基于拓扑结构的碱金属化合物摩尔磁化率的 支持向量回归研究*

蔡从中* 庄魏萍 温玉锋 朱星键 裴军芳 肖婷婷

(重庆大学应用物理系 重庆 400044) (2009年1月15日收到 2009年4月30日收到修改稿)

基于经典电动力学导出的表征简单离子磁化率的磁性点价 g_i 所构建的分子磁性连接性指数 "F 及 45 种碱金 属化合物的摩尔磁化率 χ_m 的实测数据集 利用粒子群寻优的支持向量回归(SVR)方法 ,建立了基于⁰F 和 ¹F 的碱金 属化合物 χ_m 的预测模型 ,并与基于多元线性回归(MLR)模型的计算结果进行了比较.结果显示 ,基于 9 次交叉验 证的 SVR 模型预测的平均绝对误差、平均相对误差绝对值以及均方根误差均比 MLR 模型小 ,表明 SVR 模型的回归 预测能力优于 MLR.研究表明 ,磁性连接性指数"F 是一种合适的分子描述符 ,SVR 是一种预测碱金属化合物 χ_m 的 有效方法.

关键词:碱金属化合物,摩尔磁化率,支持向量回归,预测 PACC:7530C,0270,0650

1.引 言

物质的磁性与组成它的原子、离子或分子的微 观结构有关 研究物质的磁性对于确定原子结构、分 子结构具有极其重要的理论意义,物质磁化率反映 了磁介质在外磁场中被磁化的信息,人们可以通过 测定物质磁化率来计算物质分子中未成对电子数以 研究分子中成键状况以及判断配合物的结构类型 等.根据物质的不同结构特征可采用不同的方法来 测量物质的磁化率,常见磁化率测定方法有 Gouy 磁 天平法¹¹、Curie 磁秤法^[2]、Faraday 相对法³¹、Quincke 法^[4]、Rankine 法^{5]}等,除直接测量外,人们还应用蒙 特卡罗方法、第一性原理、多元线性回归(multivariate linear regression,简记为 MLR),神经网络等方法对物 质磁化率的模拟计算进行了一系列的探索研 究^{6-12]}.由于早期的加和法在计算分子磁化率时未 考虑原子在分子中的价态以及成键的性质等对分子 磁化率的影响,其估算结果的准确率往往较低[13]. 冯长君等[13]根据经典电动力学原理 引入与摩尔磁 化率 χ_m 显著相关的表征简单离子磁化率的磁性点 价 g_i 结合分子图的邻接矩阵构建了一种新的分子 磁性连接性指数^{*m*}*F* ,利用 MLR 方法对碱金属化合 物的磁化率进行了拟合研究.结果表明 ,零阶(⁰*F*) 和一阶(¹*F*)连接性指数与碱金属化合物的磁化率 具有良好的二元相关性 ,其相关系数达 0.957.本文 是在文献[13]的工作基础上 ,利用支持向量回归 (support vector regression ,简记为 SVR)方法^[14]并结合 粒子群寻优(particle swarm optimization ,简记为 PSO) 算法 ,基于零阶和一阶连接性指数 ,对 45 种碱金属 化合物的摩尔磁化率 χ_m 进行了 SVR 建模和预测 研究.

2. 原理与方法

2.1. SVR 原理

支持向量机是 Vapnik 及其合作者基于统计学 习理论及结构风险最小化原则而提出的一种机器学 习方法^[14,15],可用于数据的分类与回归研究,具有很

† E-mail:caiczh@gmail.com

^{*} 教育部新世纪优秀人才支持计划(批准号:NCET-07-0903)教育部留学回国人员科研启动基金(批准号:2008101-1)重庆市自然科学基金(批准号:CSTC2006BB5240)和国家大学生创新性实验计划(批准号:CQUCX-G-2007-016)资助的课题。

强的学习与泛化能力,已被广泛地应用于实际问题 的分类与回归研究[16-26].

