短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析^{*}

夏志林节 郭培涛 薛亦渝 黄才华 李展望

(武汉理工大学材料科学与工程学院金属系 武汉 430070(2008 年 10 月 6 日收到;2009 年 9 月 16 日收到修改稿)

短脉冲激光诱导薄膜材料损伤过程的研究通常止于薄膜材料发生喷溅. 超热喷溅物质吸收剩余激光脉冲能量 将形成剧烈的等离子体爆炸过程. 采用两步数值计算方法处理等离子体微滴的爆炸过程,即在每一个数值计算时 间步长内 将爆炸过程分为两步,第一步处理微滴的绝热膨胀及裂解过程;第二步处理微滴对激光脉冲能量的吸收 过程. 有效地将微滴吸收激光能量的物理学过程与爆炸动力学过程耦合到一起. 分析了喷溅物质微滴在剩余激光 脉冲作用下,其半径、膨胀(加)速度、裂解(加)速度、电子及离子的密度与温度等参量随时间变化的演化情况. 结 果表明:材料喷溅前期为微滴雾化阶段,后期则以膨胀过程为主. 裂解速度是周期性的,膨胀速度则单调增加. 在特 定情况下膨胀速度可能在雾化之后出现一个动稳定阶段,但该动稳定态的出现条件是苛刻的.

关键词:光学薄膜,激光损伤,等离子体,爆炸 PACC:7755,7865,5250J

1. 引 言

实验上观察到激光作用下,薄膜破坏时的等离 子体闪光现象,该现象是等离子体在向外空间扩散 消耗能量时所发出的弧光^[1-4].激光作用下,杂质吸 收激光能量并气化,气化后的杂质继续强烈地吸收 激光能量,对周围介质的压力也急剧上升,使外面 包裹介质层鼓起.鼓包形成的同时,外层介质中的 应力不断增加,当应力值达到或超过材料的抗拉强 度时,鼓包破裂,内部的高压气相物质喷溅而出.在 薄膜破裂之后,损伤过程可能进一步发展为等离子 团簇体的形成.

激光辐照下,需要有强烈吸收的机理作用,材 料才能吸收足够的激光能量形成剧烈的等离子体 冲击作用.研究等离子体吸收特性时发现^[5-8]:气体 原子密度在 10¹⁸ cm⁻³数量级,其吸收低、激光能量 利用率不高.而固体靶的原子密度在 10²² cm⁻³数量 级,由于其内部频繁的碰撞作用导致强逆韧致吸 收,但是固体材料的热传导以及热电子损失也比较 大,所以对已吸收的激光能量利用率同样不高.最 理想的材料状态是团簇聚集体,其总体密度在气体 范围,但是每个团簇密度达到了固体密度范围,这 克服了吸收率低的缺点,同时又解决了热损失大的 问题.

通常认为激光作用下,薄膜破裂后喷溅出来的 雾状微小团簇强烈地吸收激光能量而形成等离子 体.这类等离子体的形成需要满足一些基本条件: 首先是激光脉宽要足够长,即在薄膜破裂后喷溅出 来的团簇体有足够激光能量可以吸收.如果激光脉 冲在薄膜破裂之前已经结束,喷溅出来的团簇体得 不到能量补充,等离子体冲击作用不会剧烈.其次, 激光功率密度不能太小,即薄膜破裂之前的杂质处 要有液化或者汽化相变发生.这样,喷溅出来的物 质才具有团簇特性,才能强烈地吸收激光能量.

由于等离子体是在薄膜破裂之后形成的,它对 薄膜的抗激光损伤能力没有多大影响.但它的产生 加剧了薄膜损伤的发展,使得损伤过程变得丰富多 彩,对已经形成的损伤斑点形貌和尺寸有影响.对 这方面的研究,首先需要分析薄膜破裂后喷溅出来 的高密度流体的膨胀及雾化过程,由文献[9—11] 可知,该过程关系到微团簇对激光能量的强烈吸收 机理.本文建立了理论模型分析高密度流体的膨胀 及雾化过程.

^{*} 国家自然科学基金(批准号:10974150 和 10804090)资助的课题.

 $[\]dagger$ E-mail: lionel626@163.com

2. 理论基础

本文所描述的物理图像是这样的:在激光脉冲 前部分的作用下,一定程度电离的薄膜或其内部杂 质的温度超过了相应材料的熔点或沸点,薄膜中产 生的应力超过了其强度值,发生材料的喷溅.喷溅 出来的物质继续吸收剩余脉冲的激光能量,在高内 压作用下超热流体的喷溅物质不断裂解而雾化,且 不断膨胀而降低温度、密度和内压.该过程伴随着 等离子体闪光现象,等离子体微滴不断吸收和消耗 能量.问题的研究涉及到材料的电离、吸热、膨胀和 裂解等机理,本文将就这些问题进行分析.

