双色噪声驱动非对称双稳系统平均 第一穿越时间研究

王 兵[†] 吴秀清 邵继红

(安徽理工大学理学院,淮南 232001) (2008年1月14日收到 2008年5月25日收到修改稿)

利用统一色噪声近似理论,研究乘性色噪声和加性色噪声驱动的非对称双稳系统中,势阱的非对称性和噪声 对系统两个方向的平均第一穿越时间 $T_+(x_{sl} \rightarrow x_{s2})$ 和 $T_-(x_{s2} \rightarrow x_{s1})$ 的影响(x_{s1} 和 x_{s2} 是双稳系统的两个稳定点). 数值结果表明: $T_+(x_{sl} \rightarrow x_{s2})$ 随乘性噪声的自关联时间 τ_1 以及加性噪声的自关联时间 τ_2 的增大而减小. $T_-(x_{s2} \rightarrow x_{s1})$ 随乘性噪声的自关联时间 τ_1 以及加性噪声的自关联时间 τ_2 的增大而增大.在曲线($T_+(x_{s1} \rightarrow x_{s2}),\lambda$)和($T_-(x_{s2} \rightarrow x_{s1}),\lambda$)上都存在单峰. $T_+(x_{s1} \rightarrow x_{s2})$ 随非对称系数 r 的增大而增大, $T_-(x_{s2} \rightarrow x_{s1})$ 随非对称系数 r 的增大而 减小.

关键词:统一色噪声近似,平均第一穿越时间,加性色噪声,乘性色噪声 PACC:0540,0250

1.引 言

噪声对非线性系统的影响近年来一直受到大家 的广泛关注,在对噪声的处理上,为了简化计算,常 把记忆时间或者宽带很短的激励视为白噪声,但真 正的白噪声并不存在,所以很多科技工作者已经开 始从事非白噪声驱动非线性系统性质的研究工 作^[1-17]. Jung 等^[3]在 1987 年提出统一色噪声近似理 论 并对乘性色噪声驱动的染料激光模型进行了研 究.Cao 等^[4]在 1995 年推导了关联色噪声驱动的双 稳系统的稳态概率密度表达式,1996 年,Jia 等^{6]}研 究了色关联噪声驱动的双稳系统的稳态概率密度表 达式,1999 年 Mei 等⁷³研究了色关联噪声驱动的双 稳系统中关联时间和关联强度对平均第一穿越时间 的影响. Wang 等^[10]在 2003 年详细研究了关联白噪 声驱动的双稳系统中两个方向的平均第一穿越时间 问题并发现在关联噪声影响下两个方向的平均第一 穿越时间不对称. Mei 等^{13]}在 2004 年利用投影算子 方法推导了色关联噪声驱动的双稳系统的关联函数 以及弛豫时间表达式,2006 年 Li 等^{17]}研究了乘性 非对称分岔噪声影响下的随机共振问题,由于很多

实际的物理系统的非对称性,本文研究白关联的加 性色噪声与乘性色噪声驱动的非对称双稳系统的平 均第一穿越时间问题.

2. 非对称双稳系统平均第一穿越时间

包含加性噪声和乘性噪声的非对称双稳系统的 郎之万方程为

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x - x^3 - r + x\xi(t) + \Gamma(t), \quad (1)$$

式中乘性噪声 *ξ*(*t*),加性噪声 *I*(*t*)均为高斯色噪 声,其统计性质分别为

$$\xi(t) = \Gamma(t) = 0,$$
 (2)

$$\xi(t)\xi(t') = \frac{D}{\tau_1} \exp\left(-\frac{|t-t'|}{\tau_1}\right)$$
, (3)

$$\Pi(t)\Pi(t') = \frac{Q}{\tau_2} \exp\left(-\frac{|t-t'|}{\tau_2}\right), \quad (4)$$

$$\mathfrak{E}(t)\Pi(t') = \Pi(t)\mathfrak{E}(t')$$

$$= 2\lambda \sqrt{DQ}(t - t'), \qquad (5)$$

D和Q分别为乘性噪声和加性噪声的噪声强度, λ 为噪声 $\xi(t)$ 和 $\Gamma(t)$ 之间的关联强度, τ_1 和 τ_2 分别 为 $\xi(t)$ 和 $\Gamma(t)$ 的自关联时间,由统一色噪声近似

