基于钽酸锂晶体的太赫兹波参量振荡器 运转特性的研究*

孙 博^{1);} 刘劲松¹⁾ 凌福日¹⁾ 王可嘉¹⁾ 朱大庆¹⁾ 姚建铨²⁾¹⁾

1) 华中科技大学光电子科学与工程学院,武汉光电国家实验室,武汉 430074)

2) 天津大学精仪学院激光与光电子研究所,天津 300072)

(2008年8月19日收到,2008年9月21日收到修改稿)

基于晶格振动模受激电磁耦子散射过程的基本原理,对由 LTaO₃(LT)晶体组成的太赫兹波参量振荡器(TPO) 的输出调谐特性、增益和吸收损耗特性,以及基于硅棱镜阵列耦合装置的 THz 波输出特性等方面进行了详细的理 论研究和分析.研究结果表明,基于 LTaO₃ 晶体 A₁ 对称性晶格振动的特点以及自身优异的非线性光学特性,通过 利用短波长抽运光、适当提高抽运能量以及缩短 TPO 谐振腔腔长等方法,完全可以实现 LT-TPO 的高性能运转,证 明了 LiTaO₃ 晶体是一种性能优良的 TPO 工作介质.理论计算结果及方法为以后的 LT-TPO 实验工作提供了详实的 理论依据和实验指导.

关键词:非线性光学,THz 辐射,LiTaO3 晶体,电磁耦子 PACC:4265K,4265C,7136,7830G

1.引 言

从上个世纪 90 年代中期开始,基于极性晶体晶 格振动模受激电磁耦子散射过程的太赫兹波参量振 荡、发生器(Terahertz-wave Parametric Oscillator \ Generator,TPO \ TPG),逐渐被认为是一种行之有效 的 THz 波辐射源^[1-6].它具有体积小、结构紧凑、操 作简单、可室温运转等优点,并可产生连续可调谐、 高相干性的窄带 THz 波辐射.与基于二阶非线性效 应的差频产生 THz 波技术相比,TPO 仅需要一个固 定波长的抽运源和一块价格相对低廉的非线性晶体 (例如 LiNbO₃ 晶体,LN),并且具有相对较高的非线 性转换效率^[7,8].因此,近年来这种成熟可靠、性能 优良的相干可调谐 THz 辐射源被广泛用于 THz 波精 细光谱分析、单频 THz 波成像以及生物医学诊断等 研究领域,并取得了令人瞩目的研究成果.

目前,人们通常利用电光调Q的Nd:YAG脉冲激光器的基频输出(1.064µm)作为抽运源,激发由LiNbO,晶体组成的LN-TPO,通过改变入射抽运光与

图1 常见的 TPO 实验装置图及 THz 波从硅棱镜出射示意图

TPO 谐振腔腔轴的夹角 θ_{ext} ,即调谐抽运光与振荡的 Stokes 光在晶体中的相位匹配夹角 $\theta(\theta = \theta_{ext})$ 满足 Snell 定理)来实现 THz 波调谐输出 ,其典型的 TPO 实验装置如图 1 所示^[4,5].然而 ,LiNbO₃ 晶体光损伤 阈值较低 ,即使采用的是波长较长的抽运源 ,长时间 作用也会发生明显的光折变损伤现象 . 这不仅会严 重影响 TPO 在受激振荡过程中的非共线相位匹配

^{*}武汉光电国家实验室创新基金和国家重点基础研究发展计划(973)项目(批准号 2007CB310403)资助的课题。

[†] E-mail : sunbo.xt@gmail.com or sunbo_xt@yahoo.com.cn

情况,导致三波转换效率下降和振荡阈值增高,而且 对产生的 THz 波的光束质量也存在十分不利的影 响.因此,目前在实验中常采用掺杂浓度为 5mol% 的 MgO:LiNbO3 晶体来代替普通的 LiNbO3 晶体. MgO:LiNbO3 晶体不仅抗光折变能力很强,而且具 有较大的拉曼散射截面,使得 TPO 在这种与晶格振 动模有关的受激散射过程中具有较高的增益,从而 可以实现更宽的 THz 波调谐范围和更高的 THz 波输 出功率^[5].然而,目前高质量、大体积的 MgO: LiNbO3 晶体生长条件较为苛刻,晶体往往由于掺杂 浓度不均匀、有明显的生长条纹等质量问题,在抽运 光作用下其内部很容易发生无法恢复的光损伤,严 重影响了 TPO 的正常运转.

