电子与类铍 N³⁺和 O⁴⁺离子碰撞激发截面 的相对论扭曲波计算*

刘延君¹) 蒋 军¹) 董晨钟^{1,2}, 颉录有¹)

1 ● 西北师范大学物理与电子工程学院,兰州 730070)
 2 ● 西北师范大学与中国科学院近代物理研究所极端环境原子分子物理联合实验室,兰州 730070)

(2008 年 6 月 3 日收到 ,2008 年 8 月 8 日收到修改稿)

采用全相对论扭曲波方法,系统地计算了类铍 N³⁺和 O⁺⁺离子从基态到 $2s_{2p}$ 和 $2p^{2}$ 的各激发态以及从亚稳态 到 $2p^{2}$ 各激发态的电子碰撞激发截面,详细地讨论了靶态的关联效应对激发截面的影响.结果表明:对于 2s-2p 的 单电子激发,在低能碰撞时,靶态的电子关联效应起非常重要的作用,且使得激发截面降低;而高能碰撞时,靶态波 函数的描述对连续态波函数的影响比较小,对激发截面影响也比较小.对于 $2s^{2}-2p^{2}$ 的双电子激发,其中基态 $2s^{2}+S_{0}$ 到 J = 0的 $2p^{2}$ $^{3}P_{0}$, $^{1}S_{0}$ 的激发截面较大,其主要原因是未离子态波函数与基组态波函数的混合,但是其他几个激发 的激发截面较小.

关键词:全相对论扭曲波方法,电子碰撞激发,电子关联效应 PACC:3120,3450H,3480D

1.引 言

电子与离子(原子)碰撞激发过程是原子物理学中的一个基本的物理过程,也是研究原子内部结构和性质的重要手段和方法之一.电子碰撞激发截面和速率系数等参数,在热核聚变实验、X射线激光等高温等离子体以及天体等离子体的温度、密度以及粒子数分布的诊断中是非常重要的.近年来,随着电子束离子阱(EBIT)¹¹、电子能损谱仪^[2-41]、原子阱^[5]和同步辐射探测器^{6-77]}等实验技术和设备的发展, 有关电子碰撞过程的实验研究变得十分活跃,同时实验研究也给理论工作带来了新的机遇和挑战.

类铍离子的基组态为 $1s^22s^2$,是一个具有复杂 电子关联效应的四电子系统.在各种热等离子体环 境中,如行星状星云和活动星系核等天体等离子体、 太阳等离子体以及双星系统和冷星等离子体等²¹, 类铍等电子系列离子都是一个重要的离化态,在这 些天文环境中人们经常能够发现大量的类铍离子的 $\Delta n = 0(2-2)$ 谱线,且常用这些谱线强度的比值来 诊断等离子体状态.然而,为了精确地模拟这些谱线的强度,各种高精度的电子碰撞激发截面是迫切需要的.另外,在电子回旋共振(ECR)离子源中,处在 亚稳态 2s2p³P的类铍离子也是其重要的组成部 分^[s].离子从 ECR 离子源到相互作用区需要几微 秒 亚稳态离子的寿命^[9]比离子从 ECR 离子源到相 互作用区所需要的时间要长得多,确定从基态激发 的散射截面必须考虑靶态的亚稳态的散射截面.同 时,测量亚稳态的碰撞激发截面也要区分从基态激 发截面一直是人们很感兴趣的工作^[10].

从 20 世纪 70 年代开始,一些理论工作者就用 Coulomb-Born (CB)方法、Coulomb-Born-Oppenheimer (CBO)方法、扭曲波(DW)方法和密耦合(CC)方法 计算了类铍离子的电子碰撞激发截面.例如文献 [11]考虑了电子交换效应,用 CB 方法计算了 C^{2+} , N^{3+} , O^{4+} 和 Ne^{6+} 离子的 $2s^{2-1}S-2s2p^{1}P$, $2s^{2-1}S-2s3p^{-1}P$, $2s2p^{-3}P-2p^{2-3}P$, $2s2p^{-3}P-2s3s^{-3}S$, $2s2p^{-1}P-2p^{2-1}D$ 和 $2s2p^{-1}P-2p^{2-1}S$ 等 6 个偶极允许跃迁;文献 [12]用 CB,CBO 和 DW 方法也对于此跃迁过程进行

^{*} 国家自然科学基金(批准号:10876028,10774122)、高等学校博士学科点专项科研基金(批准号:20070736001)、兰州重离子加速器国家 实验室原子核理论中心基金和西北师范大学科技创新工程(批准号:NWNU-KJCXGC-03-21)资助的课题。

[†] 通讯联系人.E-mail dongcz@nwnu.edu.cn

了研究; 文献[13,14]用 CBO 方法计算了类铍等电 子系列离子(Z = 14-74)在 2s²,2p² 和 2s2p 组态之 间跃迁的碰撞强度,并指出低能入射电子的电子交 换是重要的 ;文献 15—19 J用 DW 方法和 CC 方法计 算了类铍离子 $2s^{2-1}S$ — $2s^{2}p^{-1}P$ 和 $2s^{2-1}S$ — $2s^{2}p^{-3}P$ 的 碰撞激发截面.1998 年, Chen 等^[20]用相对论扭曲波 方法计算了类铍 O⁴⁺ 离子从基态 2s²¹So 到各激发态 $2s2p {}^{3}P_{0,1,2}$, $P_{1,2}p^{2,3}P_{0,1,2}$, D_{2} 和 S_{0} 的碰撞激发截 面.最近 .Daw 等^[6]利用同步光子探测技术测量了阈 值附近 C²⁺ 1s²2s2p ³P-1s²2p²³P电子碰撞激发截面, 并与文献 21,22 J用不同模型的 R 矩阵方法得到的 计算结果作了比较,但理论和实验之间仍有很大的 误差,另外,目前已有的理论计算大都集中在讨论不 同方法下从基态到 2s2p 的单电子碰撞激发截面,但 是对于从基态到 2p² 的双电子激发以及从亚稳态到 高激发态的激发过程的研究还较少.

