粗糙界面对 Bi₂Te₃/PbTe 超晶格热电优值 影响的理论分析

穆武第十程海峰陈朝辉唐耿平吴志桥

(国防科技大学航天与材料工程学院,长沙 410073) (2008年1月22日收到 2008年8月17日收到修改稿)

以 Bi₂Te₃/PbTe 超晶格薄膜为例,分析电子在 Bi₂Te₃ 量子阱中的输运过程,综合了薄膜的经典散射效应和理想 量子效应,并以此混合效应为基础,在 PbTe 障碍层厚度一定时,模拟计算了两种混合效应中量子效应占不同比例 时,Bi₂Te₃/PbTe 超晶格热电优值的变化.在镜面反射占混合效应的 0.3 时,得到的热电优值与当前报道的量子阱超 晶格的实验值接近.

关键词:超晶格,粗糙界面,热电优值 PACC:7215J,7220P,7340G,7360P

1.引 言

1993 年,Hicks 等^{12]}首次提出了利用低维材料 的量子限制效应提高材料的热电优值(*ZT*值),重 新唤醒了人们对热电材料的研究兴趣,Hicks 等理论 预测 Bi₂Te₃ 量子阱超晶格的无量纲热电优值在室温 下可达 13,远高于块体材料的热电优值(约为1).然 而,大量实验研究所得到的量子阱超晶格热电材料 的热电优值远小于预测值,实际制备的 Bi₂Te₃ 量子 阱超晶格的热电优值最高为 2.4^[3].

Hicks 等的理论分析模型只考虑单独一个厚度 处于纳米量级的单层薄膜进行模拟,此时载流子只 能在量子阱中传输,不存在隧道效应;同时,假设薄 膜表面是光滑的,即只存在镜面反射.基于上述模型 有以下两个假设:首先是量子阱深为无限深势阱(即 不存在隧道效应),势垒宽度为零且为光滑界面(即 只存在镜面反射),此模型的 ZT 值将有很大幅度的 提高.其理论计算得到当 Bi_2Te_3 量子阱宽 3.8 Å(1Å = 0.1 nm)时,其 ZT 值达 6. 9^{11} .而实际量子阱超晶 格结构一般为 A/B/A型三明治结构,因而对于 Hicks 的模型而言在计算超晶格的 ZT 值时忽略了 在实际超晶格热电薄膜的 ZT 值估计时不应缺少的 因素:电流主要在势阱中运行,热流在势阱中和势垒 中都存在,因此势垒层的存在会使整个超晶格的电 导率下降,热导率增加,实际 *ZT*值下降;对于周期 小的超晶格,层间会产生强烈的电子隧穿效应,降低 态密度使 *ZT*值下降;实际超晶格界面并非完全光 滑的界面,即存在漫反射,降低材料的 *ZT*值.故实 际上的量子阱超晶格的 *ZT*值要小于其预测值.本 文在限定势垒宽度的条件下,就粗糙界面的散射作 用对 Bi,Te_i/PbTe 超晶格的 *ZT*值进行理论分析.

2. 超晶格中的量子隧道效应

在 Bi₂Te₃/PbTe 多层量子阱结构中,Bi₂Te₃ 层和 PbTe 层对电子传输都有贡献,在计算平面内电子传 输过程中都应考虑.图 1 给出了 Bi₂Te₃/PbTe 多层量 子阱结构示意图.在外场条件下,电子在 Bi₂Te₃ 层和 PbTe 层中运动,同时,由于 Bi₂Te₃ 层和 PbTe 层之间 并不是绝缘的,因此电子能够通过界面从一层传输 进入另一层平面内.

为了求解电子同时通过两种不同薄层材料的问题,需要建立两层的玻尔兹曼方程,同时还要考虑电子在通过 Bi₂Te₃/PbTe 界面时的传输和反射.在此必须引入 Bi₂Te₃ 和 PbTe 的能带结构来描述电子状态.