与 LiNbO₃ 晶体晶格结构相似、同属于 *C*₃, 点群 的钽酸锂晶体(LiTaO₃,LT),具有透光范围广,非线 性系数大,抗光折变光损伤阈值高,以及高质量、大 尺寸的晶体生长技术较为成熟等显著优点.值得注 意的是,LiTaO₃ 晶体的*A*₁ 对称性晶格振动模的性质 与 LiNbO₃ 晶体的极为相似,都同时具有拉曼和红外 活性,因此完全有可能作为 TPO 的工作介质.但迄 今为止,对于基于 LiTaO₃ 晶体的 TPO 工作运转特性 的研究鲜有报道.本文根据非共线受激电磁耦子散 射过程的基本原理,对由 LiTaO₃ 晶体组成的太赫兹 波参量振荡器(LT-TPO)的调谐输出特性、受激增 益、吸收损耗特性,以及基于硅棱镜耦合输出装置的 THz 波输出方向性等方面进行了详细的理论研究和 分析,并与 LN-TPO 进行了简单的对比,其研究结果为 以后的实验工作提供了必要的理论支持和数据参考.

2. 理论计算与分析

2.1. LT-TPO 的角度调谐输出特性

TPO 是基于极性晶体中同时具有拉曼和红外活性的晶格振动模,在小波矢、长波长处的小角度受激电磁耦子(Polariton,又称极化声子)散射过程来实现 THz 波产生的.该受激散射过程同时兼有参量和拉曼散射效应,与极性晶体的前向拉曼散射过程密切 相关.电磁耦子是横向极性晶格振动模(transverse optical mode,TO 模)与光波(电磁波)的相互耦合作 用的产物,它既有机械振动的特性(即声子特性),又 有电磁振动的特性(即光子特性).在大波矢处时,电 磁耦子具有明显的机械振动特性,以类声子的形式 传播,其散射过程与普通拉曼散射过程类似;而在小 波矢情况下,电磁耦子则具有明显电磁特性,它是以 类光子形式传播的相干远红外辐射,即为我们所感 兴趣的 THz 波,其散射过程主要与参量作用类似. 对于 LiTaO₃ 晶体,参与受激散射过程产生 THz 波的 是具有 A_1 对称性、振动频率为 $\omega_{TO} \approx 200 \text{ cm}^{-1}$ 的晶 格振动模.该晶格振动模的色散特性和三波非共线 相位匹配特性共同决定了 LT-TPO 的调谐特性.晶格 振动模的色散曲线(在小波矢情况下,电磁耦子的色 散曲线与该晶格振动模的色散曲线基本一致)可由 下式计算得出^[9]:

$$k_{\text{Polariton}}^{2}(\omega) = 4\pi^{2}\omega^{2}\left(\varepsilon_{\infty} + \sum_{j} \frac{S_{j}\omega_{0j}^{2}}{\omega_{0j}^{2} - \omega^{2} - i\omega\Gamma_{j}}\right),$$
(1)

式中 , $k_{Polariton}$ 为电磁耦子的波矢或传播常数 , ω_{0j} 为 LiTaO₃ 晶体 A_1 对称性晶格振动模的本征振动频率 , S_j 为振子强度 , Γ_j 为阻尼系数 , ω_{∞} 为高频介电常 数.需要注意的是 ,本文中的数值模拟所采用的参数 数值 ,皆为红外反射光谱技术测得^{10]}.

在受激电磁耦子散射过程中,入射抽运光 ω_{p} 、 散射的 Stokes 光 ω_{s} 和 THz 波 ω_{T} 同时满足能量守恒 条件

$$\omega_{\rm p} = \omega_{\rm s} + \omega_{\rm T} , \qquad (2)$$

以及非共线相位匹配条件

$$\boldsymbol{k}_{\mathrm{p}} = \boldsymbol{k}_{\mathrm{s}} + \boldsymbol{k}_{\mathrm{T}}. \qquad (3)$$

上式可改写为余弦定理形式

$$k_{\rm T}^2 = k_{\rm p}^2 + k_{\rm s}^2 - 2k_{\rm p}k_{\rm s}\cos\theta$$
 , (4)

其中 $k_i = \frac{\omega_i}{c} n_i$, n_i 为折射率 ,i = p, s, T分别代表抽运光、Stokes 光和 THz 波 , θ 为抽运光与 Stokes 光在晶体内部的相位匹配角.

