三种同轴双波纹周期慢波结构对比研究*

葛行军[†] 钟辉煌 钱宝良 张 军
 (国防科学技术大学光电科学与工程学院,长沙 410073)
 (2009年5月12日收到;2009年7月5日收到修改稿)

利用 Fourier 级数展开法,给出了任意几何结构的表达式的求解方法.通过数值计算,对比分析了余弦、梯形和 矩形波纹慢波结构(slow-wave structure,SWS)的色散特性.根据S参数理论,研究了这三种 SWS 纵向模式选择的特性,提出了在同轴慢波器件中加入同轴引出结构,可减少所需 SWS 周期数,不但使器件结构更为紧凑,还可避免纵 模竞争从而提高器件效率、稳定产生微波频率.进一步通过 KARAT 2.5 维全电磁粒子模拟程序,探讨了分别采用 三种 SWS 的相对论返波振荡器(backward-wave oscillator,BWO)的束-波作用的物理过程,设计了一种紧凑型、吉瓦 级、同轴 L 波段 BWO,分析了不同形状 SWS 的选取原则.在此基础上,开展了初步实验研究:在二极管电压为 670 kV,电子束流为10.7 kA,引导磁场为0.75 T 的条件下,输出微波峰值功率约为1.02 GW,微波波形半高宽为22 ns, 功率转换效率约为14.2%,频率为1.61 GHz.

关键词:同轴慢波结构,相对论返波振荡器,色散特性,高功率微波 PACC: 5270G, 8760G, 5275, 4110H

1. 引 言

O型慢波器件是高功率微波器件中的一个重要 分支,其原理是利用慢波结构(SWS)降低在其中传 播波的相速,使之与电子束同步而相互作用,从而 产生高功率微波,其代表器件有 BWO、行波放大器 以及多波 Cerenkou 振荡器等^[1-5].上述器件中,SWS 决定着束-波作用的好坏,因此成为整个器件电动力 学结构中的核心部分^[6,7].

目前常用的 SWS 有各种形式:单段与分段结构^[8]、均匀结构与非均匀结构(变波纹深度和变相 速结构)^[9]、单模与过模结构^[10]、非同轴与同轴结构^[11].由于同轴 SWS 中的空间电荷限制流高于非 同轴 SWS 中的空间电荷限制流,可在相同横向尺寸 下加载更大电流,提高注入电功率,进而提高输出 微波功率,故引起研究人员的浓厚兴趣^[12,13].同时, SWS 形状的不同影响着电动力学结构的色散特性 和束-波转换效率,如何对其进行选择需要深入 分析.

本文首先利用 Fourier 级数展开法给出了任意 形状 SWS 色散特性的求解方法,对比分析了余弦、 梯形和矩形波纹 SWS 的色散特性,然后通过 KARAT 粒子模拟程序进行模拟验证,最后按照优化 后的结构进行了加工和实验,给出了初步实验结果.

2. 色散特性

2.1. 任意形状 SWS 的数值求解

高功率微波源器件的研制与设计,需要详细了 解其冷腔结构的高频特性.对于 SWS 形状是余弦结 构的器件,由于余弦曲线有统一的表达式,所以能 够通过场匹配法严格获得解析解.而梯形、矩形结 构,没有统一表达式,处理边界条件时,需要分区域 作近似,增加了求解的难度.

采用 Fourier 级数展开,可以给出任意结构的表 达式,进一步通过调整计算阶数,可以线性拟合得 到高精度表达式.因此,常用 SWS 的形状都可以利 用这种方法求出.

考虑如图 1 所示的同轴任意波纹周期 SWS, z_0 为任意轴对称周期 SWS 的周期长度. h_0 为慢波系统的结构波数, $h_0 = 2\pi/z_0$. $r_{\rm b1}$, $r_{\rm b2}$ 为电子束的内外半径,z为轴向坐标, $r_{\rm w1}(z)$, $r_{\rm w2}(z)$ 为任意周期函数,分

^{*}国家高技术研究发展计划(批准号:2002AA834020)资助的课题.