[†] E-mail: muwudi@126.com

图 1 (a) Bi₂Te₃/PbTe 超晶格结构示意图 (b) 导带电子限制示 意图

图 1(b)给出了 Bi₂Te₃/PbTe 超晶格导带能级之间的 偏差示意 同时示意给出了费米能级的相对位置和 相对电子浓度.异质结的特性决定了对于费米能级 在 Bi₂Te₃ 和 PbTe 导带能级之间的结构 绝大部分的 电子都在 Bi₂Te₃ 层 ,使得 Bi₂Te₃ 层中的电子浓度远 高于 PbTe 层中的电子浓度. PbTe 的禁带宽度为 319 +0.4×(T-300)meV^[4],Bi₂Te₃的禁带宽度为130-0.095×(*T*-293)meV^[5].在300K时Bi₂Te₃与PbTe 两者之间的禁带差 $\Delta E_a \approx 190 \text{ meV}$,Bi₂Te₃ 层和 PbTe 层之间的导带能级间差约为 $\Delta E_c \approx 200 \text{ meV}$,价带能 级间差 $\Delta E_{v} \approx -10 \text{ meV}^{[67]}$,如图 2 所示.当费米能 级在导带底之上几个 $k_{\rm B}T$ 时能得到最优的 ZT 值, 费米能级附近载流子浓度在 Bi, Te, 层和 PbTe 层分 别约为 10¹⁹ cm⁻³和 10¹⁶ cm⁻³.则 PbTe 层中的电导率 比 Bi_2Te_3 层中的电导率小两个数量级以上 $\sigma_{Bi,Te_1} \gg$ σ_{PTE} 利用线性等效法则可以得到 Bi₂Te₃/PbTe 量子 阱超晶格等效电性能的表达式为

$$\sigma_{\rm eff} \approx \sigma_{\rm Bi_2Te_3} \; \frac{a_{\rm Bi_2Te_3}}{a_{\rm Bi_2Te_3} + a_{\rm PbTe}} \; , \qquad (1)$$

$$\alpha_{\rm eff} \approx \alpha_{\rm Bi_2 Te_3} \,. \tag{2}$$

这样,在分析 $Bi_2 Te_3$ / PbTe 复合超晶格的时候,只需 要分析求解 $Bi_2 Te_3$ 层中的电子输运过程即可,即多

图 2 理想界面 Bi₂Te₃/PbTe 超晶格的能级示意图

图 3 PbTe 障碍层厚度与隧道传输系数的关系图

通道的玻尔兹曼方程变为单通道近似求解.

单通道近似法中,两个 Bi_2Te_3 层被 PbTe 层隔 开,两个 Bi_2Te_3 层之间存在隧道传输和反射.电子通 过障碍层 PbTe 层产生的隧道效应与障碍层的高度、 障碍层的厚度和电子能量有关.对能量为 ε 的电 子,隧道传输系数 T_2 可表达为^[8,9]

$$T_{\rm r} = \frac{4k^2 k'^2}{(k^2 + k'^2) sh^2(k'a_{\rm PhTe}) + 4k^2 k'^2} , \quad (3)$$

其中 *a*_{PBTe} 是障碍层的厚度,波数 *k* 和 *k'* 的表达式 如下:

$$k = \sqrt{2m^* \varepsilon/\hbar^2} , \qquad (4)$$

$$k' = \sqrt{2m^*(V - \varepsilon)/\hbar^2} , \qquad (5)$$

式中 V 是势垒高度 ,即 $Bi_2 Te_3$ 层和 PbTe 层导带之间 的偏差.则反射系数 R_e 为

$$R_{\rm e} = 1 - T_{\rm r} \,. \tag{6}$$

图 3 为 Bi₂Te₃/PbTe 超晶格的障碍层 PbTe 厚度 与量子阱隧穿传输系数的变化关系,从图中可以看 出当障碍层厚度小于 3 nm 后,电子隧穿效应增大, 使得量子阱中的电子浓度减小而降低其热电优值.