SVR 的基本思想是针对不满足线性关系的样本 集 $(x_1, y_1), ..., (x_m, y_m)$ 通过输入空间到输出空间 的非线性映射 Φ 将样本数据 x 映射到高维空间 F, 并在 F 中用下列函数进行线性回归:

$$E(f(\mathbf{x}_i) - y_i) = \begin{cases} 0 & (|f(\mathbf{x}_i) - y_i| < \varepsilon), \\ |f(\mathbf{x}_i) - y_i| - \varepsilon & (|f(\mathbf{x}_i) - y_i| \ge \varepsilon), \end{cases}$$

式中, m 为训练样本数, $E(f(\mathbf{x}_i) - \gamma_i)$ 是损失函数, C 是惩罚因子 , c 为误差.

为控制函数的复杂性 应使线性回归函数尽量 平坦 并考虑可能超出精度的回归误差 引入松弛因 子 ε 和 ε^* 以处理不满足(3)式的数据点.根据统计 学习理论的结构风险最小化准则 SVR 是通过最小 化目标函数 $R(w, \xi_i, \xi_i^*)$ 来确定(1)式中的 w 和 b,

$$R(\mathbf{w},\xi_{i},\xi_{i}^{*}) = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*}),$$
(4)

且满足

$$y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i - b \leq \varepsilon + \xi_i ,$$

$$\boldsymbol{w} \cdot \boldsymbol{x}_i + b - y_i \leq \varepsilon + \xi_i^* ,$$

$$\xi_i \geq 0 ,$$

$$\xi_i^* > 0.$$

(4) 武等号右端第一项是使回归函数更为平坦 泛化 能力更好:第二项则为减少误差.惩罚因子 c 是一 个常数 且 C > 0 用来控制对超出误差 ε 的样本的 惩罚程度,为求解 w 和 b 建立拉格朗日方程

$$L(\mathbf{w}, \xi_i, \xi_i^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*)$$
$$- \sum_{i=1}^m \alpha_i ((\varepsilon + \xi_i) + y_i)$$
$$+ (\mathbf{w} \cdot \Phi(\mathbf{x}_i)) + b)$$
$$- \sum_{i=1}^m \alpha_i^* ((\varepsilon + \xi_i^*) + y_i)$$
$$+ (\mathbf{w} \cdot \Phi(\mathbf{x}_i)) - b)$$
$$- \sum_{i=1}^m (\lambda_i \xi_i + \lambda_i^* \xi_i^*). \quad (5)$$

要使(5)式取得最小值 ,L 对于参数 w ,b , ξ , ξ^* 的偏 导数都应等于零 即

$$f(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x}) + b ,$$

$$\Phi : \mathbb{R}^n \to \mathbf{F} , \mathbf{w} \in \mathbf{F} , \qquad (1)$$

式中 b 是阈值 w 是回归系数向量 影响 w 的因素 有经验风险的总和及使其在高维空间平坦的R(w),

$$R(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^{2} + C \sum_{i=1}^{m} E(f(\mathbf{x}_{i}) - y_{i}), (2)$$

$$\begin{array}{c} 0 \\ (\mid f(\mathbf{x}_i) - y_i \mid < \varepsilon), \\ \mid f(\mathbf{x}_i) - y_i \mid - \varepsilon \\ (\mid f(\mathbf{x}_i) - y_i \mid \ge \varepsilon), \end{array} \end{array}$$

$$(3)$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \cdot \boldsymbol{\Phi}(\boldsymbol{x}_i) = 0,$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0,$$

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \lambda_i = 0,$$

$$\frac{\partial L}{\partial \xi_i^*} = C - \alpha_i^* - \lambda_i^* = 0.$$
(6)

代入(5) 试后可以得到对偶优化问题

$$\min\left\{\frac{1}{2}\sum_{i,j=1}^{m} (\alpha_{i} - \alpha_{i}^{*}) \alpha_{j} - \alpha_{j}^{*} (\alpha_{i} - \alpha_{i}^{*}) \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \right\}$$
$$+ \sum_{i=1}^{m} \alpha_{i} (\varepsilon - y_{i}) + \sum_{i=1}^{m} \alpha_{i}^{*} (\varepsilon + y_{i}) = Q, \quad (7)$$
$$\blacksquare$$

$$\blacksquare$$

$$\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$$
$$\alpha_i \in [0, C],$$
$$\alpha_i^* \in [0, C].$$

由此 SVR 回归问题就可以归结为二次规划(7)式, 从而得到用训练样本点表示的 w 即

$$\boldsymbol{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \boldsymbol{\Phi} (\boldsymbol{x}_i), \qquad (8)$$

