平面丝阵负载 Z 箍缩内爆动力学一维图像诊断*

盛 亮* 王亮平 李 阳 彭博栋 张 美 吴 坚 王培伟 魏福利 袁 媛

(西北核技术研究所,西安 710024) (2010 年 7 月 28 日收到;2010 年 12 月 14 日收到修改稿)

利用可见光条纹相机对单排和双排平面丝阵内爆动力学过程诊断中的初步实验结果,并对其进行了分析.实验结果表明,单排平面丝阵相邻单丝等离子体之间并不是发生完全非弹性碰撞,部分等离子体会越过丝阵平面在中心形成先驱等离子体柱;双排平面丝阵中流过外部丝的电流要比内部丝大,烧蚀过程占整个内爆时间约65%,且只有部分质量参与了内爆过程.

关键词:条纹相机,平面丝阵,Z箍缩,内爆动力学 PACS: 52.70.-m, 52.30.-q, 52.59.0g

1. 引 言

平面丝阵负载最初用来研究丝阵的烧蚀动力 学和先驱等离子体的形成过程, Nevada 大学的 Zebra 装置(1 MA, 100 ns)上最先开展了利用平面 丝阵负载作为辐射源的内爆实验,最近利用双排 Mo 丝阵获得了 11 kJ/cm 的 X 射线产额,峰值功率为 0.42 TW/cm^[1]. 在俄罗斯大电流所 GIT-12 装置上 (4.7 MA, 1.7 μs)开展了长脉冲平面丝阵实验, Al 的 K 层辐射产额比先前的圆柱形丝阵高了~2 倍^[2]. 在 Saturn 装置(3 MA, 100 ns)上开展了与 ICF 相关的钨平面丝阵功率定标实验、Al 的 K 层辐 射实验、平面丝阵内爆动力学等研究工作^[3]. 国内 对平面丝阵负载只进行了探索性实验研究^[4],系统 的实验研究工作尚未开展.平面丝阵内爆动力学行 为是影响其稳定性控制、辐射输出的重要因素之 一,决定了第一个 X 射线峰的上升前沿^[3].本文主 要介绍了可见光条纹相机对单排和双排平面丝阵 内爆动力学过程诊断的实验结果,并对其进行了初 步分析.

2. 条纹相机结构与时间关联

条纹相机是具有高时间分辨率的脉冲辐射诊断设备,在各种瞬态物理过程研究中得到了广泛应用^[5].图1给出了条纹相机结构示意图,条纹相机狭缝垂直于丝阵轴,一般位于丝阵中部.平面丝

*国家自然科学基金青年基金(批准号:10905047)和西北核技术研究所预研基金(批准号:51020907)资助的课题.

† E-mail: shengliang@tsinghua.org.cn

^{©2011} 中国物理学会 Chinese Physical Society

阵 Z 箍缩等离子体辐射信号经过焦距为 500 mm 的 主透镜成像在狭缝上,狭缝相当于一个空间滤波 器,只有狭缝以内的图像进入后续系统. 中继透镜 将狭缝所选择的部分成像于光阴极上并进行光电 转换,在光阴极输出面上形成一维空间分布的电子 束,经过加速和聚焦进入偏转系统,此时外触发扫 描电路产生的扫描电压由高到低变化,电子束偏转

角由大到小变化,微通道板对不同位置的电子束进 行倍增后在荧光屏上形成荧光图像.荧光屏具有 ms级的衰减时间,利用 CCD 相机将荧光图像转换 为数字信号由计算机进行处理.不同时刻的电子束 位于荧光屏的不同位置,由此将辐射脉冲的时间信 息转换为空间信息.条纹相机主要性能如表 1 所示.

