电感分布对双层丝阵 Z 箍缩内爆动力学 模式的影响*

丁 宁[†] 张 扬 刘 全 肖德龙 束小建 宁 成

(北京应用物理与计算数学研究所,北京 100088) (2008年4月3日收到,2008年6月23日收到修改稿)

采用等效电路和零维分析方法,建立了双层丝阵Z箍缩内爆动力学的物理模型.研究了内、外层丝阵电感分布 及其变化对双层丝阵内爆动力学模式的决定性影响,结果表明丝阵的初始电感决定了初始电流分配,动态电感变 化影响丝阵内爆的动力学过程.提出由于电感的变化可能存在四种不同的双层丝阵内爆动力学模式.针对"强光 一号"装置Z箍缩双层丝阵负载参数进行计算分析,可以得到外层等离子体穿透内层先运动到芯的动力学模式,与 其他低电流装置在实验上观察到的物理图像一致.

关键词:Z箍缩内爆等离子体,双层丝阵负载,电感,动力学模式 PACC:5230,5225P,5255E

1.引 言

驱动核聚变点火是 Z 箍缩技术的重要应用之 一.目前由双层丝阵和泡沫柱内镶嵌氘氚靶构成的 动力学黑腔是 Z 箍缩研究的主要方向.Z 装置实验 已经证明 动力学黑腔所采用的双层丝阵构形明显 抑制了磁瑞利-泰勒(MRT)不稳定性,大大提高了 X 光产额,双层钨丝阵内爆的 X 射线功率达到(280 ± 40)TW,比单层丝阵增加了 40%^[1].虽然在 Z 装置 上双层丝阵实验取得了巨大成功,但对双层丝阵负 载的优化仍然是经验性的,物理机制的解释和理论 上的分析仍然不够.所以,确定双层丝阵的动力学 模式,解释双层丝阵内爆为什么能获得比单层丝阵 更高的 X 光产额等问题,对优化双层丝阵负载是非 常有意义的.

自 1997 年 Davis 等²¹最早提出双层丝阵(double wire array/nested concentric wire arrays)的概念,同年 Douglas 等¹³¹采用二维磁流体力学(MHD)数值模拟 证明优化的双层丝阵 Z 箍缩可以获得比单层更高的 X 光产额,第二年 Z 装置双层钨丝阵实验^[1]获得巨 大成功以来,不仅 Z 装置上开展了大量的双层丝阵

内爆实验研究^[4-6],而且在中小型(1-7 MA)装置 上,如 Saturn, MAGPIE, Angara-5-1和 Zebra 等,也都相 继开展了双层丝阵内爆实验^[7-10]. 2000 年 MAGPIE (1 MA 240 ns)装置首次在实验上观察到两种双层 丝阵内爆动力学模式^[8],实验巧妙地通过改变内层 丝阵的高度 观察到了双层丝阵内爆动力学模式变 化. Chittenden 等^[11]根据当时的 Z 装置和 MAGPIE 装置的双层丝阵 Z 箍缩实验结果 基于 MRT 不稳定 性分析 在理论上提出了三种可能的双层丝阵内爆 动力学模式:流体力学(壳-壳)碰撞模式、内层可穿 透 电流转移)模式和通量压缩(磁缓冲)模式,三种 不同模式的内爆轨迹有明显差异,如图1所示,然 而 他们对双层丝阵内爆物理过程的描述和物理机 制的理论分析带有一定的猜测和推断,他们的 2D $(r-\theta)$ MHD 数值模拟也仅能给出其中第二种动力学 模式的计算结果. 而 Douglas 等^[3]的 2D(r-z)MHD 模 拟 采用的是壳-壳碰撞假设,解释了第一种双层丝 阵内爆动力学模式. 后来 Velikovich 等¹² 和 Esaulov 等^{10]}用丝动力学理论模型(WDM)也分析了双层丝 阵内爆流体碰撞模式和电流转移模式动力学过程存 在的可能性 但他们没有考虑双层丝阵负载与脉冲 功率驱动器的耦合. 另外,上述这些理论和数值模

^{*} 国家自然科学基金(批准号:10575014,10635050,10775021)和国防基础科研项目(批准号:A1520070074)资助的课题.