[†] 通讯联系人 E-mail Innitwb @163.com

理论可以得到近似的福克-普朗克方程为

$$\frac{\partial P(x,t)}{\partial t} = -\frac{\partial}{\partial x}A(x)P(x,t) + \frac{\partial^2}{\partial x^2}B(x)P(x,t), \quad (6)$$

其中

$$A(x) = \frac{x - x^{3} - r}{1 + 2\tau_{1}x^{2} - \frac{r\tau_{1}}{x} - \tau_{2}(1 - 3x^{2})} + \frac{1}{2}B'(x), \qquad (7)$$

$$B(x) = \frac{1}{\left(1 + 2\tau_1 x^2 - \frac{r\tau_1}{x} - \tau_2(1 - 3x^2)\right)^2}$$

× ($Dx^2 + 2\lambda \sqrt{DQ}x + Q$). (8)

令(6)式左边为零,可以得到系统稳态的概率密度函数为

$$P_{\rm st}(x) = \frac{N}{\sqrt{B(x)}} \exp\left(\int \frac{A(x)}{B(x)} dx\right) , \qquad (9)$$

其中 N 为归一化常数. 广义势函数为

$$\tilde{V}(x) = \frac{1}{4}(2\tau_1 + 3\tau_2)x^4 - \frac{2}{3}(2\tau_1 + 3\tau_2)\lambda\sqrt{\frac{Q}{D}}x^3 + \frac{1}{2}W(\lambda)x^2 + Q(\lambda)x + K(x), \quad (10)$$

其中

$$\begin{split} \mathcal{K}(x) &= \frac{1}{2} \mathcal{H}(\lambda) \times \ln \left| x^{2} + 2\lambda \sqrt{\frac{Q}{D}} x + \frac{Q}{D} \right| + \frac{\mathcal{K}(\lambda) - \mathcal{M}(\lambda)\lambda \sqrt{\frac{Q}{D}}}{\sqrt{\frac{Q}{D} - \lambda^{2} \frac{Q}{D}}} a \tan \frac{x + \lambda \sqrt{\frac{Q}{D}}}{\sqrt{\frac{Q}{D} - \lambda^{2} \frac{Q}{D}}} - \frac{D}{Q} r^{2} \tau_{1} \ln |x| , \\ \mathcal{K}(\lambda) &= 4(2\tau_{1} + 3\tau_{2})\lambda^{2} \frac{Q}{D} - \frac{(2\tau_{1} + 3\tau_{2})}{D} + 1 - 4\tau_{2} - 2\tau_{1} , \\ \mathcal{K}(\lambda) &= (3\tau_{1} + \tau_{1})r - 8(2\tau_{1} + 3\tau_{2})\lambda^{3} \left(\frac{Q}{D}\right)^{3/2} - \mathcal{K}(1 - 2\tau_{1} - 4\tau_{2})\lambda \sqrt{\frac{Q}{D}} , \\ \mathcal{H}(\lambda) &= 16(2\tau_{1} + 3\tau_{2})\lambda^{4} \left(\frac{Q}{D}\right)^{2} + 4(1 - 4\tau_{2} - 2\tau_{1})\lambda^{2} \frac{Q}{D} - \mathcal{K}(3\tau_{2} + \tau_{1})\lambda \sqrt{\frac{Q}{D}} - 4\lambda^{2} \frac{Q^{2}}{D^{2}} + \mathcal{K}(r) , \\ \mathcal{K}(r) &= -\frac{1 - 4\tau_{2} - 2\tau_{1}}{D}Q + \frac{2\tau_{1} + 3\tau_{2}}{D^{2}}Q^{2} + \tau_{2} - 1 + \frac{D}{Q}r^{2}\tau_{1} , \\ \mathcal{M}(\lambda) &= 16(2\tau_{1} + 3\tau_{2})\lambda^{4} \frac{Q^{2}}{D^{2}} + 4(1 - 4\tau_{2} - 2\tau_{1})\lambda^{2} \frac{Q}{D} - \mathcal{K}(3\tau_{2} + \tau_{1})\lambda \sqrt{\frac{Q}{D}} + \mathcal{K}(r, \lambda) , \\ \mathcal{K}(r, \lambda) &= -4\lambda^{2} \frac{Q^{2}}{D^{2}} - \frac{(1 - 2\tau_{1} - 4\tau_{2})Q}{D} + \frac{(2\tau_{1} + 3\tau_{2})Q^{2}}{D^{2}} + \frac{D\tau_{1}r^{2}}{Q} + \tau_{2} - 1 , \\ \mathcal{K}(\lambda) &= (1 + \tau_{1} - \tau_{2})r + 2\lambda\tau_{1}r^{2}\sqrt{\frac{D}{Q}} - \left\{\tau_{1} + 3\tau_{2} - 8(2\tau_{1} + 3\tau_{2})\lambda^{3} \left(\frac{D}{D}\right)^{3/2} - 2\lambda(1 - 2\tau_{1} - 4\tau_{2})\sqrt{\frac{Q}{D}}\right\} \frac{Q}{D}. \end{split}$$