表1 条纹相机主要性能 时间分辨 灵敏度 空间分辨 扫描长度/ns 扫描非线性 时间延迟/ns 线性动态范围 /(ns/pixel) @550 nm/(W/pixel/Gray) /(lp/mm) 0.39 1.9×10^{-12} 217 7.0% 94.2 80 10

实验中条纹相机时间关联如图 2 所示.采用直 线脉冲变压器后具有微秒前沿的电流(*I*₁)作为条纹 相机的总触发信号,中间采用了 HP 8110A 脉冲发 生器将输入触发脉冲转换为幅值 10 V,上升沿 20 ns、脉宽 50 ns 的脉冲信号,用以触发同步机;同步机 能够输出多路幅值约 30 V,上升沿 10 ns 的同步信 号分别用以触发条纹相机和作为与 X 射线信号、电 流信号的时间关联信号.条纹相机触发电平为 15 V 左右,能够有效抑制电磁干扰对条纹相机的误触 发.条纹相机加电和图像获取都通过计算机进行远 程控制.图 2 中所标注的时间为信号在传输电缆上 的耗时和光程.电流信号用距离负载约 22.5 cm 的 Rogowski 线圈测得,*K* 层 X 射线辐射信号由距离负

2.5 μm Mylar + 0.4 μm Al)得到.
 实验中主要对 Al 单排和双排平面丝阵进行了

载约1.19 m的 Au 阴极 XRD(15µm polyethylene +

图 2 条纹相机时间关联框图

初步的实验研究,实验中所用的负载参数如表 2 所示.

表2 平面丝阵负载参数

负载结构	炮	Ν	W/mm	L∕ mm	∆/mm	$\Phi_{ m w}/\mu{ m m}$	<i>M</i> /(µg/cm)	I∕MA
S	10043	10	12	20	_	15	4. 77	1.29
S	10082	10	6	20	_	15	4.77	1.1
D	10084	10	9	20	4.5	15	4.77	1.29
D	10085	10	9	20	6	15	4.77	1.29

S-单层,D-双层,N-每排丝数目,W-丝阵宽度,L-丝阵长度, Δ -排间距, Φ_w -丝直径,M-单丝线质量,I-电流.

3. 实验结果讨论

图 3,图 4 分别为两炮单排平面丝阵条纹相机 图像(只进行了反色处理),由于存在扫描非线性, 条纹相机图像的时间尺度与时间坐标并不完全一 致,图中采用由实验室标定得到时间标尺作为度量 条纹相机图像时间过程的标准,条纹相机图像的时 空尺度如图 3(b)和图 6(b)所示.以电流波形峰值 90%与 10%点连线与时间轴的交点作为时间零点 (下同),内爆时间(t_{imp})定义为 X 射线脉冲第 1 个 峰值时刻与时间零点之间的时间差.从图 3 中可以 看出,从t = 48 ns 到 t = 84 ns 一直都存在稠密的等 离子体柱,其直径约为 1.2 mm; X 射线峰值时刻比 条纹相机图像压缩到最细时刻早约7 ns.此时丝阵 中心稠密的等离子体柱外围仍然存在低密度的等 离子体,这与圆柱形丝阵实验中观察到的拖尾质量 分布^[6]类似:由图3可以看出早在单丝烧蚀过程, 在平面丝阵中心就有稠密的等离子体存在,这说明 丝上的等离子体会越过丝阵平面在轴上形成先驱 等离子体柱,而不是如 WDM(wire dynamics model) 模型[7]所假设的单丝等离子体之间发生完全非弹 性碰撞. 图4 与图3 不同,没有观察到明显的等离 子体柱,X射线脉冲第一个峰位于条纹相机图像压 缩到最细处时刻附近,10082 炮装置发生放电,负载 上的电流较小,压缩状态较差. 图 3 和图 4 中由条纹 相机图像所呈现出的内爆动力学过程以及 X 射线辐 射脉冲形状存在较大差异,因此单排平面丝阵 Z 箍缩 在不同的丝阵结构、驱动电流下,所呈现的物理图样 非常复杂,可以用来作为检验理论代码的实例.

