钚氧化物的分子结构和分子光谱研究

陈 军^{1)†} 蒙大桥¹⁾ 杜际广²⁾ 蒋 刚²⁾ 高 涛²⁾ 朱正和²⁾ 1)(表面物理与化学国家重点实验室, 绵阳 621907) 2)(四川大学原子与分子物理研究所, 成都 610065) (2009 年 6 月 4 日收到; 2009 年 7 月 3 日收到修改稿)

用杂化密度泛函(B3LYP)方法,Pu原子采用相对论有效原子实势(RECP),O原子采用全电子 6-311g(d) 基 组优化了 PuO,PuO₂,Pu₂O₃的分子结构,得到了相应的平衡几何构型,并计算了红外振动频率(IR)、Raman 光谱. 结果表明:PuO,PuO₂分子基态几何构型和振动频率与实验值相符.对 Pu₂O₃分子可能的构型和多重性进行结构优 化,发现 Pu₂O₃分子基态为¹¹B₂的 C₂,构型,给出了 Pu₂O₃分子基态结构的红外和拉曼光谱数据、力常数等系列数 据,并对振动频率的峰值进行了指认.通过自然键轨道(NBO)分析,发现由钚到氧的电荷转移.相对于 PuO 和 PuO₂分子,在 Pu₂O₃中形成较弱的 Pu—O键.分析自旋布居,发现在这些分子中,自旋磁动量大都由 Pu 原子的 5f 电子贡献,而氧原子的 2p 轨道往往贡献反平行的自旋.

关键词: 钚氧化物, 分子结构与光谱, 密度泛函, 相对论有效原子实势 PACC: 3130J, 3310, 3520D, 7115M

1.引言

元素钚被认为是周期表中最复杂的一个元素, 其不寻常的物理、化学性质来源于其 5f 电子的影响^[1]. 钚化合物性质的研究也引起钚科学家的广大 兴趣和挑战^[2,3]. 在空气和室温下,钚表面被迅速氧 化,形成 PuO₂ 氧化层,使钚的腐蚀速率变得缓慢. 而在 钚 金 属 与 PuO₂ 层之间 有 一 很 薄 的 Pu₂O₃ 层^[4]. 在真空和温度 150—200℃ 条件下,钚表面的 PuO₂ 层转化为 Pu₂O₃ 层,它加快了钚的氢化腐蚀. 因此,获得钚氧化合物完整的分子结构和光谱数据 对研究钚的安全储存、腐蚀研究等非常重要.

钚是具有放射性和化学毒性的元素,开展其实 验工作有较大的难度,而目前获得实验光谱数据只 有 PuO,PuO₂,PuN,PuN₂和 PuF₆等几种分子^[5-7]. 且由于在室温和大气条件下无法观察到 Pu₂O₃的存 在,到目前为止,关于 Pu₂O₃性质研究的文献报道较 $少^{[4,8]}$,而 Pu₂O₃分子结构和光学性质的实验数据 也尚未见报道. Gerald Jomard 等^[9]和 Sun 等^[10]都 采用第一性原理对钚氧化物的原子和电子结构、光 学和热力学性质进行了计算,高涛等^[11-13]对 PuO,

2. 计算方法

常用的从头算方法,可以得到完整的分子结构 和光谱数据,但在锕系元素的理论计算中,由于核 外电子数多,相对论效应和电子相关效应明显,采 用全电子计算难以完成.因此必须采用近似方法, 相对论有效原子实势方法把核外电子分为中心原 子实和价电子两部分,使多电子原子的计算成为可 能.因此采用相对论有效势是对锕系元素进行计算 的有效方法,熊必涛等^[14]采用密度泛函和相对论有 效势计算铀与水蒸气体系的热力学性质.蒙大桥 等^[15]采用密度泛函和相对论有效势对 Pu₃体系进 行结构优化和势能函数计算,Wadt^[16]利用 Pu 的相 对论有效原子实势对 PuF₆ 分子低激发态跃迁的计 算,高涛等人^[11]对 PuO 分子结构的计算,其结果与 实验值符合.

 PuO_2 , PuO_3 进行了分子结构、势能函数及热力学函数的量子力学计算.本文对钚采用相对论有效原子 实势(relativistic effective core potentials, RECP),使 用密度泛函 B3LYP 算法来研究 PuO, PuO_2 , Pu_2O_3 的稳定的基态分子能量、平衡几何结构、振动频率、 红外和拉曼光谱性质.