3. 界面反射对电子输运的影响

由稳态玻尔兹曼传输方程可得¹⁰¹电子在材料 中的传输方程可表示为

$$\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{e\mathbf{E}}{\hbar} \cdot \frac{\partial f}{\partial \mathbf{k}} = -\frac{f - f_0}{\tau} , \qquad (7)$$

其中 f 是载流子的分布函数 , \hbar 是普朗克常数 ,v 是 速度矢量 ,E 为外场 ,r 为载流子位矢 , τ 为弛豫时 间.假设外场是沿 x 方向 ,有

$$E = (E_x \ \beta \ \beta). \tag{8}$$

则玻尔兹曼方程可写为

$$v_{x} \frac{\partial f}{\partial x} + v_{y} \frac{\partial f}{\partial y} + v_{z} \frac{\partial f}{\partial z} + \frac{eE_{x}}{\hbar} \cdot \frac{\partial f}{\partial k_{x}} = -\frac{f - f_{0}}{\tau} ,$$
(9)

同时定义偏差分布函数

$$g(\mathbf{r}, \mathbf{v}) = f(\mathbf{r}, \mathbf{v}) - f_0.$$
 (10)

电子在量子阱中传输过程受到散射作用,与理 想完美界面的反射有差别^{11—13]},可表示为

$$g(\eta_{\beta_{+}}) = g(0_{\beta_{+}}) \cdot \exp\left(-\frac{\eta_{\beta}}{\beta}\right)$$
$$- S_{0}\left[1 - \exp\left(-\frac{\eta_{\beta}}{\beta}\right)\right]$$
$$(\beta > 0), \qquad (11)$$

和

$$g(\eta, \beta_{-}) = g(\zeta, \beta_{-}) \cdot \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)$$
$$- S_{0}\left[1 - \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)\right]$$
$$(\beta < 0), \qquad (12)$$

式中 β 为方向余弦 , β_{+} 和 β_{-} 分别表示正方向和反 方向的方向余弦 . $\eta = z/\tau v$ 是 z 方向的无量纲位置 , $\zeta = a_{\text{Bi}_2\text{Te}_3}/\tau v$ 是无量纲的通道宽度 . S_0 描述外场下 电子输运过程 ,

$$S_{0} = \tau v_{x} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \left[eE_{x} + \nabla \varepsilon_{F_{x}} + \frac{\varepsilon - \varepsilon_{F}}{T} \nabla T_{x} \right],$$
(13)

式中 E_x , $\nabla \epsilon_{F_x}$ 和 ∇T_x 分别是沿 x 方向上的外场、费米能级梯度和温度梯度.

对于经典尺寸效应,电子在边界上受到部分漫 反射和部分镜面反射.用 p 表示全反射中镜面反射 所占部分比例,当电子在界面的反射为全镜面反射 时 p 值为 1;当电子在界面的反射为全漫反射时 p值为 0.则在 z = 0 $\eta = 0$)的边界条件下的载流子分 布偏差函数可表示为

$$g(0,\beta_{+}) = p \cdot R_{e} \cdot g(0,\beta_{-})$$

$$+ \mathcal{L}(1-p) \cdot R_{e} \cdot \int_{0}^{1} g(0,\beta_{-})\beta d\beta$$

$$+ p \cdot T_{r} \cdot g(0,\beta_{-})$$

$$+ \mathcal{L}(1-p) \cdot T_{r} \cdot \int_{0}^{1} g(0,\beta_{+})\beta d\beta.$$

(14)

在 $z = a_{B_{i_2}Te_3}(\eta = \zeta)$ 的边界上 ,偏差函数可表示为

$$g(\zeta ,\beta_{-}) = p \cdot R_{e} \cdot g(\zeta ,\beta_{+})$$

$$+ 2(1 - p) \cdot R_{e} \cdot \int_{0}^{1} g(\zeta ,\beta_{+})\beta d\beta$$

$$+ p \cdot T_{r} \cdot g(\zeta ,\beta_{+})$$

$$+ 2(1 - p) \cdot T_{r} \cdot \int_{0}^{1} g(\zeta ,\beta_{-})\beta d\beta.$$

(15)