图 3 10043 炮单排平面丝阵条纹相机图像 (a)条纹相机图像 与 X 射线、电流波形之间的时间关系;(b)10043 炮条纹相机图 像时空尺度(图中每格时间间隔为10 ns)

图 5 和图 6 分别为两炮双排平面丝阵条纹相机 图像,与单排丝阵相比 X 射线脉冲多峰现象不明 显.图 3—图 6 可以看出平面丝阵负载具有很强的 X 射线脉冲形状调制能力.图 5 中由于条纹相机过 早的触发没有记录到 X 射线峰值附近的图像.图 5

图 4 10082 炮单排平面丝阵条纹相机图像 (a)条纹相机图像 与 *X* 射线、电流波形之间的时间关系;(b)10082 炮条纹相机图 像时空尺度

中直到总内爆时间约65%才发生整体内爆.图中给 出的等离子体柱直径约为2.5mm. 图6中烧蚀过程 占总内爆过程的约67%,当等离子体发生整体内爆 时,仍能观察到最外部单丝等离子体存在,这说明 实际上只有部分等离子体参与了整体内爆过程,这 与圆柱形丝阵实验结果类似.同时图6的条纹相机 图像上还明显能够观察到外部丝要先于内部丝发 光,这说明与圆柱形金属丝阵中电流在所有金属丝 上均匀分布不同,在单丝烧蚀过程中通过外部丝上 的电流要比通过内部丝上的电流大,与 WDM 模型 中的电感电流分配模型一致.同时在图5和图6中 都能够观察到不是很明显的先驱等离子体柱,这可 能是由于条纹相机所拍摄的辐射波长为可见光波 段,其穿透等离子体的能力较弱,如果采用 X 射线 波段图像诊断技术应该能够更加清楚的判断烧蚀 等离子体在丝阵轴上的相互作用过程.

由图 3—图 6 中的条纹相机图像提取的外边界 内爆轨迹如图 7 所示,图中实线为 3 点平滑后结果. 10043 和 10082 两炮单排平面丝阵内爆速度存在快 慢两个过程. 10043 炮从 t = 42 ns 到 t = 71 ns 的平 均内爆速度约为 3.1×10^4 m/s(慢过程),从 t = 71 到 t = 94 ns 的平均内爆速度约为 1.4×10⁵ m/s (快 过程),条纹相机外边界内爆轨迹给出的压缩比(初 始半径 R_0 与最终压缩半径 R 之比)为 3.2;10082 炮 从 t = 29 ns 到 t = 47 ns 的平均内爆速度为 2.5×10⁴ m/s(慢过程),从 t = 47 ns 到 t = 58 ns 的平均内爆 速度为 7.6×10⁴ m/s (快过程),10082 炮由于装置 发生放电,致使负载电流较小,压缩比约为 2.4. 从 条纹图像给出的外边界内爆轨迹可以看出,双排平 面丝阵压缩状态比单排平面丝阵好.10084 炮从 t =64 ns 到 t = 84 ns,其平均内爆速度为 1.7×10⁵ m/s; 10085 炮从 t = 68 ns 到 t = 101 ns,平均内爆速度为 1.3×10⁵ m/s,压缩比约为 6.7. 双排平面整个 K 层 辐射脉冲起始点都位于条纹相机图像给出的快速 内爆过程之后滞止开始时刻,这说明 K 层辐射脉冲 前沿与快速碰撞之后等离子体热化有关.

图 5 10084 炮双排平面丝阵条纹相机图像 (a)条纹相机图像 与 *X* 射线、电流波形之间的时间关系;(b)10084 炮条纹相机图 像时空尺度

4. 结 论

可见光条纹相机能够反映平面丝阵负载 Z 箍 缩从早期烧蚀到滞止时完整的内爆动力学过程,在 "强光一号"装置上得到了成功实施.实验结果表

图 6 10085 炮双排平面丝阵条纹相机图像 (a)条纹相机图像 与 *X* 射线、电流波形之间的时间关系;(b)10085 炮条纹相机图 像时空尺度

图 7 条纹相机图像外边界内爆轨迹

明,单排平面丝阵相邻丝之间与 WDM 模型假设的 发生完全非弹性碰撞不同,外部等离子体有可能越 过丝阵平面在内部形成先驱等离子体柱;双排平面 丝阵负载在快速内爆过程,仍能观察到最外面单丝 等离子体的存在,这说明并不是所有丝阵质量都参 与了内爆过程.在双排平面丝阵实验中,流过丝阵 外部丝的电流要比内部丝大,其整体内爆压缩效果 要优于单排平面丝阵. 条纹相机只具有狭缝方向上的一维空间分辨 能力,无法反映沿着丝阵轴方向的内爆现象,条纹 相机图像给出的外边界可能与实际的内爆等离子 体实际密度边界之间存在差别,下一步将与 X 射线 条纹相机和具有二维空间分辨的可见光/X 射线分