[†] E-mail: chen3622746@163.com

1659

Pu 在周期表中为94 号元素,核外电子数为94, 基态电子组态为1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰4f¹⁴ 5s²5p⁶5d¹⁰5f⁶6s²6p⁶7s²,目前对钚的第一性原理计算 使用较多的相对论有效原子实势(RECP)主要有三 种,第一种为 Wadt^[16]于 1987 年在研究 PuF。分子低 激发态间的跃迁计算中提出的,其中心原子势包括 1s-5d,6s的80个中心电子,5f6p7s的14个电子归 为价电子,其收缩基函数为[3s4p3d4f/3s3p2d1f], 其计算结果较好地反应了实验数据;第二种为 Hay 和 Martin^[3]在计算 PuF。的分子结构和振动光谱时 提出的,其中心原子势包括 1s-5d 的 78 个中心电 子,在原子实中标量相对论效应被考虑. 5f6s6p7s 的 16 个 电 子 归 为 价 电 子, 其 收 缩 基 函 数 为 [7s6p2d4f/3s3p2d2f], 前两者的区别主要在于 6s²电子,第一种把它放到中心原子实,而第二种则把 它归到了价电子. Archibong 等^[17]和 Wu 等^[18]进行 PuO, 的电子结构等量子化学计算中对 Pu 都采取了 此有效原子实势,其结果也与实验有较好的符合 性. 第三种为德国斯图加特大学给出的 SDD 有效 原子实势[19],其中心原子势包括60个中心电子,包 含 34 个价电子,其收缩基函数为[26s17p16d8f/ 8s7p6d4f]. 由于需要对很多种 Pu₂O₂ 分子可能构 型进行优化,计算量较大.因此在我们的计算中没 有考虑 34 个价电子的 SDD 有效势和基组. 而是选 取了被广泛使用的文献[3]中提供的相对论有效势 和相应的基组.

密度泛函理论(density functional theory, DFT) 方法是通过构造电子密度的泛函来模拟电子相关 的一种近似方法.B3LYP密度泛函算法,它是建立 在HF求解过程的基础上,对薛定谔方程的近似求 解过程中,在薛定谔方程的哈密顿算符中增加了电 子交换能和电子相关能.B3LYP中B3是Backe提 出的一种3参数交换泛函,LYP是Lee,Yang和Parr 3人提出的一种相关泛函.因此,B3LYP即考虑了 电子的交换能又考虑了电子的相关能.此方法也一 度用于以前的包含Pu体系^[11,13,15]的理论计算中, 且得到了较好的结果.

本文采用 Gaussian03 软件,使用 B3LYP 密度泛 函方法,对 Pu 原子采用 Hay 和 Martin 提出 78 个中 心电子的相对论有效势(RECP),O 原子使用 6-311g (d)全电子基函数.

3. 计算结果和讨论

3.1. 基态结构

Pu 的原子基态为⁷ F_0 ,0 的原子基态为³ P_2 .采用 Pu 的相对论有效原子实势(78 电子),0 的 6-311g(d)全电子基函数以及 B3LYP 方法,首先考虑可能的自旋对 PuO 和 PuO₂(D_{*h})几何优化计算.表1给出了 PuO 和 PuO₂(D_{*h})的分子不同多重性对应的键长,总能量.

表 1 PuO 和 PuO₂ $(D_{\infty h})$ 的分子平衡结构

PuO				$\operatorname{PuO}_2(D_{\infty h})$				
重要性	E∕a. u	R_1/nm	Exp ^[13] /nm	多重性	E∕a. u	R_1 /nm	Exp ^[13] /nm	
5	- 146. 9990085	0.188		3	- 222. 21773	0.187		
7	- 147. 021024	0.189	0. 183	5	- 222. 26953	0.188	0. 181	
9	- 146. 960437	0.216		7	- 222. 23511	0. 196		

比较表中不同多重性的 PuO 和 PuO₂ (D_{*h})分子的总能量,发现 PuO 的基态为7 重态,其能量最低.而 PuO₂的5 重态能量最低.PuO 分子基态的平衡键长为0.189 nm,与试验测得的0.183 nm 比较接近.PuO₂分子的基态结构为 D_{*h} 的线型结构,两个 Pu—O 键长为0.188 nm,同样比较符合实验值:0.181 nm.我们的计算结果表示该相对论有效势RECP和B3LYP方法得到的理论结果符合实验数据,其结果比较可信.因此,可以用于对 Pu₂O₃体系的研究.