2.1. 电子密度

假设等离子体微滴内部碰撞频率足够高,且团 簇内部温度梯度可以忽略,电子、离子振动速度各 向同性,遵从麦克斯韦分布.

短脉冲激光与等离子体相互作用时主要发生 直接光电离和碰撞电离.光电离在材料电离初期以 及电子温度较低时是材料电离的主要原因.光电离 在不同激光电场强度下有不同的电离形式.通常认 为.在低场强高激光频率下,以多光子离化为主,而 在高场强低激光频率时,以隧道电离为主.多光子 电离的速率为^[12,13]

$$W_{\text{multi}} = \frac{2}{9\pi} \omega \left(\frac{m^* \omega}{\hbar}\right)^{3/2} \Phi\left(\sqrt{2l - (2E_g/(\hbar\omega))}\right) \\ \times \exp\left\{2l\left(1 - \frac{1}{4\gamma^2}\right)\right\} \left(\frac{1}{16\gamma^2}\right)^l.$$
(1)

而隧道电离机理下的材料电离速率为

$$W_{\text{tunnel}} = \frac{2\omega}{9\pi^2} \left(\frac{m^*\omega}{\hbar}\right)^{3/2} \gamma^{-5/2} \exp\left\{-\frac{\pi}{2}\frac{\gamma E_{\text{g}}}{\hbar\omega} \left(1-\frac{\gamma^2}{8}\right)\right\}, \quad (2)$$

其中, $ω m^*$ \hbar 分别是激光电场频率、电子有效质 量、普朗克常量; E_g 是材料的能带带隙宽度; $l = [E_g/(\hbar\omega) + 1]$ 是 多 光 子 吸 收 阶 数; $Φ(x) = \int_0^x \exp(y^2 - x^2) dy$ 是道生积分函数.

Keldysh^[12,13]采用参量 $\gamma = \omega \sqrt{m^* E_g}/eE$ 来界 定多光子电离和隧道电离的发生条件,当 $\gamma \gg 1$ 时 以多光子电离为主,而 $\gamma \ll 1$ 时则以隧道电离为主. 本文涉及的等离子体微滴的尺寸相对于激光束半 径及波长来说一般比较小,可以近似假设等离子体 微滴内的激光电场均匀分布 ,微滴内电场可以表示 为 $E = 3E_0/|_{\mathcal{E}} + 2|$. 其中 , $E_0 = \sqrt{2I/c\varepsilon_0}$ 是真空中 的激光电场强度; $I \not c \not \varepsilon_0$ 分别是激光强度、真空中光 速、真空介电常数; $\varepsilon = 1 - \omega_P^2/[\omega(\omega + i\nu)]$ 是等离 子体介电常数; $\omega_p = \sqrt{4\pi e^2 n_e/m_e}$ 是等离子体的电 子振荡频率. $e n_e m_e$ 分别为电子带电量、电子密度 以及电子质量. { ν }_{s=1} = 8.72 × 10⁻¹⁷ • { n_e }_{m=3}Z • $\ln A/{T_e}$ }^{3/2} 是 电 子-离 子 碰 撞 频 率; $\ln A =$ $\ln(n\lambda_D^3)$ 是库仑对数; $\lambda_D = \sqrt{k_B T_e/(4\pi n_e e^2)}$ 是德 拜长度; Z 是原子序数; k_B , T_e 分别是玻尔兹曼常数 和电子温度.

碰撞电离源于电子-离子之间的非弹性散射,一 旦光电离产生了部分电子,由于近固态材料内原子 密度足够高,电子-离子碰撞将使材料进一步电离产 生高电荷态离化.Lotz^[5]给出了热电子产生的碰撞 电离经验公式

$$W_{\text{therm}} = n_{e} \frac{\alpha q}{E_{g} (k_{B} T_{e})^{1/2}} \int_{E_{g} / (k_{B} T_{e})}^{\infty} \frac{e^{-x}}{x} dx , \quad (3)$$