式中 α_i 和 α_i^* 是最小化目标函数 $R(w, \xi_i, \xi_i^*)$ 的 解,由此可求得线性回归函数

$$f(\mathbf{x}) = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) h(\mathbf{x}, \mathbf{x}_i) + b, \quad (9)$$

式中 $k(x, x_i) = \Phi(x) \cdot \Phi(x_i)$ 为核函数.选择不同 形式的核函数就可以生成不同的 SVR 模型,常用的 核函数有径向基函数、多项式函数、sigmoid 函数、线 性函数等,本文采用径向基函数来建立 SVR 模型,

2.2. SVR 参数的 PSO 算法寻优

PSO 算法是在 1995 年由 Kennedy 和 Eberhart^[27]

模拟鸟群的飞行捕食行为而提出的一种高效多维并 行寻优算法.由于 SVR 模型的泛化性能完全依赖于 误差 ϵ 、惩罚因子 C 和核函数参数 γ 这三个参数,因 而进行 ϵ ,C, γ 参数寻优对于 SVR 达到最优泛化性 能尤其关键.采用 PSO 算法来寻找 ϵ ,C, γ 的最优 值,即采用速度-位置搜索模型来寻找最优参数.群 体中的每个粒子由三维参数向量(ϵ ,C, γ)组成,设 第 i 个粒子在三维解空间的位置为 $u_i = (u_{i1}, u_{i2}, u_{i3})^T$,其速度为 $v_i = (v_{i1}, v_{i2}, v_{i3})^T$,当前时刻的个体 极值记为 p_{ibest} ,全局极值记为 g_{best} .在每次迭代中, 粒子跟踪个体极值、全局极值和自己前一时刻的状 态来调整当前时刻的位置和速度,其迭代公式为

 $v_i(t+1) = \omega v_i(t) + c_1 \operatorname{rand}(\cdot) p_{ibest} - u_i(t))$ + $c_2 \operatorname{rand}(\cdot) g_{best} - u_i(t)),$ (10) $u_i(t+1) = u_i(t) + v_i(t+1).$ (11) 这里, $v_i(t)$ 和 v(t+1)分别是粒子在当前时刻和下 一时刻的速度; u(t)和 u(t+1)分别是粒子在当前 时刻和下一时刻的位置; $\operatorname{rand}(\cdot)$ 是[0,1]之间的随 机数; c_1 和 c_2 是学习因子, 通常取为 2; ω 是权重因 子,为加快收敛速度,其值随算法迭代的进行而自动 调节, 一般定义为

 $\omega = \omega_{\min} + (N_{\max} - N) (\omega_{\max} - \omega_{\min}) N_{\max}$ (12) 式中, ω_{\max} , ω_{\min} 分别为最大、最小权重因子,且 ω_{\max} 和 ω_{\min} 的值一般取为 0.9 和 0.4, N 为当前迭代次数, N_{\max} 为总的迭代次数.为了直接反映 SVR 回归性能,选用均方根误差 E_{RMS} 作为适应度函数,

$$E_{\rm RMS} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2} , \qquad (13)$$

式中,*m* 是训练样本数, y_i 和 \hat{y}_i 分别是第i个训练样本目标量的实测值和预测值.

3.SVR 模型的建立

3.1. 数 据

本文所用数据来源于文献 13],该数据集共包含 45 个样本(见表 1),是冯长君等根据文献 14]中列出 的 45 种碱金属化合物(包括碱金属卤化物、硫化物、 多硫化物、硫酸盐、高氯酸盐及卤酸盐)的摩尔磁化率 χ_m ,在分子图的邻接矩阵基础上引入简单离子的磁 性点价 g_i 构建了零阶和一阶连接性指数.连接性指 数"F的定义及详细计算方法参见文献 13].

3.2. 建立模型

报

在利用 SVR 方法对不同碱金属化合物的摩尔磁 化率 χ_m 的训练建模过程中,以⁰F 和 ¹F 两个参数为输 入变量,以 χ_m 为输出变量进行训练学习.本文应用 SVR 采用 9 次交叉验证(9-fold cross validation,简记为 9FCV)对 45 个样本进行建模训练和预测研究.