[†] E-mail: gexingjun230230@ yahoo. com. cn

图 1 同轴任意波纹周期 SWS 示意图

别描述 SWS 内外半径,且满足 Floquet 定理 $r_{w1}(z) = r_{w1}(z + z_0),$

$$r_{w2}(z) = r_{w2}(z + z_0).$$
(1)

通过 Fourier 级数表示 $r_{w1}(z)$, $r_{w2}(z)$, 即

$$r_{w1}(z) = \frac{a_{i0}}{2} + \sum_{n=1}^{\infty} (a_{in} \cos nh_0 z + b_{in} \sin nh_0 z),$$

$$r_{w2}(z) = \frac{a_{o0}}{2} + \sum_{n=1}^{\infty} (a_{on} \cos nh_0 z + b_{on} \sin nh_0 z),$$
(2)

其中

$$a_{\rm in} = \frac{2}{z_0} \int_{-\frac{z_0}{2}}^{\frac{z_0}{2}} r_{\rm w1}(z) \cos n h_0 z dz \quad (n = 0, 1, 2, \dots),$$

$$b_{\rm in} = \frac{2}{z_0} \int_{-\frac{z_0}{2}}^{\frac{z_0}{2}} r_{\rm w1}(z) \sin nh_0 z dz \quad (n = 0, 1, 2, \cdots),$$

$$a_{\rm on} = \frac{2}{z_0} \int_{-\frac{z_0}{2}}^{\frac{z_0}{2}} r_{\rm w2}(z) \cosh h_0 z dz \quad (n = 0, 1, 2, \cdots),$$

$$b_{\rm on} = \frac{2}{z_0} \int_{-\frac{z_0}{2}}^{\frac{z_0}{2}} r_{\rm w2}(z) \sinh h_0 z dz \quad (n = 0, 1, 2, \cdots),$$
(3)

其中, a_{in} , b_{in} , a_{on} , b_{on} 分别表示内外导体半径 n 阶 Fourier 级数的余弦项系数和正弦项系数.

由此,任意形状 SWS 都可以通过 Fourier 级数 展开法获得正弦项和余弦项表示的统一函数,避免 了由于分区、分段表示带来的边界条件难处理的 问题.

2.2. 三种结构色散曲线的数值求解

为了验证上述方法的正确性,针对常用的余 弦、梯形、矩形波纹 SWS,利用 Matlab 软件编程进行 了线性拟合.实际数值计算时,不可能也没有必要 将函数展开为无限项 Fourier 级数,而是通过有限项 截断来表示.图 2 是取不同有限项截断,对这三种结 构边界形状拟合的结果.可以看出,在阶数 n 分别为 1,8 和 20 时,拟合出的曲线已经足够精确,满足实

图 2 不同形状 SWS 的线性拟合结果 (a)余弦,(b)梯形,(c)矩形

际计算的要求.

把数值计算得到的表达式带入利用 Matlab 编 写的色散曲线求解程序,在相同的周期长度和内外 半径的情况下,得到最低模式准横向电磁波(TEM) 模对应的色散曲线如图 3 所示. 之所以命名准 TEM 模是借鉴 Swegle 等^[4]关于普通 SWS 模式定义的方 法:如果同轴 SWS 模式在波数 $k_0 = 0$ 处的频率 f 与相同半径的同轴波导模式的截止频率相近,则可以 将该模式以同轴波导模式命名,而将相邻模式之间 衍生的模式称为 A 模、B 模和 C 模等. 准 TEM 模是 因为其截止频率为零,所以称为 TEM 模,但由于其 轴向电场不为零,为了突出这个特点,又在其前加 上"准"字.由图3可得,余弦结构具有最宽的频率 调节范围、最大的相速,梯形、矩形结构对应特性依 次减弱.此外,还采用电磁软件 Superfish 对数值计 算出的色散曲线进行了有效性检验和比对.图3中 用空心符号所标注的是 Superfish 求解的结果,通过 比较可以看出两者基本符合,其中 π/2 模与 π 模相 对误差不超过 0.1%. 由于 Superfish 计算的准确性 已经得到公认,因此利用 Matlab 编写的求解色散曲 线的程序是有效和可靠的.

通常横向模式选择是利用相对论电子束线与 色散曲线的交点来实现的.不同色散曲线代表不同 模式,其与相对论电子束有同步相互作用点,即器 件的工作点.在相互作用点处,波与粒子之间有能 量交换现象,电子把能量传送给波,产生微波输出. 因此,通过调整 SWS 参数和电子束能参数就可以根 据需要合理选择工作点,实现横向模式选择,为设 计器件提供理论参考.另外,同轴 SWS 的最低模式 的截止频率为0,可以用其减小低频段器件的横向 尺寸,实现紧凑化.