采用上述方法,对 Pu₂O₃ 可能的分子结构进行 了几何优化,在优化过程中,构造了 20 多种几何构 型.图1 仅给出若干个优化中考虑的分子构型.

通过对 20 多种 Pu₂O₃ 可能的分子结构进行了 几何优化后,发现大部分分子结构不存在或不稳 定.比较发现不同多重性中,11 重态分子的能量往 往最低,如表 2 所示.从能量分析,Pu₂O₃ 分子的基 态稳定构型为 C₂。结构,如图 2 所示.其相应的分子 详细结构参数(键长,键角和二面角)在表 3 中给 出.此结构的电子状态为¹¹B₂.B3LYP 得到的基态

图 1 几种可能的 Pu₂O₃ 分子点群构型

表 2 几种主要的 Pu₂O₃ 分子多重态能量

(単位:E/a.u.)

多重性	1#	2#	3#	4#	5#	6#
5	- 369. 3245	- 369. 0933		- 369. 1487	- 369. 1837	_
7	- 369. 3464	—	_	- 369. 1688	- 369. 2650	—
9	- 369. 3957	- 369. 2630	- 369. 3145	- 369. 2395	- 369. 2884	—
11	- 369. 4323	- 369. 2847		- 369. 2465	- 369. 3638	_
13	- 369. 3991	—	_	—	- 369. 3112	—

注:— 表示 convergence failure.

图 2 PuO, PuO2, Pu₂O₃ 分子平衡结构示意图

表 3 Pu₂O₃ 分子平衡结构

键长/ nm			键角/(°)			
<i>R</i> 1	<i>R</i> (Pu1,Pu2)	0. 34186	A1	A(02,Pu1,03)	76. 4317	
<i>R</i> 2	<i>R</i> (Pu1,O2)	0.21701	A2	A(02,Pu1,01)	141.7841	
<i>R</i> 3	<i>R</i> (Pu1,O3)	0.21701	A3	A(03,Pu1,01)	141.7841	
<i>R</i> 4	<i>R</i> (Pu1,O1)	0. 19294	<i>A</i> 4	A(02,Pu2,03)	76. 1525	
<i>R</i> 5	<i>R</i> (Pu2,O2)	0.21768	$\Theta 1$	$\Theta(Pu2,Pu1,02,01)$	180. 0	
R6	<i>R</i> (Pu2,03)	0. 21768	Θ2	Θ(Pu2,Pu1,O3,O1)	180.0	

电子组态为: α 轨道为 $a_1a_1b_2a_1a_1a_1b_2a_1b_1b_2b_1a_1b_2a_1$ $a_1 b_1b_1a_2a_1b_2b_1 a_1b_2a_2a_1b_2b_1a_1b_1a_2b_2b_1a_1; \beta$ 轨道为 $a_1a_1b_2a_1a_1a_1b_2a_1b_1b_2b_1a_1b_2a_2b_2a_1$. α 轨道对应的最高占据轨道 HOMO(α)能量本征值为 -3.767 eV,最低空轨道 LUMO(α)为 -1.788 eV, 能量相差 1.979 eV; β 轨道对应的 HOMO(β)能量 本征值为 -6.099 eV, LUMO(β)为 -1.528 eV, 能 隙为 4.571 eV. 这个差值相差较大,说明了相应的 $C_{2\nu}$ 结构的 Pu₂O₃分子的化学稳定性较高. 另外, $\langle S^2 \rangle$ 的值为 30.021694,而相应的 11 重态(S = 5), 自旋平方期望的本证值为 $S^2 = S \times (S + 1) = 30$,相 差 0.021. 表明这个分子构型的自旋污染相对较小, 从另一角度说明 B3LYP 方法可以较好的描述 Pu₂O₃ 的电子结构.