在小角度情况下,通过连续改变相位匹配 θ,可 以根据(4)式计算出一系列由抽运光、Stokes 光和 THz 波三波共同决定的相位匹配曲线.这些相位匹 配曲线与晶格振动模(电磁耦子)色散曲线的交点, 可以确定在此受激散射过程中可产生的 THz 波以 及 Stokes 光的频率大小和调谐范围,这就是常见的 TPO 角度调谐方式的基本原理.而对于不改变相位 匹配角 θ,只改变抽运光波长来实现 THz 波调谐输 出的 TPO 调谐方式,我们定义为抽运光波长调谐方 式,其详细内容我们已在其他文章中有详细报 道^[11].需要特别强调的是,TPO 的角度调谐工作原 理与常见的角度调谐光学参量振荡器 OPO 的工作 原理有着本质的不同 :OPO 是通过角度调谐 利用非 线性晶体的双折射效应来实现三波相位匹配的 ,从 而实现波长的调谐输出,而 TPO 是根据晶体晶格振动模的角度色散特性来确定其调谐关系的.

图 2 (a)LiTaO₃ 和(b)LiNbO₃ 晶体振动频率最低的 A_1 对称性晶格振动模的色散曲线与当抽运波长为 1.064 μ m 时三波相位匹配曲线的关系图

图 3 基于 LiTaO₃和 LiNbO₃ 晶体的 TPO 在相同条件下可产生的 THz 波频率

图 χ a) 是当抽运波长为 1.064 μ m、相位匹配角 θ 分别为 0.8°, 1°和 1.2°时, 三波相位匹配曲线与 LiTaO₃ 晶体 $\omega_{TO} = 200 \text{ cm}^{-1}$ 晶格振动模色散曲线的 相对关系.从图中可以看出,此时对应的 Stokes 频移 分别约为 46.3 cm⁻¹, 57 cm⁻¹和 67.3 cm⁻¹,也就是 说可以产生的 THz 波频率分别为 1.39 THz, 1.71 THz 和 2.02 THz.而对于 LiNbO₃ 晶体而言,由于参与 受激散射过程的 A_1 对称性晶格振动模的频率(ω_{TO} = 248 cm⁻¹)较大,所以在相同相位匹配角 θ 情况 下,可以产生的 THz 波频率也高于 LiTaO₃ 晶体,分 别为 1.86 THz,2.29 THz 和 2.69 THz,如图 2(b)所 示.图 3 为在不同波长的抽运光作用下,当相位匹配 角 $\theta \approx 0.1^{\circ}$ —1.5°之间连续变化时两种晶体可产生 的 THz 波频率的三维立体图.从图中可以看出,在 相同情况下 LT-TPO 不仅可产生的 THz 波频率要小 于 LN-TPO 的情况,而且在某一角度调谐范围内变 化时,THz 波调谐范围 Δf 也要小于 LN-TPO(如图 4 所示),也就是说 LT-TPO 的调谐速度较低.但从另一 方面讲,LT-TPO 更容易实现 THz 波的精细调谐输 出,这在太赫兹精细光谱技术等实际应用中具有重 要的意义.从图 4 还可以看出,THz 波频率调谐范围 随抽运光波长的减小而逐渐增加.因此,在相同角度 调谐范围情况下,通过选用波长较短的抽运光作用 于 LT-TPO,完全可以获得较宽的 THz 波调谐范围.

另一方面,如果要获得某一特定频率的 THz 波 输出,对于 LT-TPO 来说需要较大的相位匹配角度才 能实现.较大的相位匹配角将导致抽运光、振荡的 Stokes 光以及 THz 波的互作用空间变小,这将严重 影响 TPO 的转换效率和振荡阈值.然而,对于 TPO 这种非共线受激振荡过程,抽运光与振荡光之间较 大的夹角可以使得 LT-TPO 采用更短的谐振腔就足 以将抽运光和振荡的 Stokes 光在腔镜处分开来,从 而可以在一定程度上缓解三波互作用空间减小给 TPO 运转特性带来的不利影响.

