厚闪烁体内次级中子对快中子图像质量的影响研究*

章法强[†] 杨建伦 李正宏 叶 凡 徐荣昆

(中国工程物理研究院核物理与化学研究所, 绵阳 621900) (2008年4月23日收到2008年7月31日收到修改稿)

利用编制的快中子照相数值模拟程序(FNRSC)模拟计算了入射中子能量为 14 MeV 时,厚度 5—300 mm 闪烁体 内次级中子对快中子图像质量的影响结果表明闪烁体厚度 *d* < 50 mm 时,次级中子对图像的影响强烈依赖于闪烁 体厚度,而当 *d* > 50 mm 时,次级中子对图像的影响趋于饱和.将文献中利用蒙特卡罗中子-光子输运程序(MCNP) 计算的次级中子对图像影响和文中计算结果进行了对比,给出了二者存在差异的主要原因:次级中子分布对入射 中子空间分布的强烈依赖性,能量沉积和荧光输出这两种计算方法对快中子图像的贡献形式差异.计算了入射中 子能量不同时,次级中子对图像对比度的影响变化,结果表明入射中子与碳核反应截面有较大值时,图像对比度降 低.

关键词:14 MeV 中子, 快中子照相, 次级中子, Monte Carlo 模拟 PACC:8170L, 2940M, 2540D

1.引 言

快中子照相(fast neutron radiography, FNR)是近 年来发展迅速的一项新兴无损检测(non-destructive evaluation NDE 波术 具有穿透力强、对低 Z 材料敏 感度高等优点.特别地,利用 14 MeV 氘氚中子照相 能够对面密度大于 100 g/cm² 的厚密样品成像,而且 14 MeV 中子还具有亮度高,单色性好等优点,在库 存核武器检查和反恐安检等方面的应用研究受到了 人们的广泛重视[1-4].但是,成像系统对快中子的低 效率探测极大地限制了快中子照相在实际问题中的 应用,一般而言,提高快中子成像系统探测量子效率 的最有效途径是增加转换屏的厚度,例如 基于闪烁 光纤阵列和高性能 CCD 组成的快中子照相系统不 仅具有探测量子效率高、灵敏度高的优点 而且在增 加闪烁光纤阵列厚度的同时还能够保持一定分辨 率^[5-7]随着对成像效率要求的提高基于闪烁光纤 阵列的快中子成像方法将成为高效率获取快中子图 像的一条重要途径.

作为快中子辐射转换体,闪烁光纤阵列的厚度 一般在几厘米甚至十厘米以上.而此时闪烁体中 np散射所产生的次级中子对图像的贡献将变得显著 起来.次级中子对图像的影响主要有两个方面:一方面,次级中子使图像本底增加,降低图像对比度;另 一方面,由于次级中子在闪烁体中的分布与入射中 子分布有关,图像的分辨率也会变差.次级中子对图 像对比度和分辨率的影响不仅降低了图像质量,而 且对图像的定量化处理极为不利.因此,掌握次级中 子对图像的影响是非常必要的,其研究成果有助于 图像的反演和重建,同时对其他相关领域的应用也 具有重要作用.

目前,鉴于在实验手段上将厚闪烁体中次级中 子与入射中子信号分离的困难性,次级中子对快中 子图像影响的相关研究还仅局限于数值模拟阶段. 而应用现有通用模拟程序的结果也仅局限于由间接 方法获得.Watterson等⁸¹用 MCNP-4A 程序间接模拟 了闪烁体中次级中子对图像对比度的影响.在文献 [8]的计算中,将闪烁光纤阵列分为两个区域,第一 个区域受平行中子束辐照,第二个区域不受中子直 接辐照.文献 8]将计算得到的第二个区域不受中子直 接辐照.文献 8]将计算得到的第二个区域的中子能 量沉积认为是散射中子的影响.事实上,这种方法计 算出的次级中子沉积能量只反映了散射中子为一定 方向(向不受中子直接辐照区域方向)和一定自由程 (自由程大于入射中子探测点到不受中子辐照区域 的距离)时的情况.计算获得的次级中子对图像对比

^{*}国家自然科学基金重点项目(批准号:10635050)和中国工程物理研究院双百人才基金(批准号:2004R0301)资助的课题.