其中, $\alpha = 4.5 \times 10^{-14} (eV^2/cm^3)$ 是经验常数; q 是 离子外壳层的电子数;此外,等离子体电子在激光 交频电场作用下发生振荡,假设该振荡速度具正弦 特征,Lotz 考虑到能量为电离势附近的电子振荡产 生的离化率最高,给出电子振荡引起的周期性平均 碰撞电离概率

$$W_{\text{field}} = n_{e} \frac{\alpha q}{2\pi (m_{e}U_{p})^{1/2}} \left\{ \left[3 + \frac{E_{g}}{U_{p}} + \frac{3}{32} \left(\frac{E_{g}}{U_{p}} \right)^{2} \right] \times \ln \left[\frac{1 + \sqrt{1 - E_{g}/(2U_{p})}}{1 - \sqrt{1 - E_{g}/(2U_{p})}} \right] - \left(\frac{7}{2} + \frac{3E_{g}}{8U_{p}} \right) \sqrt{1 - E_{g}/(2U_{p})} \right\}, \quad (4)$$

其中, $U_p = e^2 E^2 / (4m_e \omega^2)$ 是激光有质动力势.

对于尺寸小的等离子体微滴,需要考虑等离子体中电子的逃逸.这可以由微滴内电子平均自由程 来估算,其最终表达式为^[5]

$$W_{\rm esc} = n_e \frac{2\sqrt{2\pi}}{\sqrt{m_e k_{\rm B} T_e}} (K_{\rm esc} + k_{\rm B} T_e) \exp\left(-\frac{K_{\rm esc}}{k_{\rm B} T_e}\right) \\ \times \begin{cases} \lambda_e (12r^2 - \lambda_e^2)/4r , & \lambda_e < 2r , \\ 4r^2 , & \lambda_e > 2r , \end{cases}$$
(5)

其中, $\lambda_e = (k_B T_e)^2 / 4\pi n_e (Z + 1) e^4 \ln \Lambda$ 是自由电子 平均自由程. $K_{esc} = (Q + 1) e^2 / r$ 是电子逃逸功,用

微

2.2. 电子、离子温度

激光与高密度等离子体相互作用时,等离子体 主要依靠逆韧致吸收获得激光能量,单位体积的电 子加热率可以通过激光能量的沉积率表示,对激光 脉冲周期进行平均可以得到

$$\frac{\partial U}{\partial t} = \frac{\omega}{8\pi} \mathrm{Im}[\varepsilon] |E|^2.$$
 (6)

等离子体对激光能量的吸收首先是电子吸收, 然后通过电子-离子碰撞,电子将能量传递给离子以 加热离子.电子-离子交换能量的速度可以由下式 求得:

$$\partial T_e / \partial t = (T_i - T_e) / \tau_{eq}$$
, (7)

其中, τ_{eq} 是电子-离子能量平衡弛豫时间.

2.3. 等离子体微滴膨胀

2.3.1. 运动学基础

假设高密度等离子体微滴在膨胀过程中能始 终保持密度均匀性,并将微滴视为球形.这就需要 保持微滴球内任意两个质点的径向运动速度之比 始终等于其所处位置的半径之比,也就意味着微滴 内各个质点处的径向加速度与其半径呈线性关系, 令 a(r) = Ar, A 为常系数.考虑任意半径 r 处的球 壳,其厚度为 dr,则球壳两侧的压力差引起了加速 度,有关系式 Spadr = P(r)S - (P(r) + dP)S. 可将 其简化为 dP = -padr = -pArdr. 其中,p 是微滴密 度; S 参考球壳面积; P(r) 是参考球壳内侧面所受 压力; dP 是参考球壳内外侧压力差.可见参考球壳 的加速度与其内外侧的压力差和自身的密度以及 所处位置的半径有关. 对该式两边进行积分可得 $P(r) - C = -pAr^2/2$. 其中,C 是常量. 进一步简化表 达式,令常量 B = -pA/2,可得

$$P(r) = Br^2 + C.$$
(8)

可见,在密度始终保持均匀的假设下,微滴内的压力分布为半径的二次曲线.式中的常系数 B 和 C 可以根据边界条件和微滴内的平均压力确定.