[†] E-mail: ding_ ning@iapcm.ac.cn

图 1 双层丝阵内爆三种动力学模式内爆轨迹示意图 (a)流体力学碰撞模式(b)内层可穿透模式(c)通量压缩模式

拟工作都没有研究内外层丝阵高度不同的情况.

国内 Z 箍缩技术研究在上世纪末才起步,但是, Z 箍缩实验和理论研究均已取得明显进展.2007 年 我们在'强光一号'装置进行了双层丝阵实验初步研 究.近年来国内关于双层丝阵内爆的理论和数值模 拟研究^[13—15]还都局限于壳-壳碰撞模式的 0D 和 1D MHD 模拟,所掌握的物理模型和理论分析工具远远 不能满足双层丝阵实验结果分析和负载设计优化的 需要,尤其我们从"强光一号"和 Angara-5-1 的双层 丝阵实验结果^[9]得知,壳-壳碰撞假设不适合低电流 装置双层丝阵实验的物理分析.所以,更进一步理解 双层丝阵内爆过程的物理机制,了解不同条件下的 不同动力学模式,研制有效的分析模拟工具都十分 有必要.

Z 箍缩的物理机制核心是丝阵等离子体动能转 换为内能和 X 射线辐射,而脉冲功率驱动器提供的 电磁能量转换为丝阵等离子体的动能时,负载电感 变化直接影响内爆等离子体的动力学状态,由于双 层丝阵的几何结构与单层明显不同,内外层丝阵上 丝的熔解、汽化、形成等离子体过程也与单层不同, 更重要的是内外层之间存在相互作用 所以 它的动 力学过程比单层更为复杂,在我们不清楚双层丝阵 内爆动力学模式的情况下 直接采用辐射磁流体力 学数值模拟困难非常大,甚至不可能,为了获得对 双层丝阵内爆过程物理图像的理解和认识,我们采 用一种简化的零维分析方法,研究丝阵电感变化对 双层丝阵内爆动力学模式的影响,通过改变内外层 丝阵的电感,可以得到不同模式的双层丝阵内爆动 力学过程.我们利用低电流装置(如"强光一号"装 置和 Angara-5-1 装置 Z 箍缩实验双层丝阵负载参数 进行了计算分析,得到了外层穿透内层先运动到芯 动力学模式,MAGPIE,Angara-5-1和 Zebra 装置上的

双层丝阵内爆实验都观察到了这种模式[8-10].

2. 双层丝阵" 电感型 "物理模型

在脉冲功率驱动技术中,Z箍缩内爆丝阵是一 个电感性负载,尤其是在脉冲功率加载初期,丝阵负 载的电阻可以忽略不计.另外,这里我们仅考虑丝 阵内爆的动力学过程,即,磁压力驱动的丝阵等离子 体的动量、动能变化,而且,为了方便,不考虑丝阵质 量分布,故称之为"零维(0D)".对Z箍缩双层丝阵 内爆我们建立了一个零维"电感型"理论模型,即将 脉冲功率发生器描述为一个与时间有关的电压源 (*t*),它驱动一个具有等效电阻*Z*。与等效电感*L*。 的传输线和一个电感为*L*(*t*)的与时间有关的动力 学内爆Z箍缩负载——双层丝阵,其等效电路如图 2 所示,等效电路方程为

 $(L_0 + I(t))\frac{dI}{dt} + Z_0I + I\frac{dI(t)}{dt} = V(t),(1)$ 式中, I(t)是双层丝阵负载的总电感,

$$L(t) = L_1(t) + L_2(t) + M$$
, (2)

其中 $L_1(t)$ 和 $L_2(t)$ 分别为内外层丝阵的自感^[9],有

$$L_{1}(t) = \frac{\mu_{0}}{2\pi} h_{1} \ln\left(\frac{R_{r}}{r_{1}(t)}\right) + \frac{\mu_{0}}{2\pi} \frac{1}{N_{1}} h_{1} \ln\left(\frac{r_{1}(t)}{N_{1}r_{1c}}\right) ,$$
(3)