3.3. 模型预测性能的评价

采用最大相对误差绝对值 *E*_{max AP}、平均绝对误 差 *E*_{mean A}、平均相对误差绝对值 *E*_{mean AP}以及相关系 数 *r*² 对所建模型的预测性能进行评价. *E*_{max AP}, *E*_{mean A}, *E*_{mean AP}以及 *r*² 分别定义为

$$E_{\max AP} = \max \left| \frac{\hat{y}_j - y_j}{y_j} \right| \qquad (1 \le j \le n) (14)$$

$$E_{\text{mean A}} = \frac{1}{n} \sum_{j=1}^{n} |\hat{y}_j - y_j| , \qquad (15)$$

$$E_{\text{mean AP}} = \frac{1}{n} \sum_{j=1}^{n} \left| \frac{\hat{y}_{j} - y_{j}}{y_{j}} \right| , \qquad (16)$$

$$r^{2} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \overline{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \overline{y})^{2}}.$$
 (17)

这里 ,*n* 是检验样本数 , y_j 和 \hat{y}_j 分别是第 j 个检验样本的目标值和预测值 , \overline{y} 是检验样本的目标平均值.

4. 结果分析与讨论

4.1. SVR-9FCV 预测结果

将 45 个样本随机地等分为 9 组,各组依次作为 测试样本,其余 8 组作为训练样本,应用 SVR 进行 9FCV,所得结果列于表 1.

文献 13 曾对表 1 中的 45 个样本数据进行多 元线性拟合^[13],得到 χ_m 与⁰F 和 ¹F 之间的线性回归 方程(以下称为 MLR1)为

 $\chi_m = 54.248 - 36.550^{\circ}F - 30.722^{\circ}F.$ (18) 文献 13 还对 45 个样本进行了分段线性拟合,即将 碱金属卤化物(样本 1—样本 16),碱金属硫化物及 多硫化物(样本 17—样本 29)和碱金属含氧酸盐(样 本 30—样本 45)分段拟合为如下回归方程¹³(以下 合称为 MLR2):

 $\chi_{\rm m} = 43.039 - 14.700 \,{}^{0}F - 64.604 \,{}^{1}F$, (19)

 $\chi_{\rm m}$ = 57.912 - 24.639 $^0\!F$ - 41.437 $^1\!F$, (20)

 $\chi_{\rm m} = 46.983 - 15.043 \,{}^{0}F - 42.382 \,{}^{1}F$. (21)

为便于与 SVR-9FCV 的预测结果进行直接比较 ,MLR1 与 MLR2 的拟合结果也列入表 1.