本文在我们最新发展的全相对论扭曲波程序以 及对同一等电子系列 C²⁺离子碰撞激发研究^[23]的基 础上,详细计算了类铍 N³⁺和 O⁴⁺离子的从基态以 及亚稳态的电子碰撞激发截面,系统讨论了电子关 联效应对从基态到 2p² 的双电子激发截面以及从亚 稳态到 2p² 的激发截面的影响.

2. 理论方法

相对论扭曲波方法中,体系从初态*i*跃迁到末态f电子碰撞激发截面 σ_{ij} 与碰撞强度 Ω_{ij} 的关系可写为^[23]

$$\sigma_{ij}(\varepsilon) = \frac{\pi a_0^2}{k_i^2 g_i} \Omega_{ij}(\varepsilon).$$
 (1)

这里 a_0 是 Bohr 半径 $g_i \in N$ 个电子初始靶离子态的统计权重 k_i 是入射电子的相对论波数 ,可以进一步表示为

$$k_i^2 = \varepsilon_i \left(1 + \frac{\alpha^2 \varepsilon_i}{4} \right) , \qquad (2)$$

式中 , ϵ_i 是入射电子的动能(以里德伯能量 R_y 为单位), α 是精细结构常数.相对论扭曲波碰撞强度 Ω_i (ϵ)为

$$\Omega_{ij}(\epsilon) = 8 \sum_{J} (2J + 1)$$

$$\times \sum_{I} \left| \Psi_{i} \right| \sum_{i=1}^{N+1} (V_{\text{Coul}} + V_{\text{Breit}}) |\Psi_{f}|^{2} (3)$$

其中 ,J = N + 1 个电子体系的总角动量 , κ 和 κ' 分别是入射和散射电子的相对论量子数 , V_{Cau} 是库仑

算符, V_{Breit} 是 Breit 算符, Ψ_i 和 Ψ_f 是碰撞系统的初态和末态的波函数,它们由靶离子加一个连续电子组成的N+1个电子的反对称化波函数构成,其形式为

$$\Psi = \frac{1}{(N+1)^{1/2}} \sum_{p=1}^{N+1} (-1)^{N+1-p} \times \sum_{M_{1},m} (J_{1}jM_{1}m; JM) \Phi_{\beta_{1}J_{1}}(x_{p}^{-1}) u_{eem}(x_{p}). (4)$$

这里, *C* 是 Clebsch-Gordon 系数, *J*_t, *j* 和 *J* 分别是 靶、连续电子和碰撞系统的总角动量量子数, $\Phi \in N$ 个电子靶态波函数, *u* 是连续旋量. 靶态波函数通过 基于全相对论理论框架下的多组态 Dirac-Fork 方法 及其相应的 Grasp92 程序包^[24]计算. 而连续电子的 波函数的计算我们采用了 RATIP 程序包^[25]中的 COWF 模块. 连续旋量 *u* 可以写为

$$u_{\varepsilon\kappa m} = \frac{1}{r} \begin{pmatrix} P_{\varepsilon\kappa}(r) \chi_{\kappa m}(\theta, \varphi) \\ i Q_{\varepsilon\kappa}(r) \chi_{-\kappa m}(\theta, \varphi) \end{pmatrix}, \quad (5)$$

其中 $_{ec}$ 是连续电子的动能 ,径向波函数的大、小分量 P_{ec} 和 Q_{ec} 满足耦合的 Dirac 方程

$$\left(\frac{\mathrm{d}}{\mathrm{d}r} + \frac{\kappa}{r}\right) P_{\varepsilon\kappa}(r) - \left(2c - \frac{\varepsilon}{c} + \frac{V(r)}{cr}\right) Q_{\varepsilon\kappa}(r)$$

$$= -\frac{X^{P}(r)}{r}, \qquad (6)$$

$$\left(\frac{\mathrm{d}}{\mathrm{d}r} - \frac{\kappa}{r}\right) Q_{\varepsilon\kappa}(r) + \left(-\frac{\varepsilon}{c} + \frac{V(r)}{cr}\right) P_{\varepsilon\kappa}(r)$$

$$= \frac{X^{Q}(r)}{r}. \qquad (7)$$

这里 ,*c* 是光速 , *V*(*r*)和 *X*(*r*)分别是直接势和交换 势^[26].

3.结果与讨论

3.1. 靶离子态波函数和能级

在目前关于 N³⁺ 和 O⁴⁺ 靶离子态的波函数、能 级以及电子碰撞激发截面的计算中,为了讨论关联 效应影响,我们采用了两种关联模型来描述靶态.模 型 A 包括 1s²2s²,1s²2p² 和 1s²2s2p 组态,共有 10 个 组态波函数;而模型 B 不仅包括模型 A 中的所有组 态而且还包括 1 个和 2 个电子从 2s 和 2p 占据轨道 激发到 3*l*(l = s,p,d)空轨道的所有组态,在这种情 况下共有 81 个组态波函数.为了确保激发截面的收 敛,在电子碰撞激发截面的计算中我们采用的最大 分波数为 | κ | = 40. 表 1 列出了类铍 N³⁺ 和 O⁴⁺ 离子的激发态 2s2p ${}^{3}P_{0,12}$, ${}^{1}P_{1}$ 和 2p²³P_{0,12}, ${}^{1}D_{2}$, ${}^{1}S_{0}$ 相对于基态 2s²¹S₀的能 级值,并与 NIST^[27]的数据以及目前已有的其他一些 理论作了比较.从表 1 可以看出,模型 A 的计算结 果与文献 20 28 的计算结果符合得很好,但是这些 结果都大于 NIST^[27]的数据 ;模型 B 的计算结果小于 模型 A 的计算结果 ,与 NIST^[27]的数据符合得更好 , 最大相对误差为 2.4% .由此可以清楚地看出 ,模型 B 的计算结果要好于模型 A 的计算结果 .