 $L_{2}(t) = \frac{\mu_{0}}{2\pi}h_{2}\ln\left(\frac{R_{r}}{r_{2}(t)}\right) + \frac{\mu_{0}}{2\pi}\frac{1}{N_{2}}h_{2}\ln\left(\frac{r_{2}(t)}{N_{2}r_{2e}}\right).(4)$ 显然,丝阵的自感 $L_{1,2}($ 下标 1 和 2 分别表示内层和 外层)变化依赖丝阵等离子体内爆轨迹 $r_{1,2}(t)$ 的变 化,并与回流柱/罩半径 R_{r} ,丝阵的高度 $h_{1,2}$,丝根数 $N_{1,2}$ 以及初始等离子体晕的厚度 $r_{1e,2e}$ 有关.丝材料 不同,由丝的膨胀率和丝阵的丝根数以及驱动电流 的大小所决定的等离子体晕厚度就不同.该双层丝

图 2 双层丝阵 Z 箍缩等效电路示意图

阵和丝表面的电晕层所构成的物理图像是这样的: 两个同轴的丝阵,内层丝阵由 N₁ 根丝组成,每根丝 距中心轴的距离为 r₁;外层丝阵有 N₂ 根丝组成,每 根丝距中心轴的距离为 r₂;每根丝的表面都有一定 厚度的电晕层,该电晕层厚度 r₁(r₂)与丝的材料性 质和通过丝的电流大小有关,它可以通过实验参数 简单计算得到;流过内、外丝阵的所有电子流,经阳 极板和距中心轴距离为 R_r的若干根回流柱(或回 流罩)形成回路. M 是两层丝阵之间的互感,反映内 层(或外层)丝阵回路中电流随时间变化,在外层(或 内层)回路中产生的感应电动势,它依赖两层丝阵的 几何尺寸和相对内爆轨迹的位置,即

$$M(t) = \frac{\mu_0}{2\pi} \min(h_1, h_2) \ln\left(\frac{R_r}{\max(r_1(t), r_2(t))}\right).$$
(5)

双层丝阵的总电流 $I = I_1 + I_2$ 根据两层丝阵上端电 压相等 得到内外层丝阵电流分流关系式

$$\frac{I_1}{I} = \frac{L_2 - M}{L_1 + L_2 - 2M}.$$
 (6)

(3)--(5)式中磁压驱动内外层丝阵的内爆轨迹 r₁(t)和 r₂(t)分别由如下动力学模型描述:

$$m_1 \frac{\mathrm{d}v_1}{\mathrm{d}t} = -\frac{N_1 - 1}{N_1} \frac{\mu_0}{4\pi} \frac{I_1^2(t)}{r_1(t)}, \qquad (7a)$$

$$\frac{\mathrm{d}r_1}{\mathrm{d}t} = v_1 , \qquad (7b)$$

$$m_2 \frac{\mathrm{d}v_2}{\mathrm{d}t} = -\frac{N_2 - 1}{N_2} \frac{\mu_0}{4\pi} \frac{I_2^2(t)}{r_2(t)}, \qquad (8a)$$

$$\frac{\mathrm{d}r_2}{\mathrm{d}t} = v_2 , \qquad (8b)$$

其中 m_1 和 m_2 分别是内外层丝阵的线质量. 联立 方程(1)(7)和(8)式,给定初始条件: $r_1(0) = r_{10}$, $r_2(0) = r_{20}$, $v_1(0) = v_2(0) = 0$, $I_1(0) = I_2(0) = 0$, 在已知驱动器输出端电压波形 V(t),等效电阻 Z_0 和等效电感 L_0 以及双层丝阵负载参数条件下,可以 得到内外层丝阵的内爆轨迹、速度、动能和内爆时间 (这里定义为收缩比 $r_{1020}/r_{12}(t)$ 达到一定值的时 刻),同时可以得到负载的总电流以及分别通过内外 层的电流.