图 4 当 θ 在 0.1°—1.5°之间变化时 ,LT-TPO 与 LN-TPO 的 THz 波频率调谐范围在不同波长的抽运光作用下的变化情况

2.2. LT-TPO 的增益、损耗特性

TPO 的频率调谐特性除了由晶体晶格振动模的 色散特性,以及在此受激散射过程中的三波非共线 相位匹配特性决定之外,还与 THz 波在此过程中的 增益及损耗特性密切相关.根据相关文献报道^[5,12], 如果将参与受激散射过程的三波以及晶格振动位移 场均按照单色平面波近似处理,那么 THz 波和 Stokes 光在受激电磁耦子散射过程中的增益系数 g_T,g_S 可表示为

 $g_{\rm T} = g_{\rm S} \cos \varphi$

 $= \frac{\alpha_{\rm T}}{2} \left\{ \left[1 + 16\cos\varphi \left(\frac{g_0}{\alpha_{\rm T}}\right)^2 \right]^{1/2} - 1 \right\}, \quad (5)$

其中 φ 为 THz 波与抽运光的相位匹配夹角 , a_T 为 THz 波在晶体中的吸收系数 ,其表达式为

$$\alpha_{\rm T} = 2 + {\rm Im}k_{\rm T} +$$

$$= 2 \frac{\omega}{c} {\rm Im} \left(\epsilon_{\infty} + \sum_{j} \frac{S_{j} \omega_{0j}^{2}}{\omega_{0j}^{2} - \omega^{2} - {\rm i}\omega \Gamma_{j}} + M(\omega) \right)^{1/2}$$

$$(6)$$

$$g_{0} = \sqrt{\frac{\pi\omega_{s}\omega I_{p}}{2c^{3}n_{p}n_{s}n_{T}}} \left(d'_{E} + \sum_{j} \frac{S_{j}\omega_{0j}^{2}d'_{0j}}{\omega_{0j}^{2} - \omega^{2}} \right) , (7)$$

式中 I_{p} 为入射抽运光的能量密度 $,g_{0}$ 为低损耗极限 情况下的参量增益 $,d'_{E}$ 和 d'_{O} 分别为二阶和三阶非 线性过程中的非线性系数(它们都与晶格振动模有 关), $M(\omega)$ 为与 LiTaO₃ 晶体微结构缺陷有关的低频 振动模阻尼系数.

图 5 当抽运光波长为 1.064 µm ,*I*_p = 200 MW/cm² 时 ,THz 在 LT , LN 晶体中的增益、吸收特性

图 6 (a) 抽运能量和(b) 抽运波长对 LT 晶体中 THz 波增益特性的影响

图 5 为当抽运光波长为 1.064 µm、抽运能量密 度为 $I_p = 200 \text{ MW/cm}^2$ 时, THz 波在 LiTaO₃ 和 LiNbO₃ 晶体中的增益和吸收特性,从图中可以看出,THz 波 在 LiTaO₃ 中的增益系数相对较小 ,而吸收系数相对 较大,并且增益曲线峰值位置更接近于低频区.然 而 TPO 受激散射过程与普通光学参量过程以及受 激拉曼散射过程类似,都可以通过提高抽运光能量 的方法来改善其运转特性.图 6(a)为当抽运能量密 度分别为 100 MW/cm² ,200 MW/cm² 和 400 MW/cm² 时,LiTaO, 晶体中 THz 波增益系数的变化情况.从图 中可以看出 抽运光能量越高 JTHz 波的增益系数就 越大,且增益曲线的峰值位置朝高频方向移动,另 外从(5)(7)式可以看出,THz波的增益系数还与 抽运光的波长有关.图 (f b)为当抽运光波长分别为 0.532 µm ,1.064 µm 和 1.57 µm ,抽运能量密度为 I. $= 200 \text{ MW/cm}^2$ 时 THz 波的增益特性, 从图中可以看 出 抽运波长越短,THz 波的增益系数就越大,甚至 可以在不提高抽运能量的前提下 仅靠利用波长较 短的抽运光就可以使 THz 波获得较高的增益 从而 可以提高 TPO 的运转效率和降低其振荡阈值.