3.2. NBO 布居分析

为了更好的探讨钚氧化物 (PuO, PuO₂, Pu₂) O₃)的电子结构,表4中我们给出了自然键轨道 (natural bonding orbital, NBO) 分析得到的这些化 合物中的 Pu 和 O 原子的电荷,自然电子分布以及 自旋分布. 表中的 Pu1…O1…等符号与图 2 中的原 子一一对应. 从表中不难看出,在所有的钚氧化物 中, 钚原子总是失去电子, 作为电子供体 (donor). 而氧原子作为电子受体 (acceptor) 总是得到电子. 比较氧原子与钚原子的电负性(electronegativity), 发现氧原子为 3.44 远大干钚原子的 1.28,因此根 据电负性规则,氧原子非常容易从钚原子得到电 子. 在这些钚氧化物中,每个氧原子得到的电子在 1.123-1.516 e 范围内. 这一定程度上表示 Pu⁺0⁻ 形式的 Pu-O 离子键形成. 表4 还给出了化合物中 的 Pu, O 原子的自然电子分布,比较自由原子的电 子结构,可以发现在 Pu 原子的 7s 和 5f 轨道都有电 子失去. 而 6d 有部分电子分布,因此在钚原子中发 生了一定程度的7s-6d电子杂化.对于氧原子,2p 原子轨道总是得到电子.图3给出了PuO,PuO,和 Pu,O,分子的自旋密度以及它们总的自旋磁动量.

PuO, PuO, 和 Pu,O, 分子总的磁动量分别为 $6\mu_{\rm b}$, $4\mu_{\rm h}, 10\mu_{\rm h}$. 由自旋密度可以看出,这些分子的自旋 全部有 Pu 原子贡献, 而 O 原子总是贡献反平行的 自旋. 表 4 中给出了详细的自旋分布,除了在 PuO 分子中磁动量由 Pu 原子的 7s 和 5f 轨道电子共同 贡献外,其他钚氧化物中磁动量都来自 Pu 原子的 5f 轨道电子. 而反平行的自旋都源自 O 原子的 2p 原 子轨道.为了探讨钚氧化物中的 Pu-O 键的强弱, 我们还计算了 Wiberg 键序(Wiberg bond indices), 结果在表 5 中给出. 表中的符号 Pu1…01…等依旧 对应图 2 中不同位置的原子. PuO 分子中 Pu1-01 键序为1.058,表现出一定的单键特征.在 PuO,分 子中,两个 Pu-O (Pu1-01, Pu1-02) 对应相同 的键序:1.068,同样表现出单键特征.而在 Pu,O, 分子中,只有 Pul 与 Ol 的相互作用较强,对应键序 为 0.972,表现出单键特征. 而对于其他 Pu 与 O 的 O2)-0.410 (Pu1-O3)范围内.

表4 钚氧化物 (PuO, PuO₂, Pu₂O₃) 自然键轨道 NBO 分析

	No.	NBO/e	Total	自旋
PuO	Pu(1)	1.318	$[\ \mathrm{core}\]7\mathrm{s}^{0.\ 89}5\mathrm{f}^{5.\ 43}6\mathrm{d}^{0.\ 30}$	$7{\rm s}^{0.83}5{\rm f}^{5.21}6{\rm d}^{0.10}$
	0(1)	- 1. 318	$[\ core\]2s^{1.\ 97}2p^{5.\ 34}$	$2{\rm s}^{0.01}2{\rm p}^{-0.20}$
PuO_2	Pu(1)	2.334	$[\ core\]7s^{0.\ 03}5f^{5.\ 51}6d^{0.\ 23}$	$7{\rm s}^{0.00}5{\rm f}^{4.63}6{\rm d}^{0.05}$
	0(1)	- 1. 167	$[\ core\]2s^{1.\ 98}2p^{5.\ 18}$	$2 {\rm s}^{0.00} 2 {\rm p}^{-0.30}$
	0(2)	- 1. 167	$[\ core\]2s^{1.\ 98}2p^{5.\ 18}$	$2 {\rm s}^{0.00} 2 {\rm p}^{-0.30}$
$\operatorname{Pu}_2\operatorname{O}_3$	Pu(1)	2.542	$[\ \mathrm{core}\]7\mathrm{s}^{0.\ 10}5\mathrm{f}^{5.\ 17}6\mathrm{d}^{0.\ 23}$	$7{\rm s}^{0.02}5{\rm f}^{4.71}6{\rm d}^{0.06}$
	Pu(2)	1.596	$[\ \mathrm{core}\]7s^{0.\ 56}5f^{5.\ 62}6d^{0.\ 18}$	$7{\rm s}^{0.00}5{\rm f}^{5.53}6{\rm d}^{0.05}$
	0(1)	- 1. 516	$[\ core\]2s^{1.\ 97}2p^{5.\ 54}$	$2s^{0.01}2p^{-0.16}$
	0(2)	- 1.500	$[\ core\]2s^{1.\ 97}2p^{5.\ 52}$	$2{\rm s}^{0.01}2{\rm p}^{-0.16}$
	0(3)	- 1. 123	$[\ core\]2s^{1.\ 98}2p^{5.\ 14}$	$2s^{0.00}2p^{-0.51}$