3. 双层丝阵内爆动力学模式分析

我们利用上述" 电感型 "理论模型 ,编制了 ZPI-OD 程序,对双层丝阵内爆进行了动力学模拟,通过 改变双层丝阵的高度、初始半径、丝阵的丝根数、丝 直径、丝阵线质量以及回流柱/罩半径等可以得到四 种动力学模式.图3是改变其中一个参数模拟一组 双层丝阵内爆动力学过程的结果, 取内层质量和半 径均为外层的 1/2,外层丝阵高度固定为 15 mm,仅 仅改变了内层丝阵的高度,我们发现随着内层丝阵 高度从 10 mm 变化到 20 mm,由于初始电感不同,初 始的电流分配也不同,所以导致内外层内爆轨迹差 异较大 出现不同的动力学模式, 在图 3 中的模式 1 是内外层各自运动同时到芯;模式2是外层碰到内 层后一起运动到芯 模式 3 是低电感模式 初始内层 电流分流比较大,导致内层运动较快先到芯;模式4 是高电感模式 与模式 3 的情况相反 由于内层电感 大电流小,外层电流大,当其运动到内层时,内层几 乎还没有开始运动 ,于是外层可以穿透内层先运动 到芯.图 3 仅仅是一个内层丝阵电感变化导致双层 丝阵内爆动力学模式变化的例子,通过上一节的讨 论,可以清楚看到,内外层电感的变化不仅依赖丝阵 的高度,还与丝阵的半径、丝根数,以及丝阵等离子 体的运动轨迹有关,因此,调整这些参数,也可以得 到上述四种内爆动力学模式.

分析(6)式,我们看到当 $L_1 \gg L_2$ 时, $I_1 \approx 0$,即 如果内层电感远远大于外层电感,内层上的电流分 流几乎为零,由运动方程可知,此时内层丝阵等离子 体几乎不运动. MAGPIE 双层丝阵实验^[8]的高电感 模式正是在内外层丝阵质量相同条件下,通过增加 内层丝阵的高度,使得内层丝阵的电感明显大于外 层,于是从实验上观察到在外层丝阵等离子体没有 到达内层之前,内层几乎没有运动,这完全是由于内 层电流份额太小,根本无法驱动与外层质量相同的 等离子体. 如果 $M \approx 0$, $L_1 = L_2$,则 $I_1 = I/2$,此时 内层与外层丝阵一样会较早开始运动. 另外,如果

图 3 采用"电感型 '模型计算得到的四种双层丝阵内爆动力学模式内爆轨迹 (a)模式 1,内外层同时到芯 (b)模式 2,外 层碰到内层后一起运动到芯 (c)模式 3,内层先到芯 (d)模式 4,外层穿过内层先到芯

内层丝阵电感非常小, $L_1 \approx 0$ 时, $I_1 \approx I$,内层先于 外层运动,甚至可能早于外层丝阵内爆,这正是 Chittmden等没有考虑到的一种情况.

由"电感型"模型双层丝阵的自感和互感表达式 清楚表明,两层丝阵的几何尺寸(高度 h₁₂和初始半 径 r_{10 20}) 丝材料(与等离子体晕厚度 r_{16 26}有关)以 及内爆动力学状态 r₁₂(t)等决定了电感 L₁₂和 M 的大小,电感的变化影响了通过内外层丝阵的电流 大小,反过来电流的大小和随时间的变化又决定了 丝阵等离子体的运动状态,这种耦合关系使我们了 解到哪些因素决定了丝阵上的电流分配,而不同的 电流分配将导致不同的双层丝阵内爆动力学模式.

我们模拟了 2007 年"强光一号"装置双层丝阵 负载 Z 箍缩实验,实验中内外层丝阵的丝根数均为 12 07014 炮的外层采用 3 µm 钨丝、内层 20 µm 铝 丝 07009 炮的内外层都用 20 µm 的铝丝,负载其他 参数参见表 1 输入 07014 和 07009 炮实验测量得到 的负载区电压波形如图 4 所示,ZPI-0D 程序得到的 负载总电流与实验测量的负载电流也在图 4 中给 出,主要计算结果列入表 1 ,图 5 和图 6 分别给出了 07014 炮和 07009 炮的内爆轨迹、内外层电流以及负载总电流模拟结果.