考虑部分镜面反射,且对于相同条件的多层薄膜有 $g(0,\beta_{+}) = g(\zeta,\beta_{+})$ 故而得到

$$g(0, \beta_{+}) = g(\zeta, \beta_{+})$$

$$= \frac{-S_{0}\left[1 - \exp\left(-\frac{\zeta}{\beta}\right)\right]}{1 - p\exp\left(-\frac{\zeta}{\beta}\right)}$$

$$(\beta > 0), \qquad (16)$$

$$g(\zeta, \beta_{-}) = g(0, \beta_{-})$$

$$= \frac{-S_0 \left[1 - \exp\left(-\frac{\zeta}{|\beta|}\right)\right]}{1 - p \exp\left(-\frac{\zeta}{|\beta|}\right)}$$

(\beta < 0).

$$<0$$
). (17)

将(16)和(17)式代入通解(14)和(15)式,同时 考虑镜面反射和漫反射,得到偏差函数方程为

$$g(\eta_{,\beta_{+}}) = \frac{-pS_{0}\left[1 - \exp\left(-\frac{\zeta}{\beta}\right)\right] \exp\left(-\frac{\eta}{\beta}\right)}{1 - p\exp\left(\frac{-\zeta}{\beta}\right)} - pS_{0}\left[1 - \exp\left(-\frac{\eta}{\beta}\right)\right]$$

$$+ \frac{\mathcal{L}(1-p)D(0)\exp\left(-\frac{\eta}{\beta}\right)}{1-p\exp\left(\frac{-\zeta}{\beta}\right)}$$
$$-(1-p)S_{0}\left[1-\exp\left(-\frac{\eta}{\beta}\right)\right]$$
$$(\beta > 0), \qquad (18)$$

和

$$g(\eta_{-\eta}\beta_{-}) = \frac{-pS_{0}\left[1 - \exp\left(-\frac{\zeta}{|\beta|}\right)\right] \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)}{1 - p\exp\left(\frac{-\zeta}{|\beta|}\right)}$$
$$-pS_{0}\left[1 - \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)\right]$$
$$+\frac{2(1 - p_{-})D(0) \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)}{1 - p\exp\left(\frac{-\zeta}{|\beta|}\right)}$$
$$-(1 - p_{-})S_{0}\left[1 - \exp\left(-\frac{\zeta - \eta}{|\beta|}\right)\right]$$
$$(\beta < 0), \qquad (19)$$

其中,漫反射积分D(0)为

$$D(0) = \int_{0}^{1} g(0 \beta_{-})\beta d\beta. \qquad (20)$$

考虑到平衡条件下的对称性, $D(\zeta) = D(0)$,即漫反 射积分只考虑D(0).

方程(18)和(19)中前两项表示由于镜面反射 的作用造成的电子分布函数的偏差,而后两项则是 由于漫反射形成的电子分布函数所造成的偏差.

4. Bi₂Te₃/PbTe 超晶格热电优值的计算

由电流密度和能流密度推导出包含界面漫反射 的传输矩阵单元有三重积分 : β 从 – 1 到 1 的方位角 的积分 ,z 方向上的线积分(η 从 0 到 ζ)和 k 空间 的积分 ,矩阵单元 $t^{(a)}$ 为

$$t^{(\alpha)} = \frac{e^2 a_{\text{Bi}_2\text{Te}_3}}{a_{\text{Bi}_2\text{Te}_3} + a_{\text{PbTe}}} \sum_{3D} \frac{\mathrm{d}\boldsymbol{k}}{4\pi^3} \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \tau v_x^2 (\varepsilon - \zeta)^{\alpha} \times \frac{1}{2} \int_0^\zeta \mathrm{d}\eta \int_{-1}^1 g(\eta,\beta) \mathrm{d}\beta \left(\alpha = 0, 1, 2 \right), \qquad (21)$$

则其传输矩阵为

$$\begin{bmatrix} L^{11} & L^{12} \\ L^{21} & L^{22} \end{bmatrix} = \begin{bmatrix} l^{(0)} & -\frac{1}{Te}l^{(1)} \\ -\frac{1}{e}l^{(1)} & \frac{1}{Te^2}l^{(2)} \end{bmatrix}.$$
 (22)

利用传输矩阵得到其热电性能参数为

$$\sigma = l^{(0)} , \qquad (23)$$

$$\alpha = -\frac{1}{Te} \cdot \frac{l^{(1)}}{l^{(0)}}, \qquad (24)$$

$$k_{e} = \frac{1}{Te^{2}} \cdot \left(l^{(2)} - \frac{l^{(1)}}{l^{(0)}} \cdot l^{(1)} \right) , \qquad (25)$$

$$ZT = \frac{\alpha^2 \sigma T}{\kappa_{\rm e} + \kappa_{\rm ph}} , \qquad (26)$$

式中 $\kappa_{ph} = C_v v l / 3^{11}$,是材料的晶格热导率,其中 C_v 是材料的热容, v 是声速, l 是载流子的平均自 由程.