表 5	钚氧化物(PuC	, PuO ₂ ,	$Pu_{2}O_{3})$	中	Wiberg	键序
-----	----------	----------------------	----------------	---	--------	----

	Pu1-01	Pu1-02	Pu1-03	Pu2-01	Pu2-02	Pu2-03
PuO	1.058					
PuO_2	1.068	1.068				
Pu ₂ O ₃	0.972	0.403	0.410	_	0.361	0.371

图 3 PuO, PuO₂ 和 Pu₂O₃ 分子的自旋密度

3.3. 振动光谱分析

对于多原子分子,由于原子间作用力,它们会 发生振动,多原子分子的内部振动是一个质点组的 振动问题. 直线型分子有 3n-5 个就是分子内部振 动自由度. 非直线分子就有 3n-6 个振动自由度. 因此对于 PuO 双原子分子,只有 1 个振动自由度; 对于直线型 PuO₂ 三原子分子 4 个振动自由度(其 中两个为简并振动);对非直线型 Pu₂O₃ 分子有 9 个 振动自由度.

采用 Pu 的相对论有效原子实势(78 电子),O 的 6-311g(d) 全电子基函数以及 B3LYP 算法,对 PuO 和 PuO₂(*D*_{*})进行振动频率计算,结果如表 6 所示.

	$PuO(C_{\infty v})$		$PuO_2(D_{\infty h})$					
模式	ν (calc.)/cm ⁻¹	ν (exp. ^[5])/cm ⁻¹	模式	ν (calc.)/cm ⁻¹	文献[21]	$\nu(\exp^{[5,20]})/cm^{-1}$		
			$\nu_2(\pi_u)$	181	306	230		
ν	734	822	$\nu_1(\pi_u)$	614	656	746		
			$\nu_{3}(\pi_{_{\rm g}})$	758	744	794		
15	200)				
12	. (a)		2500	(c)				
e)	900 -		2000 <u> </u>	°[• •				
u/mo	-		1500) 				
£/(لاتا	500 -			, - , -				
R强质	300 -		R 强质	-	1			
		ĺ	500)	114			
	0 100 300	500 700	<u> </u>		400	<u> </u>		
	100 000	页率/cm ⁻¹		频率	/cm ⁻¹			
			- 40) [
	8 - (b)			- (d)				
(UMA	6) –				
(Å ⁴ //	ł		(Å ⁴ //	Ĺ				
相	4 -			, [
uman ỳ	2	l. I	n man 10	,	JW			
R	-	Д	ß	-	11			
	0	500 700			400	<u>\</u>		
		$ $		频率	/cm ⁻¹			

表 6 PuO 和 PuO₂ (D_{s_h}) 的基态分子振动频率

图 4 PuO_2 和 Pu_2O_3 分子的红外和拉曼光谱图 (a) PuO_2 的红外振动光谱; (b) PuO_2 的振动拉曼光谱; (c) Pu_2O_3 的红外振动光谱; (d) Pu_2O_3 的振动拉曼光谱

PuO 分子的振动频率与实验结果相比较, B3LYP 方法对 PuO 和 PuO₂ 频率计算的结果合理. 另外和文献[21] 对比其采用的 MP2 算法所得 PuO₂ 的频率,总体而言我们得到的结果更符合实验值.