2.3. LT-TPO 基于硅棱镜耦合装置的 THz 波输出方 向特性

由于 TPO 中三波波矢的大小满足 $k_p > k_s \gg k_T$, THz 波的传播方向与谐振腔腔轴方向(即 Stokes 光 振荡方向)的夹角 β 较大,因此产生的 THz 波是从 晶体的侧面方向输出(见图 1).由于 THz 波在 LiTaO₃ 晶体中的折射率较大(大于 6.5),因此在晶 体与空气的交界面处的全反射角(约为 8.8°)比 LiNbO₃ 晶体的情况时还要小^[13].在 LT-TPO 中,产生

的 THz 波相对于 LiTaO₃ 晶体侧面法线方向的入射 角约为 20°左右,因此它在晶体内部将发生全反射而 无法输出,进而被晶体吸收损耗掉.为了避免上述不 利情况的发生,在 LT-TPO 中也应像 LN-TPO 中那 样,采用高电阻率、在 THz 波波段色散较小的硅(折 射率近似为 3.4)制成棱镜阵列作为 THz 波的输出 耦合装置.通过选取合适的硅棱镜底角 α ,不仅可以 提高 LT-TPO 的 THz 波输出耦合效率,还可以使 THz 波基本垂直于棱镜侧面输出(辐射角或偏折角 $\delta \approx$ 0°,如图 1 所示),使其具有良好的输出方向性.

图 7 采用不同波长抽运光作用 LT/LN-TPO 时, 硅棱镜所应选择 的最佳底角

假设当波长为 200 μm 的 THz 波产生时是垂直 于硅棱镜输出面传播的,此时所对应的硅棱镜底角 定义为最佳底角 α₀.根据在 TPO 中的三波非共线相 位匹配条件式、能量守恒条件以及 Snell 定理,我们 计算了当不同波长的抽运光作用于 TPO 时所对应 的最佳硅棱镜底角,如图 7 所示.从图中可以看出,

图 8 LT-TPO 基于硅棱镜耦合装置时 ,产生的 THz 波输出方向性 (a)辐射/偏折角 δ ;(b)真实辐射角($\delta - \theta_{ext}$)

最佳棱镜底角 α_0 随着抽运光波长的增加而减小,并 且在相同抽运光作用下,LT-TPO 所需选择的硅棱镜 底角一般小于 LN-TPO 所需选择的硅棱镜底角.对 于常见的利用 Nd :YAG 激光器的基频输出作为抽运 源的情况,LN-TPO 的硅棱镜底角一般选择 40^{d41},而 此时 LT-TPO 对应的硅棱镜底角一般选择 39°.

图 9 THz 波在 100—600 µm 之间变化时,其辐射角变化范围与 泵浦光波长的变化关系

从 TPO 硅棱镜耦合输出的连续调谐 THz 波 ,其 输出方向的稳定性在各种实际应用中至关重要.图 8(a)为基于不同波长抽运光所对应的最佳硅棱镜底 角情况下 ,从 LT-TPO 的硅棱镜出射的 THz 波辐射角 δ 的变化情况.图中在 $\lambda_{\rm T}$ -δ 面上的三条曲线 ,分别 为当抽运波长为 0.532 μ m ,1.064 μ m 和 1.57 μ m 时 三维立体图在该平面上的投影.从图中可以看出 , THz 波的辐射角 δ 随其出射波长的改变而发生明显 的变化(变化幅度比 LN-TPO 情形要明显得*多*^[4]), 尤其是在采用波长较长的抽运光作用下.然而 ,TPO 一般是通过旋转 TPO 谐振腔改变 θ_{ext} 来实现 THz 波 的调谐输出 ,而从硅棱镜出射的 THz 波的偏折方向 与 TPO 谐振腔转动的方向正好相反 ,所以在实际情 况中 THz 波的实际辐射角应为 $\delta - \theta_{ext}$,其计算结果 如图 & b)所示. 图 9 为当 THz 波波长在 100—600 μ m 之间变化时 ,THz 波的辐射角变化范围 $\Delta\delta$ 在不 同波长的抽运光作用下的变化情况. 从图中可以看 出 ,抽运光波长越短 ,THz 波在波长调谐范围内的辐 射角变化范围 $\Delta\delta$ 就越小 ,也就是说其方向性就越 好.而在考虑 TPO 谐振腔自身旋转的情况时 ,其辐 射角实际变化范围 $\Delta\delta$ '明显变小.