假设微滴所处的环境压力与微滴表面张力引

起的压力之和为 P_0 ,则微滴外壳的压力边界条件为 $P(R) = P_0 = BR^2 + C.$ (9)

 $\bar{P} = \left(\int_0^R 4\pi r^2 P(r) \, dr \right) / (4\pi R^3 / 3).$

将(8)式的压力表达式代入,可得

$$\overline{P} = \left(3\int_{0}^{n} (Br^{2} + C)r^{2} dr\right)/R^{3}$$
$$= \frac{3}{5}BR^{2} + C , \qquad (10)$$

 \bar{P} 即微滴内的平均压力,该平均压力由等离子体内 的电子温度、离子温度、库仑作用等因素确定.等离 子体微滴的内部高压来源于电子和离子的高速振 荡,以及带电粒子的库仑作用.即 $\bar{P} = P_e + P_i + P_c$. 其中, $P_e = n_e k_B T_e$ 是电子热运动产生的压力分量; $P_i = n_i k_B T_i$ 是由离子热运动产生的压力分量, n_i , T_i 分别是等离子体微滴内的离子平均密度和平均温 度; $P_c = Q^2 e^2 / (8\pi r^4)$ 是库仑作用产生的压力,Q, e r分别是聚集在等离子体微滴上的净电荷数、单位 电荷电量、等离子体球半径.

由(9)和(10)式,可得(8)式中的常系数分别 为 $B = 5(P_0 - \overline{P})/(2R^2)$, $C = (5\overline{P} - 3P_0)/2$.将系 数B,C代入(8)式,根据系数B的定义可得微滴内 的压力随半径的分布为

$$P(r) = 5(P_0 - \bar{P})r^2/(2R^2)$$

$$+(5\overline{P}-3P_{0})/2.$$
 (11)

可见,径向压力大小与微滴内平均压力、微滴 的环境压力、微滴半径以及参考点位置等有关.由 此可以确定微滴内参考点的径向加速度随半径的 变化

$$a_{e}(r) = 5(\bar{P} - P_{0})r/(R^{2} \cdot \rho).$$
(12)

可见 微滴内参考点的径向加速度与微滴内平 均压力、微滴的环境压力、微滴半径、微滴密度以及 参考点位置等有关. 根据这些参量可以确定微滴内 各点的径向加速度,再结合微滴膨胀的初始速度, 可以分析微滴膨胀的全部过程,包括膨胀过程中微 滴半径、密度、压力、温度等参量随时间的演化情 况. 从而,对高温薄膜材料喷溅时等离子体急剧爆 炸对膜面的冲击作用的分析也将变得可行. 本文重 点解决等离子体爆炸过程中微滴球热学参数的演 化,至于伴随该过程的剧烈力学作用将另文详细 分析.

2.3.2. 热力学基础

在不考虑激光对等离子体加热的情况下,微滴

3526

 $V \bullet T^{\gamma^{-1}} = C$, $\overline{P} \bullet V^{\gamma} = C$, (13)其中, $V, T, \overline{P}, \gamma$ 分别是等离子体球的体积、平均温 度、平均压力、绝热膨胀系数.

高密度等离子体的喷溅如果发生在脉冲结束 之前 则等离子体微滴对激光能量的吸收过程是不 可忽略的. 将等离子体吸收过程耦合到其膨胀分析 中去,可以采用两步法处理,即采用数值方法计算 等离子体微滴的膨胀过程,在每一个时间步长内, 将膨胀过程分为两步,第一步是微滴的绝热膨胀过 程(微滴雾化过程也同时处理),第二步是微滴对激 光脉冲能量的吸收过程.这样可以同时保持等离子 体膨胀的绝热假设,又可以将微滴对激光能量的吸 收耦合进去.

2.4. 等离子体微滴雾化

四结果微滴模型具有较好的对称性,且模型的 分析相对简单,其模型如图1所示.图1(a)中多面 体的四个顶点分别代表四个结果微滴的重心. 图 1 (b)反映了裂解前微滴O与裂解过程中任意一结果 微滴 C 之间的几何关系 顶点 O 为裂解前微滴重心 的位置 其余顶点均为以 0 为原点、0C 间距为半径 的球面上的点.结果微滴 C 与其他结果微滴的交界 面分别为 OLM OLN OMN 面所在的扇形切面. 图 1 中的一些几何关系为 $b = \sqrt{6} \cdot a/4$; $c = \sqrt{6} \cdot a/12$; $e = \sqrt{6} \cdot b/(2\theta); \sin\theta = 2\sqrt{2}/3 \theta > \pi/2; \cos\varphi =$ $\sqrt{6}/3 \ \varphi < \pi/2; \sin \alpha = \sqrt{6}/3 \ \alpha > \pi/2.$