由(1)式可以看出,系统的确定性势函数为 $V(x) = -\frac{x^2}{2} + \frac{x^4}{4} + rx$,其中r为非对称系数 表明势阱的非 对称性.在 $-\frac{2\sqrt{3}}{9} < r < \frac{2\sqrt{3}}{9}$ 的条件下,V(x)表示一个非对称双稳势函数.通过解方程V'(x) = 0可以 得到它的一个不稳定点 x_u 和两个稳定点 x_{sl} , x_{s2} 分别为

$$x_{u} = -\frac{2\sqrt{3}}{3}\cos\left(\frac{1}{3}\arccos\left(-\frac{3\sqrt{3}}{2}r\right) + \frac{\pi}{3}\right) (11)$$

$$x_{\rm SI} = -\frac{2\sqrt{3}}{3}\cos\left(\frac{1}{3}\arccos\left(-\frac{3\sqrt{3}}{2}r\right) - \frac{\pi}{3}\right) \ (12)$$

$$x_{s2} = \frac{2\sqrt{3}}{3} \cos\left(\frac{1}{3}\arccos\left(-\frac{3\sqrt{3}}{2}r\right)\right).$$
 (13)

利用平均第一穿越时间的定义和最速下降法可以得 到两个不同方向的平均第一穿越时间的表达式为

$$T_{+}(x_{s1} \rightarrow x_{s2})$$

$$= \int_{x_{s2}}^{x_{s1}} \frac{dx}{B(x)P(x)} \int_{-\infty}^{x} P(y) dy$$

$$= \frac{2\pi}{\sqrt{B(x_{s1})|V'(x_{u})V'(x_{s1})|}}$$

$$\times \exp\left(\frac{\tilde{V}(x_{u}) - \tilde{V}(x_{s1})}{D}\right), \quad (14)$$

$$T_{-}(x_{s2} \rightarrow x_{s1})$$

$$= \int_{x_{s1}}^{x_{s2}} \frac{dx}{B(x)P(x)} \int_{x}^{+\infty} P(y) dy$$

$$= \frac{2\pi}{\sqrt{B(x_{s2})|V'(x_{u})V'(x_{s2})|}}$$

$$\times \exp\left(\frac{\tilde{V}(x_{u}) - \tilde{V}(x_{s2})}{D}\right). \quad (15)$$

3. 双色噪声以及非对称性对平均第一 穿越时间的影响

利用两个不同方向的平均第一穿越时间 T_+ , T_- 的表达式(14)和(15)讨论乘性噪声的自关联时间 τ_1 和加性噪声的自关联时间 τ_2 ,噪声之间的关 联强度 λ 以及非对称系数 r 对 T_+ 和 T_- 的影响.

图 1 平均第一穿越时间 *T*₊(*x*_{s1}→*x*_{s2}) 随 *τ*₁ 和 *τ*₂ 的变化图像 (其中 *r* = 0.3 ,*D* = 0.2 ,*λ* = 0.3 ,*Q* = 0.2)

图 1 给出了平均第一穿越时间 $T_{+}(x_{sl} \rightarrow x_{s2})$ 随 τ_{1} 和 τ_{2} 变化的三维图像.由图可以看出,固定 τ_{2} , $T_{+}(x_{sl} \rightarrow x_{s2})$ 随乘性噪声的自关联时间 τ_{1} 的增大 而减小.固定 τ_{1} , $T_{+}(x_{sl} \rightarrow x_{s2})$ 随加性噪声的自关联 时间 τ_{2} 的增大也是减小的.这表明 τ_{1} 和 τ_{2} 对系统 从稳态 x_{sl} 到另一稳态 x_{s2} 所起的作用相同;即 τ_{1} 或 τ_{2} 越大,系统从稳态 x_{sl} 到另一稳态 x_{s2} 所用的平均 时间越短.