表 1 类铍 N³⁺, O⁴⁺ 离子的能级值及与已有的理论和实验结果的比较(单位为 eV)

能级	N ^{3 +}			04+					
	模型 A	模型 B	文献 27]	模型 A	模型 B	文献 20]	文献 28]	文献 27]	
$2s2p \ ^{3}P_{0}$	8.464	8.339	8.334	10.291	10.165	10.243	10.29	10.160	
$2s2p \ ^{3}P_{1}$	8.475	8.350	8.342	10.313	10.186	10.262	10.31	10.176	
$2\mathrm{s}2\mathrm{p}\ {}^3\!P_2$	8.496	8.370	8.359	10.356	10.229	10.303	10.36	10.215	
$2\mathrm{s}2\mathrm{p}\ ^{1}\!P_{1}$	17.748	16.578	16.204	21.283	20.098	20.668	21.28	19.688	
$2p^2 {}^3P_0$	22.054	21.937	21.764	26.774	26.653	26.884	26.77	26.466	
$2p^2 {}^3P_1$	22.064	21.947	21.773	26.795	26.675	26.865	26.79	26.485	
$2p^2 {}^3P_2$	22.084	21.967	21.788	26.836	26.716	26.901	26.83	26.519	
$2p^2 D_2$	24.773	23.758	23.418	30.099	29.108	29.670	30.09	28.730	
$2p^{2} {}^{1}S_{0}$	31.053	29.888	29.182	37.591	36.448	37.172	37.57	35.696	

3.2. N³⁺ 离子的基态电子碰撞激发

表 2 列出了类铍 N³⁺ 离子从基态到 $2s_{2p}$ 和 $2p^2$ 各激发态的电子碰撞激发截面以及部分已有的理论 计算结果,其中从基态 $2s^{21}S_0$ 到 $2s_{2p}$ ${}^{3}P_{0,1,2}$, P_1 的激发 为 s_{-p} 单电子激发,而从基态 $2s^{2-1}S_0$ 到 $2p^{2-3}P_{0,1,2}$, ${}^{1}D_2$, S_0 的激发为 s^2-p^2 双电子激发.下面我们从单电 子以及双电子激发两个方面来讨论电子关联效应对 激发截面的影响.

首先,对于单电子激发(包括从2s² ¹S₀到 2s2p ¹P₁的偶极允许的激发以及从2s² ¹S₀到 2s2p ³P_{0,12}的 自旋禁戒的激发),从表 2 中可以看出,从2s² ¹S₀到 2s2p ¹P₁的激发截面比其他单电子激发的截面大,而 且无论在低能区、中能区,还是在高能区,两种关联 模型的计算结果相差不大,并且与文献[11]的计算 结果符合得非常好;而对于从基态到 2s2p ³P_{0,12}的 自旋禁戒激发,在低能区模型 A 的计算结果大于模 型计算的激发截面的差别逐渐减小,在高能区两种 模型的计算结果趋于一致.对此我们做如下解释:低 能碰撞时,由于连续电子与靶态电子的关联效应比 较强,因此靶态波函数的描述对连续态波函数的影 响比较大,连续电子与靶态电子的关联效应起非常 重要的作用,而且关联使得激发截面降低,高能碰撞 时,由于连续电子与靶态电子的关联效应比较弱,靶 态波函数对连续态波函数的影响比较小,靶态波函 数精度的要求没有低能时的要求高,因此在高能区 两种模型计算的激发截面相差不大.另外,从表2中 提供的数据还可以发现,自旋禁戒激发截面之比接 近于1:3:5,该比值等于激发末态的统计权重之比.

其次,对于从基态到 $2p^2$ 的各激发态的双电子 激发,由于散射矩阵元中涉及到 3 个电子的变动,其 矩阵元一般为零,但由于 $2p^2$ 与 $2s^2$ 之间的强相互作 用及其与连续电子间的耦合,这些激发的激发截面 不再为零.下面我们分两种情况进行解释,即从基态 到 J=0 的双电子激发,以及从基态到 $J \neq 0$ 的双电 子激发.

对于从 $2s^2 {}^{1}S_0$ 到 J = 0的 $2p^2 {}^{3}P_0$, ${}^{1}S_0$ 激发,末离 子态波函数在模型 A 中的展开式为

 $|2p^{2} {}^{3}P_{0} = 0.8181 |2p^{2} {}^{3}P_{0} - 0.5750 |2p^{2} {}^{1}S_{0}$ $- 0.1145 \times 10^{-2} |2s^{2} {}^{1}S_{0} ,$

$$|2p^{2} S_{0} = 0.7883 | 2p^{2} S_{0} + 0.5537 | 2p^{2} P_{0} - 0.2681 | 2s^{2} S_{0} .$$

而在模型 B 中的展开式为

 $|2p^{2} {}^{3}P_{0} = 0.8178 |2p^{2} {}^{3}P_{0} - 0.5743 |2p^{2} {}^{1}S_{0}$ $- 0.1246 \times 10^{-2} |2s^{2} {}^{1}S_{0} + \dots ,$ $|2p^{2} {}^{1}S_{0} = 0.7823 |2p^{2} {}^{1}S_{0} + 0.5490 |2p^{2} {}^{3}P_{0}$

2323

表 2	类铍 N ³⁺ 离子从基态 2s	² 到 2s2p 和 2p ² 的电子碰撞激发截面(单位为 10 ⁻¹⁸ cm ²)
-----	-----------------------------	---	---