图 1 四结果微滴的裂解示意图 (a) 四结果微滴位置关系;(b) 任意结果微滴位置;(c) 逐步降维确定重心原理

为了方便分析,建立坐标系:以0点为坐标原 点,以结果微滴 C 的移动方向(OC 方向)为径向.结 果微滴 C 的重心在裂解初始时刻的位置可采用逐步 降维的方法获得,将体的质心转化为线的质心.具 体思路是这样的:首先,假设由 OLM ,OLN ,OMN 面 所在的扇形切面所组成的结果微滴 C 由无数正三棱 锥组成 三棱锥的顶点在0点 底面在以0为原点、 OC 间距为半径的球面上.则每个三棱锥的重心组 成了图1(c)所示的部分球面;其次,将所得的重心 球面简化为图 1(c) 中 NO 所表示的重心弧线; 最 后 确定 NQ 弧线的重心

$$d_0 = \frac{9}{8}b \frac{\int_0^\alpha \sin^2(\theta \zeta/2\alpha) \cdot \cos\zeta/(\zeta \theta/\alpha) d\zeta}{\int_0^\alpha \sin(\theta \zeta/2\alpha) d\zeta}.$$
 (14)

终了时刻各结果微滴两两相切,如果微滴开裂 前的半径为 R₀,则其中任一结果微滴的重心在其移 动方向上的终了位置为

 $d_{i} = \sqrt{6} \cdot (2 \cdot \sqrt[3]{1/2}R_{0})/4 = \sqrt{6}\sqrt[3]{2}R_{0}.$ (15)

同样,微滴裂解的动力来源于其内外压差 ΔP, 当其达到或超过微滴表面张力所能提供的约束时, 裂解过程沿着图1所示的方式发生.由于内外压作 用的对称性 最终能推动结果微滴 C 与其他结果微 滴分离的动力 即为结果微滴交界面上的内外压差 在面 LMN 法向上的分量,即沿 OC 方向上的分量.该 推动力可以表示为

$$F_{\rm d} = 3b^2 \theta \Delta P \cos\varphi$$
$$= \sqrt{6}b^2 \arcsin(2\sqrt{2}/3) \Delta P. \qquad (16)$$

(16)

类似地 结果微滴在裂解过程中所受的阻力源于微 滴表面张力作用.由图1可知,该阻力作用可以由结 果微滴 C 与其他结果微滴交界面周边上表面张力求 得,由于表面张力在LMN面内的分量具有对称性, 不予考虑. 沿面 LMN 法向的阻力分量可以表示为

 $F_r = 3\xi b\theta \cos\varphi = \sqrt{6}b^2 \arcsin(2\sqrt{2}/3)\xi/b.$ (17)

$$a_{c} = (F_{d} - F_{r})/m.$$
 (18)

图 2 等价微滴内压及等价表面张力系数计算示意图

随着裂解过程的进行,各结果微滴的形状不断 变化,它们之间的交界面尺寸也在不断地变化,要 针对这些变化建立一个始终适用的分析模型比较 困难.这里,我们用等价内压和等价表面张力系数 的改变来反映结果微滴的变化.

如图2 所示 O 点是裂解前微滴的位置 $t = t_0$ 的 位置 A 是裂解初始时刻结果微滴 C 的重心位置 t = T 的位置 B 是裂解结束时刻结果微滴 C 的重心位置 , t = x 是裂解过程中某一时刻结果微滴 C 的重心 位置.

等价法的思路是这样的:假设在裂解过程中结 果微滴的形状不发生变化,而其内部的质量分布不 断地发生变化.同时,假设结果微滴在任意时刻的 质量按一定比例集中分布在位置 *A* 和 *B* 上,故而结 果微滴内质量分布的改变,就是质量在位置 *A* 和 *B* 上分配比例的变化.结果微滴的等价内压和等价表 面张力系数随位置 *A* 上质量的分配比例的变化而线 性地改变.

对裂解过程中的某一时刻有质量分配关系 $m_x \cdot L_x = (m - m_x) \cdot (L_{max} - L_x)$,进行简单的变换后可 得在 位 置 A 上 所 分 配 的 质 量 为 $m_x = m(L_{max} - L_x)/L_{max}$. 其中 $L_x \in [0 \ L_{max}]$. 该质量决 定了等价内压和等价表面张力系数. 结合表面张力 系数与体积 (质量一定时以密度代替)关系 $\sigma = \frac{k}{V_m^{2/3}}(T_c - T) k = 2.2 \times 10^{-7}$ (J/K). 可得等价内压 及等价表面张力系数分别为

$$P_{\rm m} = \Delta P \cdot m_x / m$$

= $\Delta P \cdot (L_{\rm max} - L_x) / L_{\rm max}$, (19)

$$\xi_{\rm m} = \xi \cdot (m_x/m)^{2/3}$$

$$= \xi \cdot \left[\left(L_{\max} - L_{x} \right) / L_{\max} \right]^{2/3} , \qquad (20)$$