图 3 不同形状 SWS 最低阶模的色散曲线

3. 纵向谐振特性

以上研究中都假设 SWS 是无限长的,通常对这 类器件工作特性的预测可由无限长 SWS 的 TM_u模 的色散曲线与电子束 Doppler 线交点获得. 然而实 际器件中所用的 SWS 为有限长,与其两端相连的是 光滑圆波导或是圆锥喇叭,对产生的微波而言便存 在 SWS 与其两端阻抗不匹配问题. 每个波模式都由 无数个频率相同、纵向波数不同的空间谐波组成, 其色散特性与光滑波导有很大差别,将在阻抗不连 续点激励 TM₀₁, TM₀₂, ···, TM₀₂ (TM₀₂模为系统允许 传输的最高阶模)等高阶模.尽管这些纵模对应同 一个横模,但它们的频率、品质因子 Q 值以及场分 布各不相同[14,15].因此,慢波器件选模不但要考虑 横模选择还要考虑纵模选择,尤其当器件工作电压 变化时,可能激励出多个纵向模式,从而造成相邻 纵模之间的竞争或是纵向模式的跳变,从而极大地 影响产生微波的频谱质量及效率,有必要对其进行 研究.

将 SWS 及与其两端相连的圆波导视为一个双端口网络系统,以梯形结构为例,建立同轴双波纹 SWS 模型,如图 4 所示.由于同轴结构中最低模式 为 TEM 模(TM₀₀模),定义输出端各模式的总功率 与输入 TEM 模的功率之比

$$T = \sum_{j=0}^{n} P_{out}^{+}(TM_{0j}) / P_{in}^{+}(TM_{00})$$
 (4)

为 SWS 对 TEM 模的功率传输系数. 根据 S 参数理 论,由(4)式有

$$T = \sum_{m=1}^{n} |S_{21}^{m}|^{2}.$$
 (5)

利用有限元方法,并根据同轴波导各模式的正交性,可求解这种系统的S参数矩阵,再根据(5)式便可获得 SWS 对入射不同频率圆波导 TEM 模的传输 系数 *T*,*T* 取极大值对应的频率点即为 TEM 模各纵 模对应的频率点.

图 4 具有同轴引出结构的梯形双波纹 SWS

图 5 分别列出 10,5 周期 SWS 以及 5 周期 SWS 加同轴引出结构组成的系统对入射 TEM 模传输特 性的比较情况.可以看到,10 周期的 SWS 在 0—2 GHz 频率范围内有明显的谐振点,而同样情况下 5 周期的 SWS 没有明显的纵向谐振特性,因而难以实 现纵向选模,这也是高功率 O 型慢波器件为了实现 单频振荡,通常采用周期数较多的 SWS 的原因.但 周期数过多会带来以下缺点:一是器件结构长,要 求均匀磁场区长,造成器件结构不紧凑;二是类 π 模点与其附近的纵向谐振点的频率间隔较小,当工 作电压波动时,多个纵模可能会被同时激发而相互 竞争,从而降低产生微波效率及频谱质量.

图 5 10,5 周期与 5 周期加同轴引出的梯形 SWS 的 TEM 模纵 向谐振特性比较

通过对比发现,加同轴引出结构后,系统对入 射 TEM 模的传输系数总体降低,但在 *f* = 1.70 GHz 频率处出现一个明显的纵向谐振点 *P*,便于选模;同 时,这个谐振点相比 10 周期的类 π 模谐振点有较 宽的频带和较小的功率传输系数,因而 *Q* 值稍低. 因此,利用此谐振点作为器件的工作点,一方面允 许器件的工作电压有一定的波动范围,从而使器件 产生微波的频率、效率对工作电压不是非常敏感, 也可避免多个纵向模式的竞争而降低输出微波功 率及频谱质量;另一方面,由于此谐振点的功率传 输系数较低(相比 10 周期 SWS 的类 π 模),可将输 出微波的一部分反射回慢波作用区,有利于增强器 件中的束-波相互作用.因此,同轴引出结构的引入, 可在周期数较少的情况下实现高效的单频振荡,进 而缩短器件轴向长度^[15,16].