能级	模型	$\varepsilon_i = 30 \text{ eV}$	$\varepsilon_i = 50~{\rm eV}$	$\varepsilon_i = 100 \text{ eV}$	$\varepsilon_i = 150 \text{ eV}$	$\epsilon_i = 200 \text{ eV}$	$\varepsilon_i = 500 \text{ eV}$
$2s2p {}^{3}P_{0}$	А	1.356	6.387×10^{-1}	1.785×10^{-1}	7.353×10^{-2}	3.711×10^{-2}	3.419×10^{-3}
	В	6.107×10^{-1}	3.160×10^{-1}	1.124×10^{-1}	5.609×10^{-2}	3.204×10^{-2}	3.478×10^{-3}
$2s2p \ ^{3}P_{1}$	А	4.075	1.919	5.354×10^{-1}	2.204×10^{-1}	1.112×10^{-1}	1.027×10^{-2}
	В	1.818	9.499×10^{-1}	3.383×10^{-1}	1.685×10^{-1}	9.613×10^{-2}	1.046×10^{-2}
$2s2p \ ^{3}P_{2}$	А	6.906	3.270	9.090×10^{-1}	3.719×10^{-1}	1.868×10^{-1}	1.710×10^{-2}
	В	2.931	1.574	5.675×10^{-1}	2.824×10^{-1}	1.609×10^{-1}	1.739×10^{-2}
$2s2p P_1$	А	1.642×10^2	1.244×10^2	7.511×10^{1}	5.319×10^{1}	4.108×10^{1}	1.593×10^{1}
	В	1.601×10^2	1.295×10^2	7.963×10^{1}	5.675×10^1	4.396×10^{1}	1.702×10^{1}
文献 11]		1.874×10^2	—	7.979×10^{1}	5.988×10^{1}	4.882×10^{1}	2.461×10^{1}
$2p^{2} {}^{3}P_{0}$	А	1.730×10^{1}	1.180×10^{1}	3.063	1.191	7.450×10^{-1}	1.077×10^{-1}
	В	1.949×10^{1}	1.262×10^{1}	3.389	1.632	7.967×10^{-1}	1.297×10^{-1}
$2p^{2} {}^{3}P_{1}$	А	2.843×10^{-1}	1.139 × 10 ⁻¹	2.313×10^{-2}	7.604×10^{-3}	3.215×10^{-3}	1.534×10^{-4}
	В	5.199×10^{-2}	2.940×10^{-2}	9.470×10^{-3}	4.436×10^{-3}	2.336×10^{-3}	1.497×10^{-4}
$2p^2 {}^3P_2$	А	4.691×10^{-1}	1.911×10^{-1}	3.910×10^{-2}	1.282×10^{-2}	5.403×10^{-3}	2.594×10^{-4}
	В	8.202×10^{-2}	4.836×10^{-2}	1.590×10^{-2}	7.474×10^{-3}	3.946×10^{-3}	2.682×10^{-4}
$2p^2 D_2$	А	8.865×10^{-1}	6.654×10^{-1}	4.450×10^{-1}	3.397×10^{-1}	2.747×10^{-1}	1.255×10^{-1}
	В	1.837	1.588	1.115	8.839×10^{-1}	6.680×10^{-1}	2.958×10^{-1}
$2p^{2} {}^{1}S_{0}$	А	5.552×10^{1}	5.172×10^{1}	3.240×10^{1}	2.867×10^{1}	1.450×10^{1}	2.437×10^{-1}
	В	5.463×10^{1}	5.156×10^{1}	3.191×10^{1}	2.807×10^{1}	1.325×10^{1}	1.963×10^{-1}

可以看出,在模型A中末离子态2p²³P₀,¹S₀是 $2p^{2}P_{0} 2p^{2}S_{0} n 2s^{2}S_{0} n 4s^{2}S_{0} n 4s^{2}S_{0}$ 的线性组合 模型 B 中离子态 $2p^{2} P_{0} S_{0}$ 除了 $2p^{2} P_{0} P_{0}$, $2p^{2} S_{0}$ 和 $2s^{2} S_{0}$ 的线性组合 外 同时还混有 2s3s ¹S₀ 等组态.由于直接散射 矩阵元 $2p^2 \epsilon_j k_j \left| \frac{1}{r_{12}} \right| 2s^2 \epsilon_i k_i$ 为零,而矩阵元 $2s^2 \epsilon_j k_j \left| \frac{1}{r_{12}} \right| 2s^2 \epsilon_i k_i$ 类似于弹性散射矩阵元,其具 有较大的积分值 因此从基态到 $2p^2 J = 0$ 的激发截 面主要来自于该矩阵元的贡献,进一步而言,在不同 的关联模型中 激发截面的差别主要取决于末离子 态中组态波函数 $2s^2$ 1S_0 混合系数的不同. 对于末离 子态³ P_0 模型 A 中2s²¹S₀的混合系数为 – 0.1145 × 10⁻² 而在模型 B 中的混合系数为 - 0.1246 × 10⁻², 模型 B 中 $2s^{21}S_0$ 的混合系数的绝对值大于在模型 A 中的混合系数的绝对值,而且在模型 B 中还混有 2s3s ¹S₀等组态 ,所以从表 2 可以看出 ,对于从基态 到2p² ³P₀的双电子激发 ,模型 B 计算的激发截面比 模型 A 计算的激发截面大. 另外,对于末离子态

2p²¹S₀,模型A中组态2s²¹S₀的混合系数为 -0.2681 模型B中的混合系数为-0.2596,该混合 系数的绝对值在模型A中比在模型B中大,所以表 2中模型A计算的激发截面比模型B计算的激发截 面大.

对于从 $2s^{21}S_0$ 到 $2p^{21}D_2$, $P_{1,2}$ 的双电子激发,由于 末离子态中不混合组态 $2s^{21}S_0$,这些激发的激发截面 主要取决于与连续电子的耦合,从表 2 可以看出,这 些激发的激发截面比基态到 J = 0的双电子激发截 面小 2—3 个数量级.