则(16),(17)和(18)式分别变为

$$F_{\rm dm} = \sqrt{6}b^2 \arcsin(2\sqrt{2}/3)P_{\rm m}$$
, (16')

$$F_{\rm rm} = \sqrt{6}b^2 \arcsin(2\sqrt{2}/3)\xi_{\rm m}/b$$
, (17')

$$a_{\rm m} = (F_{\rm dm} - F_{\rm rm})/m.$$
 (18')

根据该加速度,联合微滴裂解初始时刻结果微 滴重心的速度和重心坐标,以及裂解终了时刻结果 微滴重心的位置,可以计算得到整个裂解过程所需 的时间、裂解过程中结果微滴移动的加速度、速度 等随时间的演化情况.

3. 分析实例

依据上一部分的理论模型,计算了等离子体微 滴在喷溅离开薄膜表面后的参量变化情况. 计算中 假设超热流体在喷溅之初已经部分电离,电离率为 10%. 离子温度为 5000 K,以保证达到绝大多数材 料的熔点及气化点,即保证材料喷溅的发生.由文 献[17]可知,碰撞雪崩电离形成时,电子温度为材 料能带带隙一半或稍大一些.考虑到激光薄膜所用 氧化物材料的带隙宽度多为 3-4 eV,这里取电子 温度为 20000 K, 即 1.725 eV. 另外, 假设薄膜材料 在脉冲前部分(0-1.0 ps)内被加热熔化或气化 后 部分(1.0-2.0 ps)为喷溅过程.激光脉冲能量时间 谱为高斯函数分布.计算所用参数见表 1. 等离子体 微滴的膨胀动力学、热力学参量随时间变化的情况 如图 3-6 所示. 分别是图 3 的微滴半径随时间变化 情况;图4的结果微滴重心运动速度及外壳层膨胀 径向速度随时间变化情况;图5(a)的结果微滴重心 运动加速度及外壳层膨胀径向加速度随时间变化 情况:图6的微滴内电子与离子温度随时间变化 情况.

表1	理论计算所用的参量值
----	------------

初始电子密度/10 ²¹ cm ⁻³	1	微滴表面张力系数/N・m ⁻¹	0.48		
初始电子温度/eV	1.725	微滴初始半径/10 ⁻⁴ cm	1		
初始离子密度/10 ²¹ cm ⁻³	10	环境压力/10 ⁵ Pa	1.013		
初始离子温度/eV	0.73	电子、离子初始压力/10 ⁵ Pa	1.013		
激光功率密度/GW・cm ⁻²	1.0	激光脉宽/ps	1.0		
激光波长 /10 ⁻⁴ cm	1.064	计算时间/ps	1.0-2.0		

图 3 中每个半径突变意味着一次裂解过程的结束. 可见,在 1.35 ps 之前微滴以裂解为主,为微滴雾化阶段. 随着雾化过程的进行,每次裂解所用的时间不断减少. 每次裂解过程中微滴有一定量的膨胀. 1.35 ps 之后则以膨胀为主,微滴半径迅速增加. 微滴膨胀将导致电子、离子密度迅速降低,微滴内压急剧下降,电子、离子温度降低.

图4中裂解速度是周期性的,每次裂解的速度 经历由零增加到一最大值的过程,在速度达到最大 值时裂解结束.随着雾化过程的进行,每次裂解所 能达到的速度最大值变小,直到裂解停止.这是由 于微滴半径不断减小,裂解时结果微滴所需漂移距 离变小,裂解所需时间减少.在1.35 ps 以后,微滴 膨胀引起其内压降低,裂解难以再发生,微滴雾化 过程停止.

微滴膨胀速度则一直增加,在1.35 ps 附近达 到一稳定值而不再增加.

图4 结果微滴重心运动速度及外壳层膨胀径向速度随时间的 变化

图 5 结果微滴重心运动加速度及外壳层膨胀径向加速度随时 间的变化 (a)开始喷溅时间为 1.0 ps;(b)开始喷溅时间为 0.8 ps

图 5(a) 中裂解加速度也是周期性的,每次裂解 的加速度经历由一最大值减小到零的过程,在加速 度为零时裂解结束.第一个裂解周期内,加速度在 裂解初期有一个增加的过程,这是由微滴内温度增 加引起内压增加导致的.在后续的裂解过程中微滴 温度以减小为主(如图 6 所示),不会出现这样的 现象.

