两束啁啾脉冲控制下的 $H + D^+$ 光缔合反应研究^{*}

牛英煜† 王 荣 修俊玲

(大连交通大学理学院,大连 116028)(2011年1月7日收到;2011年6月29日收到修改稿)

从理论上研究了两束啁啾脉冲控制 H + D⁺ 的光缔合反应.第一束脉冲用来加速碰撞伴的碰撞速度,第二束脉冲用来增加产物 HD⁺ 的产率.结果表明:第一束脉冲的参数决定了第二束脉冲的优化参数以及产物 HD⁺ 的布居. 产物的布居可以通过调节两束脉冲的延迟时间得到控制.

关键词:光缔合,HD⁺分子,啁啾脉冲,波包 PACS: 34.50.Rk, 82.20.Bc, 82.30.Nr

1. 引 言

近年来,原子、分子与激光场间的相互作用越 来越引起人们的关注[1-5],而利用激光场控制光缔 合反应是一项重要的研究内容[6-10].光缔合在理论 方面有许多需要探讨与研究的课题,其中之一就是 研究高碰撞能条件下的光缔合反应^[11-17]. Korolkov 等[11]首先利用波包动力学方法研究了碰撞能为 3.5×10⁻³ $E_{\rm H}(E_{\rm H}$ 为 Hartree 能量)时 OH 分子的光 缔合反应. Marquetand 等^[12]利用局域控制理论研 究了碰撞能为 3.7 × $10^{-4}E_{\rm H}$ 时 HF 和 HI 分子的光 缔合反应. 文献 [13,14] 也利用波包动力学方法分 别研究了高碰撞能条件下 HI 与 HD⁺分子的光缔合 反应. 上述研究都是以碰撞原子只具有唯一的碰撞 能作为初始条件进行计算,其光缔合概率较高(大 于10%). 最近, de Lima 等^[16]模拟计算了高温(500 K)气体的光缔合反应,虽然在此条件下缔合原子 具有较高的碰撞能,但由于原子间的碰撞能量分布 较宽,只有小部分碰撞原子能与激光场产生共振, 发生光缔合反应,因此缔合概率很低(小于1%).

本文主要利用波包动力学方法研究 HD⁺分子 在超低温条件下的光缔合过程.在此过程中,反应 物 H + D⁺ 从排斥电子态 2pσ 跃迁到束缚电子态 1sσ,生成 HD⁺分子.如图 1 所示,产物 HD⁺主要来 自于两个通道.通道 I 为反应物 H + D⁺利用偶极

矩跃迁, $从 2p\sigma$ 态跃迁至 $1s\sigma$ 态的束缚能级,产物 HD⁺生成;通道Ⅱ为反应物 H⁺ + D 利用永久偶极 矩跃迁,从1so态的连续态跃迁至束缚振动能级,产 物HD⁺生成.从图1可以看出,只有当波包到达 1sσ 态最高振动能级的外转折点 (outer turning point)R_a时,缔合反应才能发生,这表明光缔合反 应区为 $R < R_{u}(R)$ 为原子间核间距).在超低温条 件下,原子间的碰撞能量分布较窄,与激光场发生 共振的概率较大. 但由于原子间的碰撞能量很低, 进入到缔合反应区的波包概率 P。很小,因此光缔合 概率较低. 为了提高光缔合概率,我们采用两束啁 啾脉冲. 第一束脉冲促使碰撞原子加速,从而增加 进入到缔合反应区的波包概率 Pat. 第二束脉冲用 来增加分子的缔合概率.本文分别研究了单束脉冲 和两束脉冲作用下的光缔合过程,并计算了两束脉 冲延迟时间对光缔合概率的影响.

2. 理论方法

我们利用波包动力学方法研究 T = 80 mK 时 H + D⁺ 的光缔合过程. 初始态波函数可写为^[18]

$$\Psi_i(R,t) = Q \int_0^\infty \exp\left(-\frac{E}{k_{\rm B}T}\right) \Psi_i(R,t) \,\mathrm{d}E, \quad (1)$$

式中 *E* 为碰撞能, *Q* 为归一化因子, $k_{\rm B}$ 为玻尔兹曼 常数, ψ_i 为高斯波包. ψ_i 可写为^[15,19]

$$\psi_i(R,t=0) = \left(\frac{2}{\pi d_0}\right)^{1/2}$$

©2011 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*}国家自然科学基金(批准号:11047177)和辽宁省教育厅科学研究计划(批准号:2009A131)资助的课题.

