eremenko V N Jukashenko G M Neorg Z K 1964 Russ. J. Inorg. Chem. (Engl. Trans.) 9 1552
- [37] Kubaschewski O , Walter A 1939 Z. Elektrochem. 45 732
- [38] Kubaschewski O ,Catterall J A 1956 Thermodynamic Data of Alloys (New York : Pergamon) p56
- [39] Hultgren R ,Desai P D ,Hawkins D T ,Gleiser M ,Kelley K K 1973 Selected Values of the Thermodynamic Properties of Binary Alloys ASM International (Metals Park :ASM) pp1106—1108

- [40] Barin I ,Knacke O ,Kubaschewski O 1977 Thermochemical Properties of Inorganic Substances (Supplement) (Berlin :Springer-Verlag) p385
- [41] Imai Y , Watanabe A 2006 J. Mater. Sci. 41 2435
- [42] Busch G ,Hulliger F ,Winkler U 1954 Helv. Phys. Acta 27 195
- [43] Stampfl C van de Walle C G 1999 Phys. Rev. B 59 5521
- [44] Perdew J P , Mel L 1983 Phys. Rev. B 51 1184
- [45] Kuroiwa Y ,Aoyagi S ,Sawada A ,Harada J ,Nishibori E ,Takata M , Sakata M 2001 Phys. Rev. Lett. 87 217601
- [46] Voigt W 1928 Lehrbuch der Kristallphysik (Teubner : Leipzig) p962
- [47] Born M , Huang K 1956 Dynamical Theory of Crystal Lattices (Clarendon : Oxford) pp126—152

- [48] Cline C F "Dunegan H L "Henderson G W 1967 J. Appl. Phys. 38 1944
- [49] Murnaghan F D ,Acad P N 1944 Science 30 244
- [50] Pugh S F 1954 Phil . Mag . 45 823
- [51] Hu Q M , Yang R 2006 Curr. Opin. Solid St. Mater. Sci. 10 19
- [52] Mattesini M , Ahuja R , Johansson B 2003 Phys. Rev. B 68 184108
- [53] Zhang G Y Zhang H ,Fang G L ,Li Y C 2005 Acta Phys. Sin. 54 5288 (in Chinese)[张国英、张 辉、方戈亮、李昱材 2005 物理 学报 54 5288]
- [54] Yuan G Y Sun Y S Wang Z 1999 Chin. J. Nonferr. Met. 9 779
 (in Chinese)[袁广银、孙杨善、王 震 1999 中国有色金属学报 9 779]

Electronic structure and mechanical properties of α -Mg₃Sb₂^{*}

Yu Wei-Yang¹) Tang Bi-Yu¹^{(2)†} Peng Li-Ming³) Ding Wen-Jiang³

1 X Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education ,

Faculty of Material and Photoelectronic Physics , Xiangtan University , Xiangtan 411105 , China)

2 X School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China)

3 🕽 Light Alloy Net Forming National Engineering Research Center , School of Materials Science and Engineering ,

Shanghai Jiaotong University ,Shanghai 200030 ,China)

(Received 20 December 2008; revised manuscript received 6 January 2009)

Abstract

First principles calculations have been carried out to investigate the electronic structure and the mechanical properties of α -Mg₃Sb₂. The optimized structural parameters and formation energy are in good agreement with the experimental values. The electronic structure is also given , indicating that α -Mg₃Sb₂ is indirect-semiconductor. The obtained energy band gap of α -Mg₃Sb₂ is 0.303 eV. The elastic constaint C_{ij} of α -Mg₃Sb₂ has been calculated ,then the mechanical parameters such as moduli , Possion's ratio , etc are abtained. By analysizing the mechanical parameters it is found that α -Mg₃Sb₂ has good ductility and relatively poor plasticity. In the end ,the volume conservation of α -Mg₃Sb₂ is discussed in terms of the total density of states before and after deformations. From the results , it can be seen that the shears corresponding to ($C_{11} - C_{12}$)/4 and C_{44} are almost volume conserving whereas the shears corresponding to $C_{11} + C_{12}$, $C_{33}/2$ and the bulk modulus related to $C_{11} + C_{12} + 2C_{13} + C_{33}/2$ are not volume conserving.

Keywords : α -Mg₃Sb₂ , first principles , electronic structure , mechanical properties **PACC** : 7115A , 7115M , 7125 , 6220

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50861002), the Natural Science Foundation of Hunan Province, China (Grant No. 08JJ6001), the Scientific Research Foundation of Key Laboratory of Materials Design and Preparation Technology of Hunan Province, China (Grant No. KF0803) and the Scientific Research Foundation of Guangxi University, China (Grant No. X071117).

[†] Corresponding author. E-mail:tangbiyu@xtu.edu.cn