同样方法分析其他结构,在相同参数下得到三 种结构的 TEM 模纵向谐振特性见图 6. 可知,三种 SWS 在 0-2 GHz 频率范围都有较明显的谐振点,

图 6 5 周期加同轴引出的不同形状 SWS 的 TEM 模纵向谐振特 性对比

每个谐振点对应一个纵向模式.余弦 SWS 各纵向模 式对应的频率最高,矩形 SWS 对应的频率最低,其 符合求解色散曲线时得出的规律.然而,不同结构 对入射 TEM 模的传输系数是不一致的,没有出现规 律性的变化,原因在于最后一个慢波周期与同轴引 出结构组成的输出口对这三种 SWS 反射是不同的, 这与理论计算中把 SWS 看成无限长是不同的.以上 是冷腔时的分析,当加载电子束时,电子束与结构 波相互作用时将引入更复杂的非线性效应.

4. 粒子模拟

4.1. 设计思想

目前,对返波振荡器 BWO 的研究多集中在 S, C,X 和毫米波段,P,L 等低频段报道很少,主要原因 在于低频段 BWO 体积较大,不利于加工和实验.由 于低频段高功率微波具有潜在的国防和工业应用 前景,因此本文设计工作在 L 波段的 BWO.

值得注意的是,器件的设计不是按照通常的方法,单纯根据频率改变尺寸,进行缩比设计,而是包含以下设计思想:利用同轴 SWS 的最低阶模式的截止频率为0,可使器件工作在最低模式,实现横向选模,减小径向尺寸;采用同轴引出结构实现纵向模式选择,可在周期数较少(5个)的情况下实现高效的单频振荡,进而缩短器件轴向长度.同轴引出电子束结构的引入,避免残余电子打到输出波导壁上,不但可以减小残余电子从输出微波中吸收能量,而且有助于削弱输出微波脉冲缩短现象,而且改变了终端反射条件,在参数选择适当的条件下,

可以得到高的产生效率.此外,通过增加 SWS 后段 波纹的深度来实现在电子减速区增加电子与结构 波的耦合阻抗.这样当电子在磁场导引下沿轴向传 播时,电子束与 SWS 壁之间的径向间隙将有效地缩 短,束-波之间的耦合得以增强,有利于提高效率.

图 7 粒子模拟研究模型

采用粒子模拟程序 KARAT 分别建立了上述三种 SWS 的模型,研究了器件内束-波作用的物理过程,以余弦结构为例,如图 7 所示.模拟过程中,均使用无箔二极管自洽发射电子束;外加磁场使用线圈结构,在器件的轴线上产生磁场用于导引电子束的运动;在器件的终端使用吸收介质作为粒子模拟的边界条件,同时将同轴 BWO 内导体和外导体用理想金属材料连接,保证内外导体具有相同的电位,尽量使模型与实验装置的内导体支撑结构一致起来,消除直流成分对模拟结果的影响,增加模拟结果的可信度.

4.2. 模拟结果

通过模拟与优化,图 8 给出了采用余弦 SWS 的 典型结果.在导引磁场 1.0 T、束电压 700 kV、束电 流 10 kA下,微波在 10 ns 时开始起振,20 ns 开始饱 和,饱和后平均功率为 2.05 GW,频率为 1.62 GHz. 慢波作用区最大半径仅有 5 cm,5 个周期 SWS 长度 仅为 36 cm.

表1给出了分别采用三种 SWS 器件得到的典型结果.在相同电参数下,余弦、梯形和矩形 SWS 分别得出了29.2%,31.9%,30.3%的微波功率效率, 差别不是很大.输出微波频率按上述顺序分别为 1.62,1.60和1.59 GHz,与理论计算色散特性趋势 一致,差别也不是很明显.分析认为,由于模拟条件 是理想化的,采用理想电压方波、理想磁场、器件同

图 8 典型粒子模拟结果 (a) 微波功率 P 随时间的变化, (b) 微波功率频谱

轴无偏心以及不涉及场击穿引起的二次电子发射, 所以不同 SWS 带来的影响不是很明显.采用不同 SWS 的器件的差别主要体现在工程实现上:余弦结 构表面没有明显的凸起,不像梯形、矩形结构容易 造成局部场增强,在提高功率容量方面具有明显的 优势,但加工较复杂;而矩形 SWS 的特点在于容易 加工,缺点在于功率容量较小;梯形 SWS 加工较之 矩形 SWS 复杂一些,然而通过倒角打磨,消除局部 场增强点,能获得近似余弦 SWS 在提高功率容量方 面的性质.因此,俄罗斯相关研究单位在实际加工 中大都采用梯形结构的 SWS^[16].综合上面分析,本 文最终选用梯形波纹的 SWS,完成设计和加工.