- Kantsyrev V L, Rudakov L I, Safronova A S, Esaulov A A, Chuvatin A S, Coverdale C A, Deeney C, Williamson K M, Yilmaz M F, Shrestha I, Ouart N D, Osborne G C. 2008 Phys. Plasmas 15 030704
- [2] Shishlov A V, Chaikovsky S A, Fedunin A V, Fursov F I, Kokshenev V A, Kurmaev N E, Labetsky A Yu, Oreshkin V I, Rousskikh A G, Zhidkova N A. 2007 34th IEEE International Conference on Plasma Science (ICOPS) p467
- [3] Brent Jones, Michael E Cuneo, David J Ampleford, Christine A Coverdale, Eduardo M Waisman, Roger A Vesey, Michael Jones, Andrey A Esaulov, Victor L Kantsyrev, Alla S Safronova, Alexandre S Chuvatin, Leonid I Rudakov 2007 Sandia Report, SAND2007:6337
- [4] Huang X B, Lin L B, Yang L B, Deng J J, Gu Y C, Ye S C, Yue Z P, Zhou S T, Li F P, Zhang S Q 2005 High Power Laser and Particle Beams 17 793(in Chinese)[黄显宾、林理彬、杨礼

幅相机相结合,以综合研究平面丝阵的内爆动力学 过程.

本工作得到"强光一号"加速器运行小组的帮助,在此 向他们表示感谢.

兵、邓建军、顾元朝、叶式灿、岳正谱、周少彤、李丰平、张思群 2005 强激光与粒子束 17 793]

- [5] Li S W, Yi R Q, Jiang X H, He X A, Cui Y L, Liu Y G, Ding Y K, Liu S Y, Lan K, Li Y S, Wu C S, Gu P J, Pei W B, He X T 2009 Acta Phys. Sin. 58 3255 (in Chinese) [李三伟、易 荣清、蒋小华、何小安、崔延莉、刘永刚、丁永坤、刘慎业、蓝 可、李永升、吴畅书、古培俊、裴文兵、贺贤土 2009 物理学报 58 3255]
- [6] Sheng L, Lv M, Wang K L, Hei D W, Qiu M T, Wei F L 2007
 J. Tsinghua Univ. (Sci & Tech) 47 851 (in Chinese) [盛
 亮、吕 敏、王奎禄、黑东炜、邱孟通、魏福利 2007 清华大学
 学报(自然科学版) 47 851]
- [7] Esaulov A A, Velikovich A L, Kantsyrev V L, Mehlhorn T A, Cuneo M E 2006 Phys. Plasmas 13 120701

One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch^{*}

Sheng Liang[†] Wang Liang-Ping Li Yang Peng Bo-Dong Zhang Mei Wu Jian

Wang Pei-Wei Wei Fu-Li Yuan Yuan

(Northwest Institute of Nuclear Technology Xián 710024, China)

(Received 28 July 2010; revised manuscript received 14 December 2010)

Abstract

The primary experiment results of imploding dynamics for single and double planar wire arrays, acquired by optical streak camera, are presented and analyzed. The results show that the interaction of adjacent single wire plasma for single planar wire array is not due entirely to inelastic collisions, while a part of plasma can move into the center and form precursor plasma across the plane of wire array; the current of outer wire is larger than that of the interior of wire, the time of ablation stage is $\sim 65\%$ of the total imploding time, and only a part of mass participates in the imploding stage.

Keywords: streak camera, planar wire array, Z-pinch, imploding dynamics PACS: 52.70.-m, 52.30.-q, 52.59. Og

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10905047) and Previous Research Foundation of Northwest Institute of Nuclear Technology, China (Grant No. 51020907).

[†] E-mail: shengliang@ tsinghua. org. cn