3.3. O⁴⁺ 离子基态的电子碰撞激发

表 3 列出了本文利用模型 A 和模型 B 计算得 到类铍 O⁴⁺离子从基态到 2s2p 和 2p² 各激发态的电 子碰撞激发截面,同时也一并列出了文献[20,28] 的计算结果,其中文献 20 用了 5 种关联模型,在表 3 中我们选择了最简单的模型 I 和最复杂的模型 V 作比较.与 N³⁺离子情况类似,我们也从两个方面进 行讨论,即单电子激发和双电子激发. 表 3 类铍 0^{4+} 离子从基态到 $_{2s2p}$ 和 $_{2p^2}$ 的各激发态电子碰撞激发截面(单位为 10^{-18} cm²)

能级	ϵ_i/eV	模型 A	模型 B	文献 20] 模型Ⅰ	文献 20] 模型Ⅴ	文献 28]
$2s2p {}^{3}P_{0}$	10	1.546	6.732×10^{-1}	1.669	1.463	1.619
	75	2.108×10^{-1}	1.117×10^{-1}	2.144×10^{-1}	1.902×10^{-1}	2.125×10^{-1}
	500	3.934×10^{-3}	3.905×10^{-3}	3.950×10^{-3}	3.840×10^{-3}	3.962×10^{-3}
$2s2p {}^{3}P_{1}$	10	4.641	1.988	4.745	4.381	4.848
	75	6.327×10^{-1}	3.363×10^{-1}	6.429×10^{-1}	5.703×10^{-1}	6.375×10^{-1}
	500	1.184×10^{-2}	1.178×10^{-2}	1.185×10^{-2}	1.160×10^{-2}	1.191×10^{-2}
$2s2p \ ^{3}P_{2}$	10	7.782	3.149	8.299	7.265	8.052
	75	1.073	5.606×10^{-1}	1.070	9.487×10^{-1}	1.060
	500	1.967×10^{-2}	1.952×10^{-2}	1.956×10^{-2}	1.918×10^{-2}	1.974×10^{-2}
2s2p $^{1}P_{1}$	10	1.224×10^2	1.207×10^2	9.410×10^{1}	9.794×10^{1}	9.460×10^{1}
	75	5.431×10^{1}	5.663×10^{1}	4.961×10^{1}	5.185×10^{1}	5.054×10^{1}
	500	1.110×10^{1}	1.174×10^{1}	1.463×10^{1}	1.539×10^{1}	1.493×10^{1}
$2p^{2} {}^{3}P_{0}$	10	7.643	1.060×10^{1}	5.255×10^{-2}	4.254×10^{-2}	5.229×10^{-2}
	75	4.356	6.106	7.483×10^{-3}	6.340×10^{-3}	7.518×10^{-3}
	500	1.182×10^{-2}	1.208×10^{-2}	7.191×10^{-5}	7.575×10^{-5}	7.218×10^{-5}
$2p^2 {}^3P_1$	10	1.499×10^{-1}	3.060×10^{-2}	1.593×10^{-1}	1.291×10^{-1}	1.585×10^{-1}
	75	2.189×10^{-2}	7.455×10^{-3}	2.229×10^{-2}	1.893×10^{-3}	2.240×10^{-3}
	500	2.004×10^{-4}	1.880×10^{-4}	2.004×10^{-4}	1.982×10^{-4}	2.012×10^{-4}
$2p^{2} {}^{3}P_{2}$	10	2.485×10^{-1}	4.899×10^{-2}	2.640×10^{-1}	2.142×10^{-1}	2.627×10^{-1}
	75	3.685×10^{-2}	1.251×10^{-2}	3.686×10^{-2}	3.147×10^{-2}	3.705×10^{-2}
	500	3.405×10^{-4}	3.383×10^{-4}	3.360×10^{-4}	3.473×10^{-4}	3.375×10^{-4}
$2p^{2} D_{2}^{1}$	10	4.754×10^{-1}	9.707×10^{-1}	4.856×10^{-1}	1.026	4.856×10^{-1}
	75	2.583×10^{-1}	5.865×10^{-1}	2.604×10^{-1}	5.461×10^{-1}	2.606×10^{-1}
	500	7.515×10^{-2}	1.598×10^{-1}	7.655×10^{-2}	1.499×10^{-1}	7.544×10^{-2}
$2p^{2}$ $^{1}S_{0}$	10	1.973×10^{1}	1.876×10^{1}	6.455×10^{-2}	2.063×10^{-1}	6.379×10^{-2}
	75	5.889	4.656	2.640×10^{-2}	8.616×10^{-2}	2.624×10^{-2}
	500	2.512×10^{-1}	1.862×10^{-2}	5.364×10^{-3}	1.732×10^{-2}	5.364×10^{-3}

首先,从表3中可以看出:对于从基态到 $2s2p^{3}P_{0,1,2}$ 的单电子自旋禁戒激发,文献20]用模型 I与模型V的计算结果相差比较小,我们用模型A 的计算结果与文献20]用模型I以及文献28]的 计算结果符合得非常好,模型B的计算结果在高能 区与文献20]的计算结果及文献28]的计算结果都 符合得非常好,在低能区低于模型A的计算结果以 及文献20,28]的计算结果.对于从基态到 $2s2p^{1}P_{1}$ 偶极允许激发,电子碰撞激发截面较大,两种模型的 计算结果相差不大,并且与文献 20,28 的计算结果 都符合得非常好.图1进一步给出了入射电子能量 在17.0—32.0 eV 范围内从基态到2s2p¹P₁的电子碰 撞激发截面以及文献 29]的实验结果及其用 R 矩 阵计算的结果.从图1 可以看出,此跃迁的激发截面 较大,数量级为 10⁻¹⁶,在域值附近模型 A 的计算结 果略高于模型 B 的计算结果,随着入射电子能量的 增加,两种模型计算结果的差值越来越小.另外,在 阈值附近共振激发过程非常强,即 $1s^{2}2s^{2} + \epsilon_{i}\kappa_{i} \rightarrow 1s^{2}2sn\ell n'\ell' \rightarrow 1s^{2}2s2p + \epsilon_{j}\kappa_{f}$. 在目前的计算中我们没有包含共振激发的贡献,因此实验结果大于理论计算结果.当入射电子能量大于25 eV 时,由于共振激发的贡献减小,模型 B 的计算结果与文献 29 的实验结果符合得比较好.