玻尔兹曼方程在边界散射条件下的通解主要是 来描述经典尺寸效应对电子输运的影响,忽略量子 尺寸效应的影响.在 Bi₂Te₃ 平面内,电子的有效质量 分别为 $m_x = 0.021m_0$ 和 $m_y = 0.081m_0$;沿着垂直于 Bi₂Te₃ 平面方向的电子的有效质量为 $m_z = 0.32m_0^{[1]}$.

室温下 Bi₂Te₃ 层中的电子迁移率 $\mu \approx 1200 \text{ cm}^2 \cdot V^{-1} \cdot \text{s}^{-\text{II}}$,在正常的界面散射条件下,电子的平均 自由程 $l_e = v_F \tau$,其中 v_F 为费米速度, τ 为弛豫时 间.在简并条件限制下, $v_F = \hbar \sqrt{2\pi n_s}/m^*$, n_s 为电 子的面浓度; $\tau = \mu m^* / e$.假设载流子浓度为 $n = 1 \times 10^{19} \text{ cm}^{-3}$,Bi₂Te₃ 层厚度为 20 Å,则 $n_s = n \times a = 2 \times 10^{12} \text{ cm}^{-2}$;界面散射条件下的平均自由程约为 280 Å 对于多层膜结构的 Bi₂Te₃ 层厚度尺寸接近或小 于 280 Å,这样的尺寸效应在这种结构中有较大的 影响.另一方面,假设 Bi₂Te₃ 层厚度远远大于 280 Å, 则界面基本不影响载流子的传输性能,Bi₂Te₃ 薄膜 材料的性能接近 Bi₂Te₃ 块体的性能.

前面讨论的是把界面散射机制当作影响低维材 料体系电子输运性能的重要机制,但是完全忽略了 量子尺寸效应.由该模型计算得到的材料的功率因 子远小于完全由量子阱模型计算得到的功率因子. 经典尺寸模型指出,界面散射会使得塞贝克系数和 电导率减小.

实验证明超晶格薄膜的热电优值是有所增加 的^[3],这就说明了低维结构中量子尺寸效应的存在. 从而提出了量子效应和经典尺寸效应的混合模型, 即模拟量子结构的电子输运时包含二维带结构下的 电子的镜面反射和三维带结构下电子的漫散射.其 中漫散射使得电子状态随机化,而镜面散射则是维 持电子状态的信息.玻尔兹曼方程的解(18)和(19) 式中右边的前两项是指界面的镜面反射,后两项则 是界面的漫反射;在二维量子阱结构中相应的电子 输运方程的解为 – $S_0 |_{2D}$.在考虑二维镜面反射时, 上两式中右边前两项则需要由 – $pS_0 |_{2D}$ 来替代.量 子尺寸效应和经典尺寸效应的混合模型的解变为

$$g(\eta, \beta_{+}) = -pS_{0}|_{2D} + \frac{\mathcal{X}(1-p)D(0)\exp\left(-\frac{\eta}{\beta}\right)}{1-p\exp\left(-\frac{\zeta}{\beta}\right)} - (1-p)S_{0}|_{3D}\left[1-\exp\left(-\frac{\eta}{\beta}\right)\right] (\beta > 0), \qquad (27)$$

和

 $g(\eta,\beta_{-}) = -pS_{0}|_{2D}$ $+ \frac{\chi(1-p)D(0)\exp\left(-\frac{\zeta-\eta}{|\beta|}\right)}{1-p\exp\left(-\frac{\zeta}{|\beta|}\right)}$ $-(1-p)S_{0}|_{3D}\left[1-\exp\left(-\frac{\zeta-\eta}{|\beta|}\right)\right]$ $(\beta < 0). \qquad (28)$