[†] E-mail : zhangfaqiang@tsinghua.org.cn

度的影响偏低,并不能真实反映次级中子对图像的 贡献.

利用 MCNF^{(9]}和 COG^{10]}等数值模拟程序进行中 子照相的相关计算时有一定局限性.例如,MCNP 等 程序对于与中子碰撞产生的反冲核及其激发荧光等 过程无能为力.当闪烁光纤尺寸较小时,由通用程序 计算的结果将会由于反冲核的端壁效应而偏高.另 外,通用程序也不可能对中子进行标记,输出任意感 兴趣的中子对图像的影响.为了更好地理解快中子 照相中的物理现象,掌握快中子图像探测器的性能, 我们编制了快中子照相数值模拟程序(FNRSC,fast neutron radiography simulation code,FNRSC),并在本 文中利用该程序针对文献 6]中的高灵敏度快中子 照相系统,计算了次级中子对闪烁光纤阵列输出 14 MeV快中子图像质量的影响,为快中子图像的进 一步分析奠定基础.

2. 计算程序 FNRSC 简介

FNRSC 程序流程图如图 1 所示.计算中能量单 位为 MeV,长度单位为 cm.计算次级中子对图像对 比度影响时,将次级中子产生的荧光与入射中子产 生的荧光分别记录.

图 1 FNRSC 基本流程图

为简化计算,在计算程序 FNRSC 中有如下假设 条件: 1)快中子和闪烁光纤阵列的作用截面都为相应 的弹性散射截面.由图2中可以看出,快中子与原子 核(特别是氢核)的作用以弹性散射为主.非弹性散 射截面对计算结果的影响可以忽略.

图 2 快中子与氢核、碳核碰撞的截面图

2 准计算产生荧光时仅考虑反冲质子的贡献. 当快中子与闪烁体的碳核或氢核发生弹性碰撞后, 反冲核获得的能量与反冲核质量数有关.反冲碳核 获得的能量仅为反冲质子的 28%.此外,相同能量 的反冲碳核与反冲质子相比,前者在闪烁体中的荧 光产额远小于后者.

3)反冲质子在闪烁体中沿其径迹激发荧光,且 其径迹近似为直线.由 TRIM 程序的计算结果,能量 为7 MeV 的反冲质子在聚苯乙烯中的射程为 0.62 mm,径迹偏移为 10 μm 量级,这相比于闪烁光纤阵 列的尺寸完全可以忽略.

4) 在计算次级中子产生的荧光时,为提高计算 效率,强制入射中子与闪烁体发生作用,而对于次级 中子则不必强迫其与闪烁体作用.

3. 计算结果及分析

图像对比度是描述图像质量的基本概念之一, 其对于样品密度反演,定量分析样品内部结构具有 重要意义.本文中,图像对比度定义为

$$C = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}} , \qquad (1)$$

式中 I_{max} 和 I_{min} 分别是图像中信号最高值与最低值, 如图 3 所示.

在不考虑散射中子等影响因素的理想情况下, 图像对比度 C 与样品厚度 t 和中子与样品宏观截面 Σ 有关^[11,12],有

图 3 图像对比度的定义

C = 1 - exp(- t∑).
 (2)
 然而实际上由于来自样品的散射中子和闪烁体
 中次级中子的影响,图像的对比度要比按(2)式计算的值小.

3.1. 次级中子对图像影响随闪烁体厚度的变化

闪烁体较薄时,次级中子与闪烁体作用概率很小,可以忽略.但当闪烁体较厚时,次级中子对闪烁体输出荧光的贡献就会变大.快中子与氢核或碳核碰撞后产生的次级散射中子仍有较高能量,而且由于次级中子能量较入射中子低,所以闪烁体对次级中子的探测效率更高.

图 4 次级中子对图像对比影响随阵列厚度的变化

图 4 反映了入射中子能量为 14 MeV 闪烁光纤 阵列厚度在 5—300 mm 内变化时次级中子引起的图 像对比度下降.图 4 表明当闪烁光纤阵列厚度从 5 mm 变化至 50 mm 时,图像对比度从 81%迅速降至 62.3%;而当闪烁光纤阵列厚度大于 50 mm 时,图像 对比度下降将缓慢,趋于 60%.这表明当闪烁体厚 度大于 50 mm 时,次级中子对输出图像的贡献趋于 10 mm 时,次级中子对输出图像的贡献趋于

FNRSC 计算结果与文献 8]的结果对比如表 1 所示.文献 8]的计算结果与 FNRSC 计算结果存在 较大差别 ,这主要有以下两方面的原因:

1)文献 8 的结果只反映了具有一定方向和一 定自由程的部分散射中子对图像的贡献,而本文计 算结果反映了全部散射中子对图像的贡献,这造成 文献 8 的结果中次级中子的影响偏小,即闪烁体不 同厚度时图像对比度偏高.