表1 分别采用三种 SWS 粒子模拟得到的典型结果

物理量 -	慢波形状			
	余弦	梯形	矩形	
电压/kV	700	700	700	
电流/kA	10	10	10	
频率/GHz	1.62	1.60	1.59	
功率/GW	2.05	2.23	2.12	
效率/%	29.2	31.9	30.3	

5. 实验研究

优化尺寸,结合实验室强流电子束加速器的实际情况,并且考虑到器件结构的紧凑性及可调性,对实验装置进行了工程设计,结构如图9所示.

根据理论分析及计算机粒子模拟给出的器件

图 9 同轴 L 波段 BWO 结构示意图

器件采用梯形 SWS,通过倒角打磨,消除局部 场增强点,提高功率容量;SWS 末端引入同轴引出 结构,避免残余电子打到输出波导壁上,不但可以 减小残余电子从输出微波中吸收能量,而且有助于 削弱输出微波脉冲缩短现象.

针对 L 波段 BWO 慢波作用区长以及所需磁场 强的特点,设计了一个为其提供引导磁场的双线绕 制、三段磁场线圈系统.采用双线绕制,目的是通过 增大导线的横截面积降低线圈电阻;采用分段结构 是为了避免线圈上、下层之间的高压击穿和易于 加工.

电子束被导引的效果可通过置于 SWS 下游的 尼龙靶被电子束的轰击痕迹来判断.图 10 给出了被 电子束轰击一次后尼龙靶的照片,其中发射电子束 的环形阴极平均半径为 3.5 cm,厚度为 1 mm,可以 看到,尼龙靶被轰击痕迹的同心性、均匀性较好,其 直径 $\phi \approx 7.2$ cm,宽度 $\Delta \approx 2$ mm,这反映了电子束被 导引的效果较好.

图 10 经电子束一次轰击后的尼龙目击靶照片

在本研究室的TORCH-01 加速器平台上进行了 初步实验研究.图11 给出了实验中加速器所产生的 二极管电压(上)、电流(中)和微波(下)的典型波 形.可以看到,在工作电压为 670 kV,工作电流为 10.7 kA,引导磁场为0.75 T的条件下,器件微波辐 射功率约为1.02 GW,微波波形半高宽为22 ns,功 率转换效率约为14.2%.分析可得,实验中功率效 率低于模拟结果的主要原因之一在于导引磁场较 小,电子束没有得到很好的约束,造成器件内的束-波作用不充分.下一步通过改进励磁电源以提高导 引磁场,有望获得更高效率.

图 11 工作电压(上)、电流(中)及微波(下)功率测量波形 横坐标每格代表 20 ns

采用 TDS7154B 示波器对微波信号进行了直接 采样测量,如图 12 所示.实验测得微波中心频率为 1.61 GHz,与模拟结果 1.60 GHz 符合较好.下一步 深入研究器件中微波的脉冲缩短机制,探索器件在 长脉冲方面的应用.

图 12 微波频率测量波形

6. 结论与讨论

针对梯形、矩形等形状 SWS 在求解色散特性时,边界条件难处理的情况,首先引入 Fourier 级数展开法,给出了任意波纹周期 SWS 色散曲线的求解方法.在此基础上,对比分析了余弦、梯形和矩形结构 SWS 的色散特性,得出余弦结构具有最宽的频率调节范围、最大的相速,梯形、矩形结构对应特性依次减弱的结论.

鉴于实际器件中所用的 SWS 为有限长,SWS 与 其两端阻抗不匹配激励起众多高阶模的情况,提出 纵模选择的概念.数值仿真结果表明:同轴引出结 构,可减少 SWS 周期数,不但使器件结构更为紧凑, 还可避免纵模竞争,从而提高器件效率、稳定产生 微波频率.同时,给出了余弦 SWS 中各纵向模式对应的频率 最低的结论,其与分析色散特性得出的结论是符 合的.

在理论分析的基础上,通过粒子模拟方法研究 了采用三种不同形状 SWS 的同轴双波纹 BWO 的 束-波作用的物理过程.横向与纵向模式选择的设计 思想使器件在极其紧凑的情况下,输出了 L 波段、 吉瓦级高功率微波.粒子模拟结果展示了 SWS 的形 状对结果影响不明显,合理设计电动力学结构,提 供与电子束充分相互作用的结构波才是关键.另 外,适当的增加反射,将产生微波的一部分反射回 慢波作用区,将有利于增强器件中的束-波相互 作用.