图 2 平均第一穿越时间 $T_{-}(x_{s_2} \rightarrow x_{s_1})$ 随 τ_1 和 τ_2 的变化图像 (其中 r = 0.3 ,D = 0.2 , $\lambda = 0.3$,Q = 0.2)

图 2 给出了平均第一穿越时间 $T_{-}(x_{s2} \rightarrow x_{s1})$ 随 τ_1 和 τ_2 变化的三维图像.由图可以看出,固定 τ_2 , $T_{-}(x_{s2} \rightarrow x_{s1})$ 随乘性噪声的自关联时间 τ_1 的增大 而增大 固定 τ_1 , $T_{-}(x_{s2} \rightarrow x_{s1})$ 随加性噪声自关联时 间 τ_2 的增大而增大.对比图 2 和图 1 可见, τ_1 , τ_2 对 系统从稳态 x_{s1} 到另一稳态 x_{s2} 的影响和对系统从稳 态 x_{s2} 到稳态 x_{s1} 的影响正好相反, τ_1 或 τ_2 越大,系 统从稳态 x_{s2} 到另一稳态 x_{s1} 所需的平均时间越长.

图 3 平均第一穿越时间 $T_+(x_{s1} \rightarrow x_{s2})$ 随 $\lambda \ln r$ 的变化图像(其中 $D = 0.4, r_1 = 1.4, r_2 = 1.4, Q = 0.4$)

在图 3 中,我们给出 $T_{+}(x_{sl} \rightarrow x_{s2})$ 随噪声关 联强度λ 和非对称系数 r 变化的三维图像.在图中 可以看到 固定 r,曲线 $T_{+}(x_{sl} \rightarrow x_{s2}),\lambda$)上存在极 大值(如,当 r=0.2 时,曲线 $T_{+}(x_{sl} \rightarrow x_{s2}),\lambda$)上存在极 大值(如,当 r=0.2 时,曲线 $T_{+}(x_{sl} \rightarrow x_{s2}),\lambda$ 在λ = -0.18处 极大值 $T_{+}(x_{sl} \rightarrow x_{s2}),\lambda$ 在λ = -0.09 处,极大值 T₊($x_{sl} \rightarrow x_{s2}),\lambda$ 在λ = -0.09 处,极大值 $T_{+}(x_{sl} \rightarrow x_{s2}),\lambda$ 表明系统从稳态 x_{sl} 到稳 态 x_{ω} 出现了抑制现象 ;在图中还能看出 ,平均第一 穿越时间 $T_{+}(x_{sl} → x_{\omega})$ 随非对称系数 r 的增大而增 大 ,且大 r 值对应的曲线($T_{+}(x_{sl} → x_{\omega}), \lambda$)上存在 更明显的极大值(即 ,大 r 值时 ,抑制现象越显著).

图 4 平均第一穿越时间 $T_{-}(x_{s2} \rightarrow x_{s1})$ 随 λ 和 r 的变化图像(其中 D=0.4, r_1 = 1.4, r_2 = 1.4, Q = 0.4)

图 4 给出平均第一穿越时间 $T_{-}(x_{2} \rightarrow x_{s1})$ 随噪 声关联强度 λ 和非对称系数 r 变化的三维图像.由 图可见 ,与 $T_{+}(x_{s1} \rightarrow x_{2})$ 相似 ,固定 r ,在曲线(T_{-}

- [1] Masoliver J , West B J , Lindenberg K 1987 Phys. Rev. A 35 3086
- [2] Leiber T , Marchesoni F , Risken H 1988 Phys. Rev. A 38 983
- [3] Jung P ,Hanggi P 1987 Phys. Rev. A 35 4464
- [4] Cao L ,Wu D J ,Kw S Z 1995 Phys. Rev. E 52 3228
- [5] Wei X Q ,Cao L ,Wu D J 1995 Phys. Lett. A 207 338
- [6] Jia Y Li J R 1996 Phys. Rev. E 53 5786
- [7] Mei D C ,Xie G Z ,Cao L ,Wu D J 1999 Phys. Rev. E 59 3880
- [8] Mei D C ,Xie G Z ,Cao L ,Wu D J 1999 Chin . Phys . Lett . 16 327
- [9] Li J H Juczka J Haggi P 2001 Phys. Rev. E 64 011113
- [10] Wang J ,Cao L ,Wu D J 2003 Phys. Lett. A 308 23