表7列出了 Pu2O3 分子振动光谱的 IR 强度和

Raman 散射活性,此处反应了 Pu₂O₃ 理想分子气体的性质.同时在图 4 给出了 PuO₂ 和 Pu₂O₃ 的 IR 和 Raman 图,并指认最大振动频率峰所对应的振动模式.在图中箭头方向代表振动方向.从图中不难看出,PuO₂ 分子的振动光谱中最大峰值出现在 758

 cm^{-1} ,对应着两个 O 原子的伸缩振动模式. 而 PuO₂ 分子的拉曼峰出现在 614 cm⁻¹,高于实验中测得的 PuO₂ 晶体的拉曼峰值 478 cm⁻¹. 对 Pu₂O₃ 分子而 言,其最大的红外峰出现在 559 cm⁻¹,同样对应着 两个氧原子(O2,O3)的伸缩振动. 巧合的是 Pu₂O₃ 分子的拉曼峰中,最大值同样出现在 559 cm⁻¹处.

齿子	店女/ -1	Fre consts	IR 强度	Raman 活性
侠式	 , 一种 μ Ψ / cm	/(mDynel/A)	/(km/mol)	/(Å ⁴ /AMU)
<i>B</i> 2	61.6367	0.0417	27.2251	4.3727
<i>B</i> 1	64.5468	0.0450	18.3149	3.0237
A1	155.7739	1.8978	1.0530	13.2608
<i>B</i> 1	183.8120	0.3429	66. 0293	0.0400
<i>B</i> 2	371.9330	1.3402	0.0516	19.7640
<i>B</i> 2	462.1429	2.1400	143.0638	0.2507
A1	509. 5025	2.5032	152.3598	107.4067
A1	559. 1497	3.1039	636. 0264	492.7369
A1	575.6531	3.3407	52. 5416	223.0330

表7 Pu2O3 的基态分子振动频率

4. 结 论

对钚原子采用相对论有效原子实势 RECP,氧

原子采用全电子基组(6-311g(d))借助密度泛函 (B3LYP)方法对 PuO, PuO, Pu,O, 的分子结构和光 谱性质进行了确定,得到了相应的平衡几何构型,红 外振动光谱和拉曼光谱. 计算结果表明 PuO, PuO, 的基态几何构型和振动频率均符合实验值和以前的 理论值. 在 Pu,O, 分子的结构优化中,构建了 20 多 种初始结构,并考虑了可能的自旋多重度,以期能够 准确的得到 Pu,O,分子的基态结构. 根据能量和振 动频率判断,存在 Pu_2O_3 分子的稳定的 C_{2u} 构型,基 电子状态为¹¹B₂.对 PuO,PuO₂,Pu₂O₂的 NBO 分析 发现在这些分子中发生从 Pu 原子到 O 原子的电荷 转移. Wiberg 键序表明 PuO, PuO, 分子中表现出 Pu-O 单键特征. 而在 Pu,O, 分子中表现出较弱的 Pu-O相互作用. 自旋分布表示所研究的钚氧化物 的自旋大都由 Pu 原子的 5f 电子贡献. 在计算还同 时首次给出了 Pu₂O₃ 分子光谱数据、力常数、电荷布 居、自旋密度等系列数据.对 PuO,和 Pu,O,分子的 振动分析发现最大的红外振动峰均来源于 0 原子 的伸缩振动. 这两分子的拉曼峰分别出现在 614 cm⁻¹.559 cm⁻¹处.

- [1] Darleane C H Advance sin. Plutonium Chemistry 1967–2000
- [2] Schreckenbach G, Hay P J, Martin R L 1999 J. Comp. Chem. 20 70
- [3] Hay P J, Martin R L 1998 J. Chem. Phys. 109 3875
- [4] Haschke J M, Allen T H, Morales L A 2000 Los Alamos Science Number 26 252
- [5] Green D W, Reedy G T 1978 J. Chem. Phys. 69 544
- [6] Green D W, Reedy G T 1978 J. Chem. Phys. 69 552
- [7] Person W B, Kim K C, Campbell G M, Dewey H J 1986 J. Chem. Phys. 85 5524
- [8] Haschke J M, Allen T H, 2001 J. Alloys Compd. 320 58
- [9] Gerald Jomard, 2008 Phys. Rev. B 78 075125
- [10] Sun B, Zhang P 2008 Chin. Phys. B 17 1364
- [11] Gao T, Zhu Z H, Li G, Sun Y, Wang X L 2004 Chin. J. Chem. Phys. 17 554 (in chinese) [高 涛、朱正和、李 赣、孙 颖、 汪小琳 2004 化学物理学报 17 554]
- [12] Gao T, Wang H Y, Yi Y G, Tan M L, Zhu Z H, Sun Y, Wang X L, Fu Y B 1999 Acta Phys. Sin. 48 2222(in chinese)[高 涛、 王艳红、易有根、谭明亮、朱正和、孙 颖、汪小琳、傅依备 1999 物理学报 48 2222]
- [13] Gao T, Zhu Z H, Wang X L, Sun Y, Meng D Q 2004 Acta Chim.