微滴膨胀加速度经历由小变大再变小的过程. 在 1.2 ps 到 1.35 ps 之间的膨胀加速度下降过程 中,加速度曲线会出现一些抖动,它们与裂解进程 相对应.加速度由微滴的内压、外压、表面张力相关 压力等决定.每次裂解完成时微滴的内压、外压不 会发生变化,而微滴半径突变将导致表面张力相关 的阻力突变增大,从而引起微滴膨胀加速度突变减 小.在 1.35 ps 以后,电子、离子温度及密度均变化 不剧烈,由体积膨胀主导,微滴膨胀同时引起表面 张力相关压力减小.此时,在表面张力相关压力主 导膨胀阻力的情况下,微滴膨胀的径向加速度不会 有大的波动,形成一个动稳定态阶段.该动稳定态 会一直持续到表面张力相关压力与环境压力相等 时,此后加速度为负值,膨胀速度降低.但是该动稳 定态形成的条件是苛刻的,如果微滴在雾化阶段其 电子、离子密度降低得过多,则动稳定态不会出现, 见图 5(b)(材料开始喷溅时间改为 0.8 ps,其他计 算参数相同).

图 7 电子密度及微滴吸收能量速度随时间的变化

图6中微滴内电子、离子温度经历了两次先增 加后减小的过程.电子与离子温度差不断减小.微 滴内电子温度由电子加热速度及微滴体积膨胀决 定.电子加热速率在1.2 ps 之前比较大(如图7所 示),加热足以弥补微滴体积膨胀引起的电子温度 降低.此后,微滴体积膨胀速度增加引起的电子温 度降低难以通过加热弥补,电子温度不断降低,直 到1.35 ps 附近由于微滴膨胀加速度突然变小,电 子温度略有回升,至1.6 ps 处电子温度再转而 降低.

电子-离子碰撞将使得电子与离子温度不断靠近,电子温度下降而离子温度上升.离子温度主要受电子-离子温度差及微滴体积膨胀的影响,其变化

规律与电子温度的相似.

图 7 中电子密度先增加后减小. 电子密度变化 主要由材料离化和微滴体积膨胀引起. 在计算初期 由于激光功率密度较大,离化速率占主导优势,电 子密度增加,至 1.2 ps 附近电子密度达到最大值. 此后由于膨胀速度增加,膨胀引起的体积变化占主 导优势,电子密度减小.

电子加热速度受等离子体频率及激光功率密度的影响,而等离子体频率由电子密度决定.在计算最初阶段,由于电子密度的急剧增加,电子加热速度增加,至1.1 ps 附近电子加热速度达到最大值.此后激光功率密度降低,同时,膨胀引起电子密度降低,电子加热速度不断减小,直到1.35 ps 附近由于微滴膨胀加速度突然变小,电子加热速度减小速度变慢.

4. 小 结

本文研究了短脉冲激光与薄膜相互作用时 ,薄 膜材料在激光作用下发生液化或气化而产生喷溅 之后的情况.着重研究了喷溅出来的超热微滴的半 径、径向膨胀速度和加速度、裂解速度和加速度、微 滴内电子及离子的温度和密度等参量随时间变化 的演化情况,本文的研究为后续研究喷溅等离子体 爆炸波对薄膜表面损伤坑尺寸和形貌的影响打下 了基础 相关验证实验正在设计中. 本文计算参数 下获得的结论可以归纳为:1)材料喷溅前期为微滴 雾化阶段 后期则为膨胀主导的过程 微滴雾化的 结果是致使其半径急剧减小 相应地膨胀和裂解阻 力迅速增加. 微滴膨胀的结果是导致微滴温度、密 度和压力降低,相应地膨胀和裂解动力不断下降. 材料喷溅之后对激光能量吸收越多 则相应的膨胀 和雾化过程越剧烈.2) 裂解速度是周期性的 每次 裂解经历由零增加到一最大值的过程,速度达到最 大值时裂解结束. 微滴膨胀速度则一直增加,在特 定情况下膨胀速度可能会在雾化之后出现一个稳 定阶段.3) 裂解加速度也是周期性的,每次裂解经 历由一最大值减小到零的过程,在加速度为零时裂 解结束. 微滴膨胀加速度随温度变化会经历由小变 大再变小的过程.在下降过程中,加速度曲线会出 现一些抖动. 在雾化之后,微滴膨胀的径向加速度 可能会出现一个动稳定态阶段,但是该动稳定态形 成的条件是苛刻的.