表 1 45 种碱金属化合物的磁性连接性指数与摩尔磁化率的实测值、MLR 和 SVR 计算值及误差

	化合物	⁰ F	^{1}F	$-\chi_{\rm m}/10^{-12}~{\rm m}^3\cdot{ m mol}^{-1}$						
样本编号				实测值	MLR1 预测值	MLR1 预测 误差/%	MLR2 预测值	MLR2 预测 误差/%	SVR-9FCV 预测值	SVR-9FCV 预测误差/%
1	NaF	1.391	0.606	16.4	15.2	- 7.32	16.6	1.22	16.4	0.00
2	KF	1.707	0.692	23.6	29.4	24.58	26.8	13.56	23.4	-0.84
3	RbF	1.916	0.744	31.9	38.6	21.00	33.2	4.08	35.6	11.60
4	CsF	2.133	0.794	44.5	48.1	8.09	39.6	- 11.01	44.0	- 1.11
5	NaCl	1.599	0.764	30.2	27.7	- 8.28	29.8	- 1.32	28.1	-6.94
6	KCl	1.915	0.872	38.8	42.5	9.54	41.4	6.70	39.6	2.06
7	RbCl	2.124	0.937	46.4	52.2	12.50	48.7	4.96	49.5	6.68
8	CsCl	2.341	1.000	56.7	62.0	9.35	56.0	- 1.23	61.5	8.47
9	NaBr	1.749	0.859	41.1	36.1	- 12.17	38.2	-7.06	35.5	- 13.62
10	KBr	2.064	0.981	49.2	51.3	4.27	50.7	3.05	49.7	1.02
11	RbBr	2.274	1.054	56.4	61.2	8.51	58.5	3.72	58.8	4.26
12	CsBr	2.491	1.125	67.2	71.4	6.25	66.3	- 1.34	69.1	2.83
13	NaI	2.006	1.003	57.0	49.9	- 12.46	51.2	- 10.18	48.2	- 15.23
14	KI	2.322	1.145	63.8	65.8	3.13	65.1	2.04	62.4	-2.18
15	RbI	2.531	1.230	72.2	76.0	5.26	73.6	1.94	72.3	0.14
16	CsI	2.748	1.313	82.6	86.5	4.72	82.2	-0.48	83.9	1.57
17	Na_2S	1.860	0.904	39.0	41.5	6.41	41.4	5.38	40.9	4.87
18	K_2S	2.306	1.032	60.0	61.7	2.83	63.1	5.17	58.6	-2.32
19	Rb_2S	2.602	1.109	80.0	74.9	- 6.38	77.2	- 3.50	78.4	- 1.99
20	Cs_2S	2.910	1.184	104.0	88.5	- 14.90	91.8	- 11.73	103.5	-0.47
21	Na_2S_2	2.023	1.297	53.0	59.5	12.26	57.9	9.25	59.5	12.26
22	K_2S_2	2.470	1.426	71.0	79.8	12.39	79.6	12.11	70.3	-0.98
23	Rb_2S_2	2.765	1.503	90.0	93.0	3.33	93.7	4.11	81.8	-9.10
24	Na_2S_3	2.148	1.461	68.0	69.1	1.62	67.1	- 1.32	68.6	0.88
25	K_2S_3	2.595	1.589	80.0	89.4	11.75	88.8	11.00	82.4	3.00
26	$\operatorname{Na}_2\mathrm{S}_4$	2.254	1.586	84.0	76.9	-8.45	74.6	- 11.19	83.5	-0.59
27	K_2S_4	2.700	1.714	89.0	97.1	9.10	96.2	8.09	90.9	2.13
28	Na_2S_5	2.347	1.692	99.0	83.5	- 15.66	81.0	- 18.18	95.1	- 3.93
29	K_2S_5	2.793	1.819	98.0	103.7	5.82	102.6	4.69	98.2	0.20
30	Na_2SO_4	2.093	1.165	52.0	58.0	11.54	59.2	13.85	57.1	9.81
31	$K_2 SO_4$	2.540	1.265	67.0	77.5	15.67	79.7	18.96	72.7	8.51
32	$\operatorname{Rb}_2\operatorname{SO}_4$	2.836	1.325	88.4	90.1	1.92	93.1	5.32	89.1	0.79
33	$\operatorname{Cs}_2\operatorname{SO}_4$	3.143	1.384	116.0	103.1	- 11.12	107.0	-7.76	116.5	0.43
34	NaClO ₄	1.632	0.936	37.6	34.2	-9.04	36.3	- 3.46	40.6	7.98
35	KClO ₄	1.947	1.007	47.4	47.9	1.05	50.7	6.96	49.5	4.43
36	$CsClO_4$	2.374	1.091	69.9	66.0	- 5.58	70.0	0.14	65.2	-6.71
37	NaClO ₃	1.611	0.934	34.7	33.3	-4.03	35.3	1.73	36.5	5.19
38	KClO ₃	1.926	1.005	42.8	47.0	9.81	49.8	16.36	47.0	9.81
39	CsClO ₃	2.353	1.089	65.0	65.2	0.31	69.1	6.31	63.9	- 1.68
40	NaBrO ₃	1.652	0.988	44.2	36.5	- 17.42	37.9	- 14.25	44.1	-0.22
41	KBrO ₃	1.967	1.059	52.6	50.2	-4.56	52.3	-0.57	49.9	- 5.12
42	CsBrO ₃	2.394	1.143	75.1	68.4	- 8.92	71.7	- 4.53	66.9	- 10.91
43	NaIO ₃	1.695	1.039	53.0	39.6	- 25.28	40.5	- 23.58	47.6	- 10.18
44	KIO3	2.010	1.110	63.1	53.3	- 15.53	54.9	- 13.00	53.2	- 15.68
45	CsIO ₃	2.437	1.194	83.1	71.5	- 13.96	74.3	- 10.59	68.8	- 17.42

4.2. 结果分析与讨论

从表 1 可以看出, MLR1, MLR2 和 SVR-9FCV 的 回归结果的 *E*_{max AP} 依次递减, 分别为 25.28%, 23.58%和 17.42%.