图 1 计算得到类铍 O⁴⁺离子从基态2s²¹S₀到 2s2p¹P₁的电子碰 撞激发截面与文献 29 的实验及计算结果的比较

其次,对于从基态到 2p² 的双电子激发,从表 3 中可以发现(1)对于从 $2s^{2}S_{0}$ 到 $2p^{2}D_{2}$ 的激发,模型 A的计算结果小于模型 B 的计算结果,而且模型 A 的计算结果与文献 20 用模型 | 的计算结果以及文 献 28]的计算结果符合得非常好 模型 B的计算结 果与文献 20]用模型 V 的计算结果符合得非常好. (2)对于从 $2s^{2} S_{0}$ 到 $2p^{2} P_{12}$ 的激发 模型 A 的计算结 果与文献 281的计算结果和文献 201用模型Ⅰ的 计算结果相符合,在低能区模型 B 的计算结果低于 模型 A 的计算结果,随着入射能量的增大,差值也 在不断地减小 在高能区本文两种模型的计算结果 与文献 20,28]的计算结果都符合得非常好.(3)对 于从基态到 J = 0 的 $2p^{2} P_{0}$, S_{0} 激发, 其激发截面比 其他几个双电子激发截面大,而且我们用两种模型 计算的激发截面比文献 20,26 冲给出的计算结果 大 2-3 个数量级,我们认为,产生这种现象的原因 主要有以下两个方面:一是在计算连续态波函数时, 我们使用的方法与文献[20,26]中使用的方法 不同,其中 Zhang 和 Chen 在计算连续态波函数中 采用了相同的 Slater 势,而我们的计算中利用冻 结核近似 ,详细考虑了连续电子与束缚电子的直 接势和交换势.二是对前一截面有主要贡献的

 $2s^2 \epsilon_{f}k_{f} | 1/r_{12} | 2s^2 \epsilon_{i}k_{i}$ 矩阵元的大小不同,在前面 的讨论中我们已经知道,离子态 $2p^{23}P_{0}$ 和 ${}^{1}S_{0}$ 中都混 有 $2s^{21}S_{0}$,由于矩阵元 $2s^{2} \epsilon_{f}k_{f} | 1/r_{12} | 2s^{2} \epsilon_{i}k_{i}$ 具有 较大的积分值,因此从基态到 J = 0的 $2p^{23}P_{0}$, ${}^{1}S_{0}$ 的 激发截面应比其他几个双电子激发的激发截面大, 但文献[20,28]中给出的从基态到 J = 0的激发截 面却比其他几个双电子激发的激发截面小 1 个数量 级,因此我们认为文献[20,28]中给出的该激发截 面的计算结果可能存在问题.

3.4. N³⁺ 和 O⁴⁺ 离子的亚稳态电子碰撞激发

表 4 给出了本文用两种模型计算得到的类铍 N^{3+} 和 O^{4+} 离子分别从 $2s2p^{3}P_{0,1,2}$ 到 $2p^{2,3}P_{0,1,2}$ 激发 的激发截面.从表4可以看出,在低能区用模型A 和模型 B 计算的电子碰撞激发截面相差较大 随着 入射电子能量的增加。两种模型的计算结果趋于一 致,由此可见,对于亚稳态的激发,在低能碰撞时靶 态的电子关联效应也起着非常重要的作用 高能碰 撞时靶态的关联效应对激发截面的影响比较小,比 较表2、表3以及表4可以发现(1)从亚稳态以及基 态到 $2p^{2}P_{0}$ 的激发中, $2s2p^{3}P_{1}-2p^{2}P_{0}$ 是偶极允许 激发,其激发截面比较大,比2s2p3P02-2p23P0的激 发截面大 2 个数量级 ,但是由于 $2p^2$ 与 $2s^2$ 之间的强 相互作用,使得基态到 $2\mathrm{p}^{2\,3}P_{0}$ 的激发截面也比较大, 而从基态到 $2p^{2}P_{0}$ 的激发截面接近于 $2s2p^{3}P_{1}$ 一 $2p^{2} P_{0}$ 的激发截面.(2)在从亚稳态以及基态到 $2p^{2}P_{1}$ 的激发中, $2s2p^{3}P_{0,1,2}$ — $2p^{2}P_{1}$ 三个激发过程 都是偶极允许激发 其激发截面都比较大 而从基态 到 $2p^{2}P_{1}$ 的激发截面却小了 3 个数量级.(3)在从亚 稳态以及基态到 $2p^{2}P_{2}$ 的激发中 , $2s2p^{3}P_{12}$ — $2p^{2}P_{2}$ 是偶极允许激发,其激发截面较大,而从基态到 $2p^{2}P_{2}$ 的激发截面很小,比 $2s^{2}p^{3}P_{12}$ — $2p^{2}P_{2}$ 激发截 面小 3 个数量级,比2s2p³P₀—2p^{2 3}P₂激发截面小 1 个数量级.从以上的比较中可以得出 对于从亚稳态 $2s2p {}^{3}P_{0,1,2}$ 到 $2p^{2}P_{0,1,2}$ 的激发 ,偶极允许跃迁电子的 碰撞激发截面较大,而禁戒跃迁电子的碰撞激发截 面较小.由于 $2p^2$ 与 $2s^2$ 之间的强相互作用,从基态 到 $2p^{2}P_{0}$ 的激发截面与从 $2s2p^{3}P_{1}$ 到 $2p^{2}P_{0}$ 的激发截 面相接近.除此之外,在其余几个到 $2p^{2}P_{1,2}$ 的激发 中 基态的激发截面要比亚稳态的激发截面小 2—3 个数量级