- [1] Xia Z L Shao J D Fan Z X Wu S G 2006 High Power Laser and Particle Beams 18 575 (in Chinses) [夏志林、邵建达、范正修、 吴师岗 2006 强激光与粒子束 18 575]
- [2] Xia Z L Fan Z X Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林、范正修、邵建达 2006 物理学报 55 3007]
- [3] Jasapara J Nampoothiri A V V Rudolph W 2001 Phys. Rev. B 63 045117
- [4] Mero M ,Liu J ,Rudolph W 2005 Phys. Rev. B 71 115109
- [5] Ditmire T ,Donnelly T ,Rubenchik A M ,Falcone R W , Perry M D 1996 Phys. Rev. A 53 3379
- [6] Ditmire T ,Zweiback J , Yanovsky V P , Cowan T E , Hays G , Wharton B 1999 Nature 398 489
- [7] Krainov V P Smirnov M B 2002 Phys. Rep. 370 237
- [8] Ditmire T , Gumbrell E T , Smith R A , Djaoui A , Hutchinson M H R 1998 Phys. Rev. Lett. 80 720
- [9] Kundu M , Bauer D 2006 Phys. Rev. Lett. 96 123401
- [10] Mulser P ,Kanapathipillai M ,Hoffmann D H 2005 Phys. Rev. Lett. 95 103401
- [11] Taguchi T , Antonsen T M , Milchberg H M 2004 Phys. Rev.

Lett. 92 205003

- [12] Du D , Liu X , Korn G , Squier J , Mourou G 1994 Appl. Phys. Lett. 64 3071
- [13] Kaiser A ,Rethfeld B ,Vicanek M ,Simon G 2000 Phys. Rev. B 61 11437
- [14] Yi Y G Zheng Z J , Yan J ,Li P ,Fang Q Y ,Qiu Y B 2002 Acta Phys. Sin. 51 2740 (in Chinese) [易有根、郑志坚、颜 军、李 萍、方泉玉、邱玉波 2002 物理学报 51 2740]
- [15] ShiY L ,Dong C Z Zhang D H ,Fu Y B 2008 Acta Phys. Sin. 57 88 (in Chinese) [师应龙、董晨钟、张登红、符彦飙 2008 物理 学报 57 88]
- [16] Zhang J Y Zhang Z J ,Yang G H ,Yang J M ,Ding Y N ,Wei M X ,Li J 2006 High PowerLaser and Particle Beams 18 1375 (in Chinese) [张继彦、郑志坚、杨国洪、杨家敏、丁耀南、韦敏习、 李 军 2006 强激光与粒子束 18 1375]
- [17] Xia Z L Shao J D , Fan Z X 2006 Chinese Journal of Materials Research 20 581 (in Chinese) [夏志林、邵建达、范正修 2006 材料研究学报 20 581]

Investigation of the plasma bursting process in short pulsed laser induced film damage^{*}

Xia Zhi-Lin[†] Guo Pei-Tao Xue Yi-Yu Huang Cai-Hua Li Zhan-Wang

(Wuhan University of Technology, School of Materials Science and Engineering, Wuhan 430070, China) (Received 6 October 2008; revised manuscript received 16 September 2009)

Abstract

Investigations on the interaction of short pulsed laser with optical films usually terminate at the ejection of film material. The plasma bursting process will happen, because the superhot ejection will absorb the remainder of laser energy. A two-steps numerical method has been used to deal with this process. In every computation time-step, two phases are used: the first one is the adiabatic expansion and cracking phase; the second one is the phase of absorbing laser energy. By this method, the energy absorption process and the bursting process are effectively coupled. For the thermodynamic parameters of the plasma micro-droplet, such as the radius, expansion speed and acceleration cracking speed and acceleration , densities and temperatures of electronic and ionic systems have been investigated. The results revealed that: the ejection will be atomized to micro-droplets in the early stage , and expansion dominates the latter part. The cracking velocity is cyclic, and the expansion velocity increases all the while. In specific cases, the expansion process may keep a dynamic stable state after the atomization. But it is difficult for this dynamic stable state to form.

Keywords: optical films , laser induced damage , plasma , bursting process PACC: 7755 , 7865 , 5250J

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10974150 and 10804090).

[†] E-mail: lionel626@163.com.