表 2 是 MLR1, MLR2 和 SVR-9FCV 的回归结果 的 $E_{\text{max AP}}$, $E_{\text{mean A}}$, $E_{\text{mean AP}}$, E_{RMS} 和 r^2 的统计结果.从 表 2 可以看出, MLR2 拟合的 $E_{\text{max AP}}$, $E_{\text{mean A}}$, $E_{\text{mean AP}}$, $E_{\rm RMS}$ 均比 MLR1 的相应值要小,并且 MLR2 的相关系数 $r^2 = 0.9430$ 也比 MLR1 的 $r^2 = 0.9261$ 要大.这说明分段多元线性回归模型的拟合效果优于整段多元线性回归模型的拟合效果,同时表明 45 个样本数据的 $\chi_{\rm m}$ 与^oF 和 ¹F 线性关联性不及分段样本的线性关联性强,因此有必要寻求和应用多元非线性回归方法进行拟合.

表 2 不同回归模型下碱金属化合物摩尔磁化率的拟合结果

模型	$E_{\rm max AP}$ /%	$E_{\rm mean A}/10^{-12} {\rm m}^3 \cdot {\rm mol}^{-1}$	$E_{ m mean \ AP}/\%$	$E_{\rm RMS}/10^{-12} {\rm m}^3 \cdot {\rm mol}^{-1}$	r^2	-
MLR1 ^[13]	25.28	5.64	9.42	6.82	0.9261	
MLR2 ^[13]	23.58	4.62	7.28	6.14	0.9430	
SVR-9FCV	17.42	3.04	5.25	4.32	0.9503	

图 1 45 种碱金属化合物摩尔磁化率 χ_m 的 SVR-9FCV 预 测值与实测值对比

应用径向基函数的 SVR 方法就是一种基于机 器学习的多元非线性回归方法.从表 2 还可以看出, SVR-9FCV 拟合结果的 E_{maxAP} , E_{meanA} , E_{meanAP} 和 E_{RMS} 等误差均比 MLR1 和 MLR2 模型拟合的相应误差要 小 SVR 拟合的相关系数 $r^2 = 0.9503$ 也分别比 MLR1 的 $r^2 = 0.9261$ 或 MLR2 的 $r^2 = 0.9430$ 要大. 图 1 给出了 45 种碱金属化合物摩尔磁化率 χ_m 的 SVR-9FCV 预测值与实验测量值的对比.从图 1 可以 看出,绝大多数样本的 SVR-9FCV 预测值与实验测 量值符合较好.

以上结果表明 ,SVR 的回归模型的预测能力优于传统的线性回归方法.

5.结 论

基于分子连接性指数"*F*,应用 SVR 方法并结合 PSO 算法,对碱金属化合物的摩尔磁化率 χ_m 进行 了预测研究,并与 MLR 方法的拟合结果进行了比 较.结果表明(1)零阶和一阶连接性指数与 45 种碱 金属化合物的摩尔磁化率 χ_m 具有良好的关联性, 可有效地用于预测碱金属化合物的摩尔磁化率 χ_m ; (2)SVR 方法的拟合结果和预测性能明显地优于传 统的 MLR 方法.因此,SVR 是一种能够预测碱金属 化合物的摩尔磁化率 χ_m 的有效方法.

- [1] Gouy L G 1889 Comput. Rend. 109 935
- [2] Cusack N 1958 The Electrical and Magnetic Properties of Solids (London: Longmans)
- [3] Mulay L N ,Keys L K 1964 Anal. Chem. 36 2383
- [4] Quincke G 1885 Ann. D. Physik 260 347
- [5] Bockris J O'M ,Parsons D F 1953 J. Sci. Instrum. 30 362
- [6] Diaconu M, Puscasu R, Stancu A 2003 J. Optoelectron. Adv. Mater. 5 971
- [7] Purss M B J ,Cull J F 2005 Geophysics 70 L53
- [8] Mu L L ,Feng C J ,He H M 2008 Ind . Eng . Chem . Res . 47 2428
- [9] Kaya A ,Bain J A 2006 J. Appl. Phys. 99 08B708
- [10] Mu L L, Feng C J, He H M 2007 MATCH-Commun. Math. Comput. Chem. 58 591