2)文献 8 的结果中次级中子对图像的贡献形 式为能量沉积,而本文结果中次级中子的贡献形式 为荧光光子.在应用 FNRSC 计算时由于只计算反冲 质子对荧光的贡献,而利用 MCNP 计算能量沉积时 不可能去除反冲碳核的能量沉积.虽然反冲碳核的 能量沉积为反冲质子的 28%,但是其单位能量产生 的荧光却远不及反冲质子,相比之下完全可以忽略. 所以按能量沉积输出的图像对比度将比按荧光光子 数输出的结果高.

表1 散射中子对图像对比度影响随闪烁光纤阵列厚度的变化

闪烁光纤阵 列厚度/mm	文献 8 计算 的对比度/%	本文计算的 对比度/%	偏差/%
5	99.8	81.0	18.8
10	98.9	74.0	24.9
50	88.2	62.3	25.9
100	76.7	60.2	16.5

3.2. 次级中子分布的非均匀性

如前小节所述,导致表1中两种计算方式结果 差异的主要原因之一在于次级中子分布的非均匀 性.由于入射中子与闪烁体中氢核或碳核发生弹性 散射后次级中子的角度分布具有明显的前冲性,特 别是中子与碳核散射后角度分布前冲性更明显(如 图5所示,其散射角最大概率分布约为20°).所以次 级中子辐射在闪烁体中的分布特性与入射中子分布 有关.

设在 x > 0 区域 ,14 MeV 中子束平行入射 100 mm 厚闪烁光纤阵列 ,计算获得次级散射中子图像 如图 6 所示 .图中 ,在 x < 0 区域 随着 x 的减小闪烁 光纤阵列输出的荧光强度迅速减小 .在 x = -0.5cm 处散射中子的荧光强度仅为入射中子分布区的 10% 这表明次级中子分布强烈依赖于入射中子分

图 5 14 MeV 中子与碳核和氢核弹性散射后散射角的实验室系 分布

图 6 次级中子分布的非均匀性 (a)扣除源入射中子贡献后 闪烁光纤阵列的输出图像(b)对(a)图灰度纵向积分后的荧光 强度分布

3.3. 中子能量的影响

次级中子的能量沉积及荧光分布都决定于入射 中子,因此入射中子的能量不同时,次级中子对图像 质量的影响亦将发生变化.

图 7 是针对 100 mm 厚度闪烁光纤阵列利用 FNRSC 计算的不同入射中子能量时次级中子对图 像对比度的影响变化.计算结果表明,当具有一定能 量的入射中子正好与碳核有较大弹性散射截面时, 图像对比度明显降低.例如,入射中子能量为6.295 MeV 时,图像对比度为49.6%,明显低于入射中子 能量为5 MeV 和 7 MeV 时的图像对比度66.2%和 68.0%.造成这一现象的原因在于入射中子与碳核 作用截面增大使得入射中子与碳核的反应几率增加, 产生了更多的次级中子与氢核作用,从而产生较多反 冲质子.由3.1节的分析可知快中子辐射在闪烁体中 转换为荧光的过程主要依赖于反冲质子的贡献.