Sin. 62 454(in chinese)[高 涛、朱正和、汪小琳、孙 颖、蒙 大桥 2004 化学学报 62 454]

- [14] Xiong B T, Meng D Q, Xue W D, Zhu Z H, Jiang G, Wang H Y 2003 Acta Phys. Sin. 52 1617[熊必涛、蒙大桥、薛卫东、朱正和、蒋 刚、王红艳 2003 物理学报 52 1617]
- [15] Meng D Q, Jiang G, Liu X Y, Luo D L, Zhang W X, Zhu Z H
 2001 Acta Phys. Sin. 50 1268 (in chinese) [蒙大桥、蒋 刚、刘 晓亚、罗德礼、张万箱、朱正和 2001 物理学报 50 1268]
- [16] Wadt W R 1987 J. Chem. Phys. 86 339
- [17] Archibong E F, Ray A K 2000 J. Mol. Struct. (Theochem) 530 165
- [18] Wu X Y, Asok K Ray 2001 Phys. B 301 359
- [19] Kuechle W The RECP and Basis for Pu in homepage: http:// www.theochem.Uni-stuttgrat.de/
- [20] Fink J K 1982 Int. J. Thermophys 3 165
- [21] Gao T, Wang H Y, Huang Z, Zhu Z H, Sun Y, Wang X L, Fu Y B 1999 Acta Phys. -Chim. Sin. 15 1082 (in Chinese)[高 涛、 王艳红、黄 整、朱正和、孙 颖、汪小琳、傅依备 1999 物理 化学学报 15 1082]

Molecular structures and molecular spectra for plutonium oxides

Chen Jun^{1)†} Meng Da-Qiao¹⁾ Du Ji-Guang²⁾ Jiang Gang²⁾ Gao Tao²⁾ Zhu Zheng-He²⁾

1) (National Key Laboratory for Surface Physics and Chemistry, Mianyang 621907, China)

2) (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

(Received 4 June 2009; revised manuscript received 3 July 2009)

Abstract

Employing hybrid HF/DFT functional in conjunction with the relativistic effective core potential for Pu atoms and allelectron basis set 6-311g(d) for O atoms, the equilibrium geometrical structures of PuO, PuO₂ and Pu₂O₃ molecules are obtained in the geometry optimization. The infrared and Raman spectra are also calculated. The bond lengths and harmonic vibration frequencies of ground states of PuO and PuO₂ molecules are all in agreement with available experimental data. In geometry optimization of Pu₂O₃ molecule, we have tested more than twenty initial structures with different spin multiplicities (1, 3, 5, 7, 9, 11 and 13). A C_{2r} geometry corresponding to electronic state of ¹¹B₂ is considered as the ground state of Pu₂O₃ molecule. The harmonic frequency, IR intensity, Raman scatting activity and depolarization ratio of Pu₂O₃ molecule are obtained for the first time in theory. The vibrational modes corresponding to the maximum peaks are assigned for PuO₂ and Pu₂O₃ molecules. In all studied molecules, the charge transfers from Pu to O atoms are found from natural bonding orbital analysis (NBO). Relative to PuO and PuO₂ molecules corresponding to Pu-O single- bond, the interactions between Pu and O in Pu₂O₃ are much weaker. The spin magnetic moments of studied molecules stem mainly from the 5f atomic orbitals of Pu atoms, but for O atoms the antiparallel spins from 2p atomic orbital are exhibited.

Keywords: plutonium oxides, molecular structure and molecular spectra, density functional theory, relativistic effective core potential(RECP) PACC: 3130J, 3310, 3520D, 7115M

† E-mail:chen3622746@163.com