炮号	07014 炮	07009 炮
外层丝阵质量/μg⋅cm ⁻¹	16.34	103.00
内层丝阵质量/ $\mu g \cdot cm^{-1}$	103.00	103.00
内、外层丝阵高度/mm	20.0	20.0
回流套筒半径/mm	23.5	23.5
外层丝阵半径/mm	9.0	9.0
内层丝阵半径/mm	6.0	6.0
外层丝阵最大电流/MA	0.75	1.05
内层丝阵最大电流/MA	1.27	1.12
最大总电流/MA(实验值)	1.37(1.35)	1.55(1.53)
固有电感/nH	32	25
固有电阻/Ω	0.0	0.0
电压幅值/MV	1.27	1.10
电压脉冲/ns	32	34
外层电流上升时间/ns	45.90	38.90
内层电流上升时间/ns	48.60	79.80
内爆时间/ns	149.07	173.40
内外层到芯时间差/ns	34.615	11.930
外层丝阵内爆速度/10 ⁷ cm · s ⁻¹	- 2.4502	- 1.4114
内层丝阵内爆速度/10 ⁷ cm · s ⁻¹	- 2.3496	-2.2360

图 4 "强光一号 '双层丝阵 Z 箍缩实验 07014 炮(a)和 07009 炮(b)测量的电压波形和负载电流 以及 0D 模拟的电流波形

图 5 模拟"强光一号"实验 07014 炮的内外层丝阵的内爆轨迹 (a)和内外层丝阵上的电流以及负载总电流 b)

利用本文的理论模型和我们研制的零维程序计 算表明,在已知并输入负载区电压波形条件下,选取 适当的等效电感和等效电阻,计算得到的负载电流 与实验结果基本相符(见图4).然而,计算的电流波 形和实验测到的在电流达到峰值以后存在差异,这 是由于本文进行了冷等离子体假设,采用零维近似, 在Z箍缩的压缩阶段,能大致描述等离子体的运动, 但在内爆到芯(出现在电流峰值以后)及随后的膨胀 飞散阶段,这种壳层模型已不太适合描述等离子体 的运动.另外,在Z箍缩膨胀飞散阶段(见图4中约 130 ns后),实际电流通道变得非常复杂,于是负载 电流测量的准确性和可靠性变差(而恰恰膨胀飞散 阶段的物理过程对人们关心的Z箍缩X光辐射脉

冲已不重要) 尽管如此 在我们关心的双层丝阵内 爆主要动力学过程,计算模拟的负载电流和实验电 流波形基本一致.此外,我们的模拟计算还同时给 出了内外层等离子体内爆轨迹(如图 5(a)和图 6 (a))和内外层上的电流分配情况(如图 5(b)和图 6 (b)). 07014 炮外层丝阵用 12 根 3 µm 钨丝,而 07009 炮用 12 根 20 µm 铝丝,实验证明铝丝的膨胀 速度比钨丝大约快3倍,铝等离子体晕的厚度比钨 大,在相同条件下铝丝阵的自感比钨丝阵小.然而, 等离子体晕在初始自感中的贡献相对于(3)和(4)式 右端第一项小,又由于 07014 炮和 07009 炮的丝阵 几何尺寸相同,所以07014和07009炮外层丝阵材 料不同仅引起初始电感比较小的差异.于是,在45 ns 以前 07014 炮和 07009 炮的内外层电流比值基本 一样. 但在 50 ns 以后由于外层丝阵质量的不同, 计 算 07014 和 07009 得到的内爆轨迹和电流分配的 差异非常大.07014 炮外层丝阵质量轻(16 µg/cm), 55.2 ns 时开始运动(定义收缩比为 1.01 时为"开始 运动") 随后 92.1 ns 时 5.94 mm 处穿过内层,内层 是在 93.1 ns 时开始运动的 ;而 07009 炮外层丝阵质 量重(103 µg/cm)到 73.1 ns 才开始运动,直到 125.5 ns时,5.63 mm处与内层相遇,内层早在94.9 ns时 就开始运动.显然 07014 炮相对 07009 炮由于外层 丝阵质量小,内爆速度大,电感快速增加,所以到后 期内层丝阵分流较大, 另外,我们发现这两发实验 的丝阵内层参数完全一样,仅由于外层丝阵质量不 同,内爆轨迹和电感变化不同,导致它们开始运动的 时刻相差约2 ns. 总之,双层丝阵Z箍缩过程中内外 层丝阵的初始电感大小直接决定了初始电流分配, 而随着丝阵等离子体的运动,内外层丝阵的电感以 及它们之间的互感变化 ,进一步影响电流的大小和