经理论分析与粒子模拟比较,这三种不同形状 SWS的主要区别具体体现在功率容量及工程实现 方面:余弦SWS表面没有明显的凸起,不容易造成 局部场增强,在提高功率容量方面具有明显的优势,但加工较难;矩形SWS易加工,尖端场增强导致 功率容量较小;而梯形SWS介于两者之间,这也是 众多研究者青睐的原因.因此,梯形SWS可望在 BWO的应用中发挥更大作用.

最后给出了 L 波段同轴 BWO 的初步实验结果,在二极管电压 670 kV,电子束流为 10.7 kA,引导磁场 0.75 T 的条件下,输出微波峰值功率约为 1.02 GW,微波波形半高宽为 22 ns,功率转换效率 约为 14.2%,频率为 1.61 GHz.下一步将深入研究器件中微波的脉冲缩短机制,探索 L 波段 BWO 在长脉冲方面的应用.

- [1] Zhang J, Zhong H H 2005 Acta Phys. Sin. 54 0206 (in Chinese) [张 军、钟辉煌 2005 物理学报 54 0206]
- [2] Xiao R Z, Liu G Z, Chen C H 2008 Chin. Phys. B 17 3807
- [3] Nation J A 1970 Appl. Phys. Lett. 17 491
- [4] Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882
- [5] Choyal Y, Maheshwari K P 1995 Phys. Plasmas 2 319
- [6] Minami K, Kobayashi S, Hayatsu Y 2002 IEEE Trans. Plasma Sci. 30 1196
- [7] Chang T H, Yu C F, Hung C L 2008 Phys. Plasmas 15 073105
- [8] Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525
- [9] Larald M, Edl S, Raymond W L 1994 IEEE Trans. Plasma Sci.
 22 554

- [10] Zhang J,Zhong H H, Luo L 2004 IEEE Trans. Plasma Sci. 32 2236
- [11] Xiao R Z, Lin Y Z, Song Z M 2007 IEEE Trans. Plasma Sci. 35 1456
- [12] Liu G Z, Xiao R Z, Chen C H 2008 J. Appl. Phys. 103 093303
- [13] Xiao R Z, Zhang L J, Liang T Z 2008 Phys. Plasmas 17 053107
- [14] Main W, Carmel Y, Ogura K 1994 IEEE Trans. Plasma Sci. 22 566
- [15] Levush B, Antonsen T M, Bromborsky A 1992 IEEE Trans. Plasma Sci. 20 263
- [16] Gunin A V, Korovin S D, Kurkan I K 1998 IEEE Trans. Plasma Sci. 26 326

Comparative research on three types of coaxial double-corrugation periodic slow-wave structures *

Ge Xing-Jun[†] Zhong Hui-Huang Qian Bao-Liang Zhang Jun

(College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China) (Received 12 May 2009; revised manuscript received 5 July 2009)

Abstract

The method for deducing expressions of arbitrary geometrical structures is studied in detail by using the Fourier series expansion. The dispersion curves of the slow-wave structures (SWSs) with the cosinoidal, rapezoidal and rectangular corrugations are obtained by numerical calculation. Moreover, the longitudinal resonance properties of the finite-length coaxial SWS are investigated with the S-parameter method. It is proposed that the introduction of a well designed coaxial extractor to slow-wave devices can help to reduce the period-number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes. Furthermore, a compact L-band coaxial relativistic backward wave oscillator (RBWO) is investigated and optimized in detail with particle-in-cell (PIC) methods (KARAT code). In the preliminary experiments, the measured microwave frequency is 1.61 GHz, with a peak power level of above 1.02 GW, when the diode voltage is 670 kV and the current is 10.7 kA. The pulse duration (full-width at half-maximum) of the radiated microwave is 22 ns.

Keywords: coaxial slow-wave structure, relativistic backward-wave oscillator, dispersive characteristics, high-power microwave

PACC: 5270G, 8760G, 5275, 4110H

^{*} Project supported by the National High Technology Research and Development Program of China (Grant No. 2002AA834020).

[†] E-mail: gexingjun230230@ yahoo. com. cn