S 276

- [11] Mu L L , Feng C J , He H M 2008 J. Mol. Model. 14 109
- [12] Bennet A J ,Xu J M 2003 Appl. Phys. Lett. 82 3304
- [13] Feng C J, Yang W H 2005 Chem. Res. 16 88 (in Chinese)[冯长 君、杨伟华 2005 化学研究 16 88]
- [14] Vapnik V 1995 The Nature of Statistical Learning Theory (New York : Springer)
- [15] Burges C J C 1998 Data Min. Knowl. Disc. 2 121
- [16] Cai J W ,Hu S S ,Tao H F 2007 Acta Phys. Sin. 56 6820 (in Chinese)[蔡俊伟、胡寿松、陶洪峰 2007 物理学报 56 6820]
- [17] Cai C Z ,Han L Y ,Ji Z L ,Chen Y Z 2004 Proteins 55 66
- [18] Cai C Z ,Han L Y ,Ji Z L ,Chen X ,Chen Y Z 2003 Nucl. Acids Res. 31 3692
- [19] Song M H ,Breneman C M ,Bi J B ,Sukumar N ,Bennett K P ,Cramer

S , Tugcu N 2002 J. Chem. Inform. Comput. Sci. 42 1347

- [20] Yuan Z 2005 BMC Bioinform. 6 248
- [21] Cai C Z , Wang W L , Chen Y Z 2003 Int. J. Mod. Phys. C 14 575
- [22] Zhang J S Hu S S 2008 Acta Phys. Sin. 57 2708 (in Chinese)[张 军峰、胡寿松 2008 物理学报 57 2708]
- [23] Nguyen M N ,Rajapakse J C 2006 Proteins 63 542
- $\left[\begin{array}{ccc} 24 \end{array}\right] \quad Cai \ C \ Z \ Wang \ W \ L \ Sun \ L \ Z \ Chen \ Y \ Z \ 2003 \ Math \ . \ Biosci \ . \ 185 \ 111$
- [25] Camps-Valls G ,Bruzzone L ,Rojo-Alvarez J L ,Melgani F 2006 IEEE Geosci. Remote. Sens. Lett. 3 339
- [26] Lee M Jeong C S Kim D 2007 BMC Bioinform. 8 471
- [27] Kennedy J, Eberhart R 1995 Proc. IEEE Int. Conf. Neural Networks 4 1942

Topological research on the molar magnetic susceptibility of alkali metal compounds with support vector regression *

Cai Cong-Zhong[†] Zhuang Wei-Ping Wen Yu-Feng Zhu Xing-Jian Pei Jun-Fang Xiao Ting-Ting

(Department of Applied Physics, Chongqing University, Chongqing 400044, China)
 (Received 15 January 2009; revised manuscript received 30 April 2009)

Abstract

According to the experimental dataset on the molar magnetic susceptibility χ_m of 45 alkali metal compounds and the topological descriptor—magnetic connectivity index "F, which is extracted by the magnetic valence g_i of simple ion deduced from classical electrodynamics, support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is proposed to establish a model for predicting the molar magnetic susceptibility of alkali metal compound via ${}^{0}F$ and ${}^{1}F$. The performance of SVR model is compared with that of multivariate linear regression (MLR) model. The results show that the mean absolute error, the mean absolute percentage error and the root mean square error for 9-fold cross validation test of SVR models are all smaller than those achieved by MLR models. It is revealed that the generalization ability of SVR model is superior to that of MLR model. This study suggests that magnetic connectivity index is an effective descriptor and the SVR is a powerful approach to the prediction of the molar magnetic susceptibility of alkali metal compounds.

Keywords : alkali metal compounds , molar magnetic susceptibility , support vector regression , prediction PACC : 7530C , 0270 , 0650

^{*} Project supported by the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-07-0903), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 2008101-1), the Natural Science Foundation of Chongqing, China (Grant No. CSTC2006BB5240) and the National Innovation Experimental Program for Undergraduate Students in China (Grant No. CQUCX-G-2007-016).

[†] E-mail: caiczh@gmail.com