58 卷

表 4 类铍 N³⁺ 40⁴⁺ 离子从亚稳态 2s2p ³P0, 2 到 1s²2p²³P0, 2 的电子碰撞激发散射截面(单位为 10⁻¹⁸ cm²)

好江	模型	N ^{3 +}			O ⁴⁺		
шлл		$\varepsilon_i = 50 \text{ eV}$	$\varepsilon_i = 150 \text{ eV}$	$\varepsilon_i = 500 \text{ eV}$	$\varepsilon_i = 50 \text{ eV}$	$\varepsilon_i = 150~{\rm eV}$	$\varepsilon_i = 500~{\rm eV}$
$2s2p {}^{3}P_{0} \rightarrow 2p^{2} {}^{3}P_{0}$	А	3.826×10^{-1}	4.275×10^{-2}	1.909×10^{-3}	2.925×10^{-1}	4.239×10^{-2}	2.347×10^{-3}
	В	1.735×10^{-1}	3.022×10^{-2}	1.805×10^{-3}	1.292×10^{-1}	2.600×10^{-2}	2.311×10^{-3}
$2s2p {}^{3}P_{1} \rightarrow 2p^{2} {}^{3}P_{0}$	А	2.464×10^{1}	9.241	2.697	1.721×10^1	6.321	1.942
	В	2.145×10^{1}	8.474	2.506	1.512×10^{1}	5.820	1.850
$2s2p \ ^{3}P_{2} \rightarrow 2p^{2} \ ^{3}P_{0}$	А	9.683×10^{-2}	1.071×10^{-2}	4.747×10^{-4}	7.354×10^{-2}	1.060×10^{-2}	5.817×10^{-4}
	В	4.394×10^{-2}	7.585×10^{-3}	4.484×10^{-4}	3.221×10^{-2}	6.516×10^{-3}	5.716×10^{-4}
$2s2p \ ^{3}P_{0} \rightarrow 2p^{2} \ ^{3}P_{1}$	А	7.370×10^{1}	2.772×10^{1}	8.095	5.145×10^1	1.896×10^{1}	5.828
	В	6.420×10^{1}	2.541×10^{1}	7.519	4.525×10^1	1.745×10^{1}	5.553
$2s2p {}^{3}P_{1} \rightarrow 2p^{2} {}^{3}P_{1}$	А	1.901×10^{1}	6.994	2.026	1.331×10^{1}	4.802	1.460
	В	1.631×10^{1}	6.397	1.882	1.150×10^1	4.401	1.391
$2s2p {}^{3}P_{2} \rightarrow 2p^{2} {}^{3}P_{1}$	А	1.876×10^{1}	6.959	2.024	1.311×10^1	4.768	1.457
	В	1.619×10^1	6.380	1.881	1.143×10^{1}	4.384	1.389
$2s2p \ ^{3}P_{0} \rightarrow 2p^{2} \ ^{3}P_{2}$	А	4.854×10^{-1}	5.401×10^{-2}	2.417×10^{-3}	3.746×10^{-1}	5.411×10^{-2}	2.994×10^{-3}
	В	2.214×10^{-1}	3.868×10^{-2}	2.304×10^{-3}	1.658×10^{-1}	3.372×10^{-2}	2.976×10^{-3}
$2s2p {}^{3}P_{1} \rightarrow 2p^{2} {}^{3}P_{2}$	А	3.106×10^{1}	1.160×10^{1}	3.376	2.170×10^{1}	7.944	2.431
	В	2.689×10^{1}	1.063×10^1	3.137	1.896×10^{1}	7.307	2.317
$2s2p \ {}^{3}P_{2} \rightarrow 2p^{2} \ {}^{3}P_{2}$	А	5.599×10^{1}	2.086×10^1	6.073	3.913×10^1	1.429×10^{1}	4.373
	В	4.842×10^{1}	1.912×10^1	5.643	3.415×10^{1}	1.314×10^{1}	4.168

4.结 论

本文用全相对论扭曲波方法系统地计算了类铍 N³⁺,O⁴⁺离子的从基态到 2s2p和 2p² 各激发态以及 从亚稳态到2p² P的电子碰撞激发截面,详细地讨论 了靶态的关联效应及组态相互作用对激发截面的影 响.对于低能碰撞,靶态波函数的描述对连续态波函 数的影响比较大,靶态的电子关联效应起非常重要 的作用,且使得激发截面降低;对于高能碰撞,靶态 波函数的描述对连续态波函数的影响比较小,靶态 波函数精度的要求没有低能时的要求高,靶态波函 数的描述对激发截面影响比较小.对于从基态到 2s2p 的单电子激发,激发截面相对较大,对于从基态 到 $2p^2$ 的双电子激发,激发截面主要来自于 $2p^2$ 与 $2s^2$ 之间的强相互作用及其与连续电子间的耦合,由 $\pm 2p^{2}{}^{3}P_{0}$ 和 $2p^{2}{}^{1}S_{0}$ 中都混合有 $2s^{2}{}^{1}S_{0}$,因此从基态 $2s^{2}{}^{1}S_{0}$ 到 $2p^{2}{}^{3}P_{0}$ 和 $2p^{2}{}^{1}S_{0}$ 的激发截面应比其他双电子 激发的激发截面大.对于从亚稳态到 $2p^{2}{}^{3}P_{0,1,2}$ 的激 发,关联效应与从基态激发情况类似,低能碰撞时电 子关联效应非常强,高能碰撞时电子关联效应比较 弱.在亚稳态的激发中,偶极允许跃迁电子碰撞激发 截面较大,而禁戒跃迁的电子碰撞激发截面则较小. 与从基态到 $2p^{2}{}^{3}P_{0,1,2}$ 的激发相比,除从基态到 $2p^{2}{}^{3}P_{0}$ 的激发截面相近外, 其余的激发截面比从基态到 $2p^{2}{}^{3}P_{0,1,2}$ 的激发截面大 2—3 个数量级.