在两层之间的分配,电流的变化使得所感应的磁场 随之变化,所以磁压驱动的丝阵等离子体运动轨迹 就会有所不同.由此分析,我们如果能够调整丝阵 参数,并控制两层丝阵之间的相互作用,使得内外层 丝阵等离子体同时内爆到芯,有可能获得比较好的 箍缩状态.

图 6 模拟"强光一号"实验 07009 炮的内外层丝阵的内爆轨迹 (a)和内外层丝阵上的电流以及负载总电流(b)

图 7 Esaulov 等^[10]用 WDM 模型计算得到的双层丝阵内爆轨迹 (a)和负载电流(b)

Esaulov 等^{10]}曾用 WDM 模拟了 Zebra 装置 (1 MA)的双层丝阵实验,图7是他们的模拟结果 (文献 10 的图 2),显然我们的结果与之基本一致. 我们的分析再次证明低电流装置、内层丝阵低丝数 的双层丝阵内爆动力学模式一般呈现"穿透内层"模 式的动力学过程.

4.结 论

采用等效电路和零维分析方法 建立了模拟双 层丝阵 2 箍缩内爆动力学过程的物理模型。研究了 内、外层丝阵电感分布及其变化对双层丝阵内爆动 力学模式的决定性影响 结果表明丝阵的初始电感 决定了初始电流分配,直接影响丝阵内爆的动力学 模式,由于电感的变化可能存在四种不同的动力学 模式:①内层、外层各自运动但同时到芯,②外层 碰到内层后一起运动到芯,③内层丝阵与外层各自 运动 内层先到芯 ④外层快速运动穿过内层先到 芯,在这四种动力学模式中第一种是我们所希望的 优化模式 零维分析表明通过调整双层丝阵的参数 改变其电感有可能达到优化负载的目的. Z 箍缩的 物理机制核心是丝阵等离子体动能转换为内能和 X 射线辐射 而脉冲功率驱动器提供的电磁能量转换 为丝阵等离子体的动能时,负载电感变化直接决定 了内爆等离子体的力学状态,所以,内外层丝阵上 的电感大小以及变化对双层丝阵内爆停滞产生 X 光辐射产额是至关重要的,初始电感和电流分配依 赖于丝阵的高度、半径,以及丝的根数和丝阵线质量 等,我们根据'强光一号'装置 Z 箍缩实验双层丝阵 负载参数计算 得到了外层穿透内层先运动到芯的 第四种动力学模式,由于低电流装置驱动能力有 限,内外层丝阵的丝根数增加非常有限,所以与大电 流装置不同,在低电流装置上,如果没有特殊处理, 双层丝阵内爆一般呈现"穿透内层"的动力学模式。 MAGPIE Zebra 和 Angara-5-1 装置上的双层丝阵内爆 实验都已观察到了这种模式,本文采用的物理分析 方法有助于理解和认识双层丝阵内爆动力学过程, 零维模型可以作为优化双层丝阵负载参数的有用工 具,分析结果能为实验诊断提供参考.

感谢西北核技术研究所提供的"强光一号"装置 Z 箍缩 实验的电参数.感谢中国工程物理研究院核物理与化学研 究所、激光聚变中心实验人员的合作.