[†] E-mail: niuyy@djtu.edu.cn

图 1 2po 和 1so 电子态势能曲线以及两个光缔合通道 (a)势能曲线,(b)两个光缔合通道

$$\times \exp\left[ikR - \left(\frac{R-R_0}{d_0}\right)^2\right],\tag{2}$$

其中 d_0 为波包的初始宽度, R_0 为碰撞原子 H 与 D⁺间的初始核间距. 相对碰撞能可表示为

$$E = \frac{\hbar^2 (k^2 + 1/d_0^2)}{2m},$$
 (3)

其中 ħk 和 m 分别为碰撞伴的初始动量和约化 质量.

碰撞反应动力学过程可由下列含时薛定谔方 程来描述:

$$i\hbar \frac{\partial}{\partial t} | \Psi(t) \rangle = [\hat{H}_{mol} + W(t)] | \Psi(t) \rangle, \quad (4)$$

其中 \hat{H}_{mol} 为 HD⁺分子含时哈密顿量, W(t)表示分子与光场间的相互作用.

在图 1 中, 基态 1sσ 和激发态 2pσ 分别对应 H⁺ + D(1s) 和 H(1s) + D⁺. 下面将 1sσ 态和 2pσ 态分别简写为 $|g\rangle$ 和 $|e\rangle$. 分子势能和两电子态间 相互作用势 U_{ini} 的数据引自文献[20].

激光场由高斯脉冲描述,可写为

$$\varepsilon(t) = f_1(t)\varepsilon_1 \cos\left[\omega_1(t-t_1) + c_1(t-t_1)^2\right] + f_2(t)\varepsilon_2 \cos\left[\omega_2(t-t_2) + c_2(t-t_2)^2\right], (5)$$

其中 $\varepsilon_1(\varepsilon_2)$, $\omega_1(\omega_2)$, $t_1(t_2)$ 和 $c_1(c_2)$ 分别为两 束啁啾脉冲的振幅、载波频率、中心时间和啁啾率. $\Delta t = t_2 - t_1$ 为两束脉冲的延迟时间. 第 *i* 束脉冲的 包迹 $f_i(t)$ 可表示为

$$f_i(t) = \exp\{-(4\ln 2.0)(t-t_i)^2/\tau_i^2\},\$$

(i = 1,2), (6)

其中 τ_i 表示第i束脉冲的半高全宽.

两电子态的核波包可通过求解下列方程得到:

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \Psi_{g} \\ \Psi_{e} \end{pmatrix} = \begin{pmatrix} H_{gg} + W_{gg} & H_{ge} + U_{int} \\ H_{eg} + U_{int} & H_{ee} + W_{ee} \end{pmatrix} \begin{pmatrix} \Psi_{g} \\ \Psi_{e} \end{pmatrix}, (7)$$

其中 H_{gg}和 H_{ee}为分子哈密顿量的对角矩阵元.在偶极近似下,外场与永久偶极矩间的相互作用 W_{ii}可 写为

$$W_{ii} = -\mu_{ii}\varepsilon(t) \qquad (i = e,g), \qquad (8)$$

其中 μ_{gg} 和 μ_{ee} 为 HD⁺分子 $|g\rangle$ 和 $|e\rangle$ 电子态的永 久偶极矩. 方程(7)中, $|g\rangle$ 态和 $|e\rangle$ 态间的跃迁 矩阵元可写为

$$W_{\rm eg} = W_{\rm ge} = -\mu_{\rm ge}\varepsilon(t), \qquad (9)$$

其中μ_{ge}(*R*)为HD⁺分子的跃迁偶极矩. 在光解离 反应中,分子的永久偶极矩对解离具有一定的影 响^[21].因此,我们在计算中也包含了永久偶极矩与 光场的相互作用. 跃迁偶极矩和永久偶极矩的数据 引自文献[22].