- Beiersdorfer P, Olson R E, Brown G V, Chen H, Harris C L, Neill P A, Schweikhard L, Utter S B, Widmann K 2000 Phys. Rev. Lett. 85 5090
- [2] Smith S J , Man K F , Mawhorter R J , Willisma I D , Chutjian A 1991 Phys. Rev. Lett. 67 30
- [3] Liu X J , Zhu L F , Yuan Z S , Li W B , Cheng H D , Huang Y P , Zhong Z P , Xu K Z , Li J M 2003 Phys. Rev. Lett. 91 193203
- [4] Bannister M E, Djuric N, Woitkeb O, Dunnb G H, Chung Y S, Smithd A C H, Wallbanke B, Berrington K A 1999 Int. J. Mass. Spetrom. 192 39

- [5] Uhlmann L J, Dall R G, Truscott A G, Hoogerland M D, Baldwin K G H, Buckman S J 2005 Phys. Rev. Lett. 94 173201
- [6] Daw A , Gardner L D , Janzen P H , Kohl J L 2006 Phys. Rev. A 73 032709
- [7] Stewart M D Jr, Chilton J E, Boffard J B, Lin C C 2002 Phys. Rev. A 65 032704
- [8] Brazuk A, Dijkkamp D, Drentje A G, De Heer F J, Winter H 1984 J. Phys. B 17 2489
- [9] Doerfert J, Trabert E, Wolf A, Schwalm D, Uwira O 1997 Phys. Rev. Lett. 78 4355
- [10] Chui Y, Austiu B L, Williams S, Dressler R A 2006 J. Appl. Phys. 99 11330
- [11] Nakazaki S , Hashino T 1982 J. Phys. B 15 2767
- [12] Yonger S M 1980 J. Quant. Spectrosc. Radiat. Transfer 23 489
- [13] Sampson D H, Clark R E H, Golden L B 1980 Astrophys. J. Suppl. 44 193
- [14] Clark R E H , Sampson D H , Parks A D 1980 Astrophys. J. Suppl. 44 215
- [15] Eissner W 1971 Proc. 7th Int. Conf. Phys. Electron. Atomic Collisons (Amsterdam : North-Holland) p460
- [16] Flower D , Launay J M 1973 Astron . Astrophys . 29 321

- [17] Malinovsky M 1975 Astron. Astrophys. 43 101
- [18] Berrington K A, Burke P G, Dufton P L, Kingston A E 1977 J. Phys. B 10 1465
- [19] Berrington K A, Burke P G, Dufton P L, Kingston A E, Sinfailam A L 1979 J. Phys. B 12 275
- [20] Chen G X , Ong P P , Lin T 1998 Phys. Rev. A 53 3227
- [21] Berrington K A, Burke P G, Dufton P L, Kingston A E 1977 J. Phys. B 10 275
- [22] Mitnik D M, Griffin D C, Balance C P, Badnell N R 2003 J. Phys. B:36 717
- [23] Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691
- [24] Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249
- [25] Fritzsche S 2001 Nucl. Instrum. Meth. Phys. Rev. B 114 1155
- [26] Grant I P , Mckenzie B J , Norrington P H , Mayers D F , Pyper N C 1980 Comput. Phys. Commun. 21 207
- [27] Nist Version 3.1.0 http://physics.nist.gov/PhysRefData/ASD
- [28] Zhang H L , Sampson D H 1993 Phys. Rev. A 47 208
- [29] Smith S J, Djuric N, Lozano J A, Chutjian A, Berrington K A http://hdl.handle.net/2014/37686

Relativistic distorted-wave calculation of electron impact excitation cross sections of be-like N³⁺ and O⁴⁺ ions *

Liu Yan-Jun¹) Jiang Jun¹) Dong Chen-Zhong¹⁽²⁾[†] Xie Lu-You¹)

1) College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China)

2) Joint Laboratory of Atomic and Molecular Physics, Northwest Normal University and Institute of Modern Physics,

Chinese Academy of Sciences, Lanzhou 730070, China)

(Received 3 June 2008; revised manuscript received 8 August 2008)

Abstract

By using a fully relativistic distorted-wave method, the electron impact excitation cross sections of Be-like N^{3+} and O^{4+} ions from the ground state $2s^{21}S$ to $2s2p^{-1}{}^{3}P$, $2p^{2}{}^{3}P$, ${}^{1}D$ and ${}^{1}S$ 2s2p and from the metastable $2s2p^{-3}P$ to $2p^{2}{}^{3}P$ have been calculated systematically. Meanwhile, the correlation effects of target states are also discussed. For the low energy collisions the correlation effects play a very important role, and accurate target wavefunctions are needed, but for the high energy collisions, the more correlation effects are not so important. For two-electron excitations, the configuration interactions are very important and the excitations from ground state to the $2p^{2}{}^{3}P_{0}$ and ${}^{1}S_{0}$ have larger cross sections than the other tow electron excitations.

Keywords : fully relativistic distorted-wave method , electron impact excitation , electron correlation effect PACC : 3120 , 3450H , 3480D

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10876028, 10774122), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070736001), the Foundation of Center of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhou and the Foundation of Scientific and Technical Innovation of Northwest Normal University, China (Grant No. NWNU-KJCXGC-03-21).

[†] Corresponding author. E-mail:dongcz@nwnu.edu.cn