利用这个分布偏差函数,则电子的传输矩阵 $l^{(a)}$ 就可以分为 $l^{(a)} = l \mid_{2D}^{(a)} + l \mid_{3D}^{(a)}$ 两部分,其中,

$$l \mid_{2D}^{(\alpha)} = p \cdot \frac{e^2 a_{\text{Bi}_2\text{Te}_3}}{a_{\text{Bi}_2\text{Te}_3} + a_{\text{PbTe}}} \sum_{2d} \frac{d\mathbf{k}}{2\pi^2 a_{\text{Bi}_2\text{Te}_3}} \times \left(-\frac{\partial f_0}{\partial \epsilon}\right) \tau v_x^2 (\epsilon - \zeta)^{\alpha} (\alpha = 0, 1, 2), \qquad (29)$$

$$l \mid_{3D}^{(\alpha)} = \frac{e^{-\alpha} a_{\text{Bi}_{2}\text{Te}_{3}}}{a_{\text{Bi}_{2}\text{Te}_{3}} + a_{\text{PbTe}}} \sum_{3D} \frac{d\mathbf{k}}{4\pi^{3}}$$

$$\times \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \tau v_{x}^{2} (\varepsilon - \zeta)^{\alpha}$$

$$\times \left(-\frac{1}{2} \right) \int_{0}^{\zeta} d\eta \left[\int_{-1}^{0} (1 - p) \right]$$

$$\times \left(1 - \exp\left(-\frac{\zeta - \eta}{|\beta|} \right) \right) d\beta$$

$$+ \int_{0}^{1} (1 - p) \left(1 - \exp\left(-\frac{\eta}{\beta} \right) \right) d\beta$$

$$(\alpha = 0, 1, 2). \qquad (30)$$

电子的输运性能可由量子尺寸效应和经典尺寸 效应的混合模型的传输矩阵来计算.该模型可用来 直接预测 Bi₂Te₃/PbTe 多层的量子阱结构的电子输 运特性.图4 是 Bi₂Te₃ 理想量子阱 *ZT* 值的计算值, 即 Hicks 的理论计算值 阁 5 是将(30)式代入(23)— (26)式后,Bi₂Te₃/PbTe 超晶格随混合模型中 *ZT* 值 随镜面发射所占比例变化的计算值,其中考虑了电 子隧穿效应,恒定 PbTe 的厚度为 1 nm,根据图 3 可 以得出此时量子隧道隧穿系数约为 0.15.比较图 4 和图 5 可以看出,不考虑量子阱结构时(此时 p =0),薄膜材料相比块体材料 *ZT* 值将有较大幅度的 降低,其主要原因是表面完全漫反射使得材料的电 导率降低.图 4 中虚线为块体材料的 *ZT* 值计算值, 与实际值相近;考虑量子阱结构后受两个方面的影 响:一方面为量子阱的厚度,量子阱厚度越薄,量子 效应越显著,相应 *ZT* 值就越高;另一方面受界面散 射的影响,界面漫散射越强,超晶格薄膜的 *ZT* 值越 低.当 p = 1 时,超晶格界面处于理想光滑状态,即 只存在镜面反射;当 PbTe 势垒层厚度大于 3 nm 时,

只存在镜面反射 ;当 PbTe 势垒层厚度大于 3 nm 时, 由图 3 可知,可忽略量子隧道效应,超晶格 ZT 值只 需要考虑 Bi_2Te_3 阱层在超晶格中所占百分比.若理 想化超晶格,即 p = 1, $a_{PbTe} = 0$,同时不考虑量子隧 道效应时,计算结果如图 4 所示,与 Hicks 等的模型 一致.