3. 结 论

本文从受激电磁耦子散射原理出发,对基于 LiTaO₃ 晶体的 TPO 工作运转特性进行了系统的理 论研究.研究结果表明,虽然由于 LiTaO₃ 晶体参与 受激散射过程的 A₁ 对称性晶格振动模自身固有的 特性,限制了 LT-TPO 在频率调谐、增益等方面的运 转性能,但凭借 LiTaO₃ 晶体优良的非线性光学性 能,通过选取较短的抽运波长、适当提高抽运能量, 以及采用较短的谐振腔等措施对其进行整体优化设 计,那么 LT-TPO 将会在 THz 波精细调谐、传播方向 稳定性以及输出功率等方面完全可以达到或超过 LN-TPO 的性能水平,证明了 LiTaO₃ 晶体是一种性 能优良的 TPO 工作介质.本文的理论计算及分析结 果,不仅为 LT-TPO 的实验研究提供了必要的理论依 据和实验参考,而且还为研究基于其他非线性晶体 的 TPO 的运转特性提供了一种研究方法.

- [1] Kawase K , Ogawa Y , Watanabe Y , Inoue H 2003 Opt . Express 11 2549
- [2] Guo R X , Akiyama K , Minamide H 2007 Appl. Phys. Lett. 90 121127
- [3] Stothard D J M, Edwards T J, Walsh D, Thomson C L, Rae C F, Dunn M H, Browne P G 2008 Appl. Phys. Lett. 92 141105
- [4] Kawase K, Shikata J, Minamide H, Imai K, Ito H 2001 Appl. Opt. 40 1423
- [5] Shikata J, Kawase K, Karino K, Taniuchi T, Ito H 2000 IEEE Trans. Microwave Theory Tech. 48 653
- [6] Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese] 张 显斌、施 卫 2006 物理学报 55 5237]

- [7] Sun B, Yao J Q, Wang Z, Wang P 2007 Acta Phys. Sin. 56 1390
 (in Chinese)[孙 博、姚建铨、王 卓、王 鹏 2007 物理学报 56 1390]
- [8] Ding Y J 2007 IEEE Journal of Selected Topics in Quantum Electronics 13 705
- [9] Puthoff H E , Pantell R H , Huth B G , Chacon M A 1968 J. Appl. Phys. 39 2144
- [10] Barker A S , Jr. , Ballman A A , Ditzenberger J A 1970 Phys. Rev. B **2** 4233
- [11] Sun B , Liu J S , Li E B 2008 Opt . Express 16 20817
- [12] Schwartz U T , Maier M 1998 Phys. Rev. B 58 766
- [13] Edwards T J , Walsh D , Spurr M B , Rae C F , Dunn M H 2006 Opt. Express 14 1582

Investigation of the operation characteristics of terahertz-wave parametric oscillator based on LiTaO₃ *

Sun Bo¹)[†] Liu Jin-Song¹) Ling Fu-Ri¹) Wang Ke-Jia¹) Zhu Da-Qing¹) Yao Jian-Quan²)¹)

1 X College of Optoelectronic Science and Engineer , Wuhan National Laboratory for Optoelectronics ,

Huazhong University of Science and Technology, Wuhan 430074, China)

2) Institute of Laser and Optoelectronics, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China)

(Received 19 August 2008 ; revised manuscript received 21 September 2008)

Abstract

Based on the basic principle of the stimulated polariton scattering process, the operation characteristics of terahertz-wave parametric oscillators (TPOs) using the LiTaO₃(LT) crystal, including the ability of frequency-tuning, THz gain and absorption coefficient and the output directivity of THz wave through the arrayed Si-prism coupler, is theoretically discussed in detail. It is found that the excellent performance of LT-TPO can be achieved through the employment of the short-wavelength pump, the high pump energy and short cavity for TPO, based on the characteristics of the A_1 -symmetry polariton mode and the outstanding nonlinear optical properties of LiTaO₃, which is then proved to be a promising candidate material for TPO. The research results provide a useful guide for the future practical operation of LT-TPO.

Keywords : nonlinear optics , THz radiation , LiTaO₃ , polariton **PACC** : 4265K , 4265C , 7136 , 7830G

^{*} Project supported by the Foundation for Innovative Research of Wuhan National Laboratory for Optoelestronics and the National Basic Research Program of China (Grant No. 2007CB310403).

[†] E-mail : sunbo.xt@gmail.com or sunbo_xt@yahoo.com.cn