 $(x_{s_2} \rightarrow x_{s_1}), \lambda$)上存在极大值(如,当 *r* = 0.2 时,在 λ = 0.42 处 极大值 *T*_($x_{s_2} \rightarrow x_{s_1}$)_{max} = 324.0 ;当 *r* = 0 时,在 λ = 0.45 处 极大值 *T*_($x_{s_2} \rightarrow x_{s_1}$)_{max} = 2603), 即,系统从稳态 x_{s_2} 到稳态 x_{s_1} 出现了抑制现象.对比 图 3 和图 4 ,与 *T*₊($x_{s_1} \rightarrow x_{s_2}$)随 *r* 的增大而增大相 反,*T*_($x_{s_2} \rightarrow x_{s_1}$)随 *r* 的增大而减小.

4.结 论

本文研究了乘性色噪声和加性色噪声驱动的非 对称双稳系统的平均第一穿越时间问题.在得到两 个方向的平均第一穿越时间的表达式的基础上,讨 论了双色噪声以及非对称性对平均第一穿越时间的 影响.研究发现 $T_{+}(x_{sl} \rightarrow x_{s2})$ 随乘性噪声自关联时 间 τ_{1} 以及加性噪声的自关联时间 τ_{2} 的增大而减 小. $T_{-}(x_{s2} \rightarrow x_{s1})$ 随乘性噪声自关联时间 τ_{1} 以及 加性噪声的自关联时间 τ_{2} 的增大而增大.曲线 ($T_{+}(x_{s1} \rightarrow x_{s2})$, λ)和($T_{-}(x_{s2} \rightarrow x_{s1})$, λ)均出现极 值. $T_{+}(x_{s1} \rightarrow x_{s2})$ 随非对称系数 r 的增大而减小.

- [11] Xie C W ,Mei D C 2003 Chin. Phys. 12 1208
- [12] Xie C W ,Mei D C 2003 Chin . Phys . Lett . 20 813
- [13] Mei D C ,Xie C W ,Xiang Y L 2004 Phys. A 343 167
- [14] Liang G Y , Cao L , Wu D J 2004 Phys. A 335 371
- [15] Han L B ,Cao L ,Wu D J ,Wang J 2004 Acta Phys. Sin. 53 2127
 (in Chinese)[韩立波、曹 力、吴大进、王 俊 2004 物理学报 53 2127]
- [16] Xu D S, Cao L, Wu D J 2006 Acta Phys. Sin. 55 0692 (in Chinese)[许德胜、曹 力、吴大进 2006 物理学报 55 0692]
- [17] Li J H ,Han Y X 2006 Phys. Rev. E 74 051115

Wang Bing[†] Wu Xiu-Qing Shao Ji-Hong

(Department of Physics and Mathematics ,Anhui University of Science and Technology ,Huainan 232001 ,China)
 (Received 14 January 2008 ; revised manuscript received 25 May 2008)

Abstract

By means of an extended colored-noise approximation we investigated the effects of asymmetry of the potential and noises on the mean first-passage time $T_+(x_{sl} \rightarrow x_{s2})$ and $T_-(x_{s2} \rightarrow x_{sl})$ in two opposite directions in an asymmetric bistable system (here x_{sl} and x_{s2} are stable points of the asymmetric bistable system). Numerical results show that $T_+(x_{sl} \rightarrow x_{s2})$ decreases with increasing of τ_1 (the correlation time of multiplicative noise) and τ_2 (the correlation time of additive noise). $T_-(x_{s2} \rightarrow x_{s1})$ increases with increasing of τ_1 and τ_2 . The curves of $T_+(x_{sl} \rightarrow x_{s2})$ versus λ and $T_-(x_{s2} \rightarrow x_{s1})$ versus λ are single-peaked. $T_+(x_{sl} \rightarrow x_{s2})$ will increase when r increases, but $T_-(x_{s2} \rightarrow x_{s1})$ will decrease when r increases.

Keywords : extended colored-noise approximation , the mean first-passage time , multiplicative colored noise , additive colored noise

PACC: 0540, 0250

¹³⁹⁵

[†] Corresponding author. E-mail :hnitwb@163.com