- [1] Deeney C , Douglas M R , Speilman R B , Nash T J , Peterson D L , L 'Eplattenier P , Chandler G A , Seaman J F , Struve K W 1998 Phys. Rev. Lett. 8 4883
- [2] Davis J , Gondarenko N A , Velikovich A L 1997 Appl. Phys. Lett.
 70 170
- [3] Douglas M , Deeney C 1997 Bull . Am . Phy . Soc . 42 1878
- [4] Terry R E, Davis J, Deeney C, Velikovich A L 1999 Phys. Rev. Lett. 83 4305
- [5] Cuneo M E , Sinars D B , Bliss D E , Waisman E M , Porter J L , Stygar W A , Levedev S V , Chittenden J P , Sarkisov G S , Afeyan B B 2005 Phys. Rev. Lett. 94 225003
- [6] Cuneo M E, Vesey R A, Sinars D B, Chittenden J P, Waisman E M, Lemke R W, Lebedev S V, Bliss D E, Stygar W A, Porter J L, Schroen D G, Mazarakis M G, Chandler G A, Mehlhorn T A 2005 *Phys. Rev. Lett.* **95** 185001
- [7] Deeney C, Apruzese J P, Coverdale C A, Whitney K G, Thornhill J
 W, Davis J 2004 Phys. Rev. Lett. 93 155001
- [8] Lebedev S V , Aliaga-Rossel R , Bland S N , Chittenden J P , Dangor

A E , Haines M G , Zakaullah M 2000 Phys. Rev. Lett. 84 1708

- [9] Grabovskii E V, Zukakishvili G G, Mitrofanov K N, Oleinik G M, Frolov I N, Sasorov P V 2006 Plasma Phys. Rep. 32 32
- [10] Esaulov A A, Velikovich A L, Kantsyrev V L, Mehlhorn T A, Cuneo M E 2006 Phys. Plasmas 13 120701
- [11] Chittenden J P , Lebedev S V , Bland S N 2001 Phys. Plasmas 8 675
- [12] Velikovich A L , Sokolov I V , Esaulov A A 2002 Phys . Plasmas 9 1366
- [13] Yang Z H, Liu Q, Ding N, Ning C 2005 High Power Laser and Particle Beams 17 1533 (in Chinese) [杨震华、刘 全、丁 宁、 宁 成 2005 强激光与粒子束 17 1533]
- [14] Wang G H, Hu X J, Sun C W 2004 Chin. J. High Press Phys. 18 364(in Chinese)[王刚华、胡熙静、孙承纬 2004 高压物理学报 18 364]
- [15] Ning C, Ding N, Liu Q, Yang Z H 2006 Acta Phys. Sci. 55 3488 (in Chinese)[宁 成、丁 宁、刘 全、杨震华 2006 物理学报 55 3488]

Effects of various inductances on the dynamic models of the Z-pinch implosion of nested wire arrays *

Ding Ning[†] Zhang Yang Liu Quan Xiao De-Long Shu Xiao-Jian Ning Cheng

(Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)

(Received 3 April 2008; revised manuscript received 23 June 2008)

Abstract

Z-pinch experiments have demonstrated that the soft X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. However, the development of the technique of obtaining higher X-ray power using nested wire array configurations has been largely empirical. This has, in part, been due to the absence of adequate theoretical models to describe the mechanism of interaction of the two arrays. As is well known, 2D MHD modeling of nested wire array implosions is difficult, and is very inconvenient to optimize the design of nested-wire arrays. In this paper, the Z-pinch implosion dynamics of nested wire array has been described by its equivalent electric circuit and by solving the corresponding circuit equation. The currents flowing through the outer and inner arrays in the initial stage of implosion depend on the array dimensions, especially on the array inductances. The analysis indicates that the arrays inductance variation can result in four dynamic models of the Z-pinch implosion of nested wire array s, which is the same as that predicted by previous works. Fast and inexpensive 0D modeling can predict the implosion model that the inner array wires remain discrete until the outer array at Qingguang-1 facility, and estimate the implosion model that the inner array wires remain discrete until the outer array material has passed through their gaps. The full current is then transferred rapidly to what was initially the inner , imploding it rapidly onto the outer array material on the axis. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments.

Keywords: Z-pinch implosion plasma, nested-wire-array load, inductance, dynamic model **PACC**: 5230, 5225P, 5255E

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10575014, 10635050, 10775021) and the National Defense Basic Scientific Research Project, China (Grant No. A1520070074).

[†] E-mail:ding_ning@iapcm.ac.cn