4. 结 论

利用 FNRSC 计算了厚闪烁体中次级中子对快 中子图像质量的影响.计算结果表明:对于能量为 14 MeV 源中子入射闪烁体,当闪烁体厚度小于 50 mm 时,次级中子对图像对比度的影响强烈依赖于 闪烁体厚度,而当厚度大于 50 mm 时,次级中子对 图像对比度的影响趋于饱和,在 100 mm 厚闪烁光纤 阵列中,入射中子辐照区域和非辐照区域的次级中 子强度之比高于一个数量级,即厚闪烁体内次级中 子强度之比高于一个数量级,即厚闪烁体内次级中 子的分布强烈依赖于源中子的分布;随入射中子能 量变化,次级中子对图像对比度的影响也发生变化, 主要表现为当入射中子与碳核反应截面有较大值 时,图像对比度降低.这些计算结果及分析有助于对 快中子图像的正确理解,对于快中子图像的反演及 重建有重要意义,同时对其他领域如氘氚靶丸惯性 约束聚变中 14 MeV 中子位形图像^[13,14]的分析与重 建亦有一定的积极作用。

- [1] Hall J, Dietrich F, Logan C, Rusnak B 2001 AIP Conf. Proc. 576 1113
- [2] Hall J , Dietrich F , Logan C , Schmid G 1999 proc. SPIE 3769 31
- [3] Dietrich F , Hall J , Logan C 1997 AIP Conf. Proc. 392 837
- [4] Zhang F Q 2007 (Ph. D. Dissertation) (Beijing: Tsinghua University) (in Chinese) 章法强 2007 (博士学位论文)(北京: 清华大学)]
- [5] Zhang F Q , Li Z H , Yang J L , Ye F , Wang Z , Xia G X , Ying C T , Liu G J 2007 Sci. China (Series G) 50 698
- [6] Zhang F Q, Yang J L, Li Z H, Zhong Y H, Ye F, Qin Y, Chen F X, Ying C T, Liu G J 2007 Acta Phys. Sin. 56 583 (in Chinese)
 [章法强、杨建伦、李正宏、钟耀华、叶 凡、秦 义、陈法新、 应纯同、刘广均 2007 物理学报 56 583]
- [7] Zhang F Q, Yang J L, Li Z H, Ying C T, Liu G J 2007 Acta Phys. Sin. 56 3577 (in Chinese)[章法强、杨建伦、李正宏、应纯 同、刘广均 2007 物理学报 56 3577]

- [8] Watterson J I W, Ambrosi R M, Rahmanian H 2001 AIP Conf. Proc. 576 1087
- [9] Briesmeister J F 1997 Los Alamos National Laboratory Report, LA-12625-M
- [10] Buck R, Lent E 1993 LLNL Energy and Technology Review (CA: Lawrence Livermore)
- [11] Hassanein R, Lehmann E, Vontobel P 2005 Nucl. Instrum. Meth. A 542 353
- [12] Ambrosi R M, Watterson J I W 1998 Nucl. Instrum. Meth. B 139 279
- [13] Disdier L , Rouyer A , Lantuejoul I , Landoas O , Bourgade J L , Sangster T C , Glebov V Y , Lerche R A 2006 Phys. Plasmas 13 056317
- [14] Disdier L , Lerche R A , Bourgade J L , Glebov V Y 2004 Rev. Sci. Instrum. 75 2134

Effects of secondary neutrons on fast-neutron image quality in thick scintillator *

Zhang Fa-Qiang[†] Yang Jian-Lun Li Zheng-Hong Ye Fan Xu Rong-Kun

(Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China) (Received 23 April 2008; revised manuscript received 31 July 2008)

Abstract

The effects of secondary neutrons on the image quality is simulated using FNRSC(fast neutron radiography simulation code) for a series of scintillator thickness values ranging from 5 mm to 300 mm. The calculated results show that with an incident neutron energy of 14 MeV, the effects of secondary neutrons on the image quality strongly depends on the thickness d of the scintillator for d smaller than 50 mm. When d is higher than 50 mm, this effect is almost saturated. By comparing the image contrast calculated by MCNP(Monte Carlo neutron and photo transport code) with that by FNRSC, we find that the main reasons for the discrepancy is that , the distribution of secondary neutrons strongly depends on that of incident neutrons in the scintillator; contributions of secondary neutrons resulting from energy deposit and fluorescence photons to fast neutron images are different. The results also indicate that a drop occurs in the contrast of neutron images when the elastic scattering cross section between incident neutrons and carbon nucleus is larger.

Keywords: 14 MeV neutron , fast neutron radiography , secondary neutron , Monte Carlo simulation **PACC**: 8170L , 2940M , 2540D

^{*} Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 10635050) and the Foundation of Double-Hundred Talents of China Academy of Engineering Physics (Grant No. 2004R0301).

[†] E-mail : zhangfaqiang@tsinghua.org.cn