图 4 理想 Bi₂Te₃ 超晶格热电优值的计算值

图 5 粗糙界面对 Bi₂Te₃/PbTe 超晶格热电优值的影响的计算值

5.结 论

本文从粗糙界面对载流子的散射出发,发现当 p = 0.3 时,ZT 值的最大值(亦即当 Bi₂Te₃ 量子阱层 厚度为其晶格常数 0.4384 nm 时)接近当前实际制

- [1] Hicks L D , Dresselhaus M S 1993 Phys. Rev. B 47 12727
- [2] Hicks L D , Dresselhaus M S 1993 Phys. Rev. B 47 16631
- [3] Venkatasubramaman R, Colpitts T, Watko E 1997 J. Cryst. Growth 170 817
- [4] Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: National Defence Industry Press)p370(in Chinese] 刘恩科、朱秉 升、罗晋生 2003 半导体物理学(北京:国防工业出版社)第 370页]
- [5] Jiang J 2005 Fabrication and Thermoelectric Properties of Bi₂ Te₃based Materials(Ph. D. Dissertation)(Shanghai: Silicate Graduate School)(in Chinese)[蒋 俊 2005 碲化铋基热电材料的制备 与性能研究(博士学位论文)(上海: 硅酸盐研究所)]
- [6] Broido D A , Reinecke T L 1995 Phys. Rev. B 51 13797
- [7] Lin-Chung P J, Reinecke T L 1995 Phys. Rev. B 51 13244
- [8] Zeng J Y 2007 Quantum Mechanics (Beijing : Science Press) p74

备得到的超晶格的热电优值 2.4.本文模拟计算中 恒定障碍层的厚度,这样量子阱层中的载流子浓度 基本不变,载流子隧穿效应恒定,唯一影响热电优值 的只有界面的粗糙程度.提高超晶格界面的匹配程 度,增大界面镜面反射所占比例,将对超晶格薄膜 *ZT*值的提高起很大作用.

(in Chinese)[曾谨言 2007 量子力学(北京 科学出版社)第 74页]

- [9] Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: National Defence Industry Press)p100(in Chinese)[刘恩科、朱 秉升、罗晋生 2003 半导体物理学(北京:国防工业出版社) 第 100页]
- [10] Gong J , Liang X X , Ban S L 2005 Chin . Phys . B 14 201
- [11] Liu W L 2004 In-plane Thermoelectric Properties of Si/Ge Superlattices (Ph. D. Dissertation) (Los Angeles : University of California)
- [12] Xue Z Q, Wu Q D, Li J 1991 Physics of Thin Films (Beijing: Electronic Industry Press)p279(in Chinese)[薛增泉、吴全德、李 洁 1991 薄膜物理(北京:电子工业出版社)第 279页]
- [13] Dong Z C 2001 Acta Phys. Sin. 50 1779(in Chinese] 董正超 2001 物理学报 50 1779]

Effect of rough interface on the thermoelectric figure of merit of the Bi₂Te₃/PbTe superlattice

Mu Wu-Di[†] Cheng Hai-Feng Chen Zhao-Hui Tang Geng-Ping Wu Zhi-Qiao

(College of Aerospace and Material Engineering , National University of Defense Technology , Changsha 410073 , China)
 (Received 22 January 2008 ; revised manuscript received 17 August 2008)

Abstract

Electron transport is analysed in $Bi_2 Te_3$ quantum well of $Bi_2 Te_3/PbTe$ superlattice. The hybrid quantum-classical size effect model, considering the Boltsmann transport equation and classical size effect, is introduced to analyse the effect of rough interface on the electron transport and scattering and the thermoelectric figure of merit of $Bi_2 Te_3/PbTe$ superlattice. The PbTe barrier thickness is kept constant to avoid the influence of the variation in tunnel effect on attenuation of the carrier concentration in $Bi_2 Te_3$ quantum well of $Bi_2 Te_3/PbTe$ superlattice. The result shows that roughness has strong influence on the thermoelectric figure of merit of $Bi_2 Te_3/PbTe$ superlattice. The $Bi_2 Te_3/PbTe$ thermoelectric figure of merit decreases with the decreasing of the portion (p) of mirror reflection in the hybrid effects. And when p is 0.3, the figure of merit is close to the experiment value.

Keywords : superlattice , rough interface , figure of merit PACC : 7215J , 7220P , 7340G , 7360P

[†] E-mail: muwudi@126.com