方程(7)可通过分裂算符傅里叶变换方法进行 求解^[23,24].光缔合过程中,部分波包在势能作用下 发生反弹,各自向其相反方向运动.当反弹的波包 运动至傅里叶格点末端后会产生非物理性反弹,因 此我们采用吸收势 *G*(*R*)来避免反弹发生.吸收势 可写为

 $G(R) = \{1 + \exp[\gamma(R - R_1)]\}^{-1}$. (10) 吸收势的范围为 $R - R_1$,参数 γ 决定了吸收波包的 速度.

进入到缔合反应区($R < R_{ot}$)的波包概率可表示为

 $P_{\text{ot}} = |\Psi_{\text{g}}(R < R_{\text{ot}})|^{2} + |\Psi_{\text{e}}(R < R_{\text{ot}})|^{2}.$ (11) HD⁺分子的缔合概率可通过波函数在基电子态束 缚能级的投影来计算,可表示为

$$P_{\rm b} = \sum_{\nu=0}^{\nu_{\rm max}} |\langle \nu | \Psi_{\rm g}(R,t) \rangle|^2.$$
(12)

基电子态的振动本征函数 | v > 可通过傅里叶格点哈 密顿方法获得^[25].

于两个电子态间存在相互作用势, 布居从排斥电 子态转移至基电子态, $|g\rangle$ 电子态的布居逐渐增 加. $|g\rangle$ 电子态最高振动能级的外转折点 R_{ot} 约为 16.5 $a_0(a_0$ 为玻尔半径). 当两个电子态的波包到达

 R_{ot} 时, 光缔合反应开始发生. 在超低温条件下(T = 80 mK), 碰撞能量很低, 约为 1.0 × 10⁻⁶ E_{H} . 在

没有外场的条件下,波包进入到缔合反应区的概率

碰撞波包的动能可写为[26]

$$S_i(E) = \frac{1}{\hbar} \sqrt{\frac{\mu}{2E}} |\Psi_i(k,t)|^2 \qquad (i = g,e).$$

(13)

动量空间的波函数 $\Psi_i(k,t)$ 由傅里叶变换获得.

3. 结果及讨论

图 2 单束脉冲作用下的碰撞能谱及进入到缔合反应区的波包概率 (a) 当 $c_1 = 688 \text{ ps}^{-2}$ 时,两个电子态的碰撞能谱; (b) 当 $c_1 = 688 \text{ ps}^{-2}$ 时,进入到缔合反应区的波包概率 P_{α} ; (c) 当 $c_1 = 673 \text{ ps}^{-2}$ 时,两个电子态的碰撞能谱; (d) 当 $c_1 = 673 \text{ ps}^{-2}$ 时,进入到缔合反应区的波包 概率 P_{α} ; (e) 当 $c_1 = 667 \text{ ps}^{-2}$ 时,两个电子态的碰撞能谱; (f) 当 $c_1 = 667 \text{ ps}^{-2}$ 时,进入到缔合反应区的波包概率 P_{α}

可促使碰撞原子加速. 在本文的模型中, 总的外场 由两束啁啾脉冲构成. 第一束脉冲促使碰撞伴加 速, 从而提高进入到反应区的波包概率.

图 2 给出了在单束脉冲控制下波包进入到缔合 反应区的概率 P_{ot} 以及两个电子态的能量谱.在本 文计算中,激光频率 ω_1 为 1266 cm⁻¹,振幅 ε_1 为 154 MV/cm,半高全宽 τ_1 为 0.18 ps,中心时间 t_1 为 0.26 ps. 从图 2(a)可以看出,当 c_1 = 688 ps⁻² 时啁啾脉冲促使碰撞伴加速,当脉冲结束时碰撞能 约为 0.0045 $E_{\rm H}$. 散射过程如图 1 所示,波包先向左 运动,然后被势能弹回,向右运动.因此,当t < 0.53 ps 时,图 2(b)中的 P_{ot} 随时间 t 的增加而增 大.当t = 0.53 ps 时, P_{ot} 到达最大值 0.3,然后减 小.当t = 1.2 ps 时, P_{ot} 仅为 0.05,表明几乎所有 的波包都已经离开缔合反应区,散射过程基本结束. 图 2(b)中 P_{ot} 的变化描述了整个散射过程. 当 c_1 分别为 673 和 667 ps⁻²时,图 2(c)和(e)中的碰 撞能 E 分别约为 6.7×10⁻⁴ $E_{\rm H}$ 和 1.6×10⁻⁴ $E_{\rm H}$,图 2(d)和(f)中的 P_{ot} 的最大值分别为 0.24 和 0.20. 从图 2 可以看出,随着 c_1 的减小,碰撞能减小, P_{ot} 减小,散射过程所需的时间增加.

图 3 给出了两束啁啾脉冲作用下光缔合概率 P_b 随啁啾率 c_1 和时间 t 的变化. 第一束脉冲的参数与图 2 相同. 第二束脉冲的振幅 ε_2 选为440 MV/cm, 其他参数通过优化使 P_b 达到最大值. 表 1 所列为第 一束脉冲啁啾率 c_1 取不同值时,第二束脉冲的优 化参数. 从表 1 可知,随着 c_1 的减小,第二束脉冲的 载波频率减小,两束脉冲的延迟时间增加.

图 3 当啁啾率 c1 取不同值时,两束脉冲作用下光缔合概率 Pb 的变化 (a) c1 = 688 ps⁻², (b) c1 = 673 ps⁻², (c) c1 = 667 ps⁻²

表1 当第一束脉冲啁啾率 c₁ 取不同值时, 第二束脉冲的 优化参数

$c_1/{\rm ps}^{-2}$	c_2/ps^{-2}	$\omega_2/\mathrm{cm}^{-1}$	τ_2/ps	t_2/ps
688	- 513	4916	0.09	0.47
673	- 367	4828	0.23	0.80
667	- 342	4740	0.24	2.01

从图 3 可以看出, 当 $c_1 = 673 \text{ ps}^{-2}$ 时,光缔合 概率最高($P_b = 0.115$). 当 $c_1 = 688 \text{ ps}^{-2}$ 时,从激 光场参数可知,第一束脉冲关闭时间约为0.45 ps, 第二束脉冲打开时间约为0.36 ps. 图 3(a)中第 一束脉冲关闭前(t < 0.45 ps),部分波包已经进 入到缔合反应区发生缔合反应. 当 t = 0.32 ps 时,在第一束脉冲的作用下 P_b 达到最大值 0.07. 当 t = 0.36 ps 时,第二束脉冲打开,部分已经缔 合的产物 HD⁺被再次解离,缔合概率 P_b 减小.当 t = 0.45 ps 时,第一束脉冲结束,第二束脉冲诱 导碰撞伴缔合成 HD⁺分子,缔合概率 P_b 增加.当 第二束脉冲结束时,缔合概率为 0.093. 从图 2 可 以看出,当 $c_1 = 667$ ps⁻²时碰撞能量最小,进入 到缔合反应区的波包概率 P_{at} 最低.因此,图 3(c) 中 HD⁺的缔合概率最低.当 $c_1 = 688$ ps⁻²时,两 束脉冲间的延迟时间较短,第二束脉冲开始诱导 缔合反应时,第一束脉冲场强仍然较强,这在一定 程度上降低了最终的缔合概率.所以图 3(a)的缔 合概率低于图 3(b)的缔合概率.图 2 和图 3 表 明,第一束脉冲的参数 c_1 对缔合过程和缔合概率 都有较大的影响.

在光缔合反应中, HD⁺的产率还取决于两束 脉冲的延迟时间 Δt . 当 Δt 变小, 两束脉冲重叠的 时间变长, 第一束脉冲对第二束脉冲的影响会增 加, 从而导致缔合概率下降; 当 Δt 变大, 会导致第 二束脉冲在打开前部分波包已经移出缔合反应 区, 从而降低了缔合概率. 图 4 给出了缔合概率 P_b 与延迟时间 Δt 的关系. 从图 4 可以看出, 缔合 概率随 Δt 的增加先增加, 再减小, 最佳延迟时间 为 0. 54 ps.

- Frasinski L J, Posthumus J H, Plumridge J, Coding K, Taday P
 F, Langley A J 1999 Phys. Rev. Lett. 83 3625
- [2] Magnier S, Persico M, Rahman N 1999 Phys. Rev. Lett. 83 2159
- [3] Niu Y Y, Wang R, Qiu M H 2010 Phys. Rev. A 81 043406
- [4] Serov V, Keller A, Atabek O, Figger H, Pavicic D 2005 Phys. Rev. A 72 033413
- [5] Shapiro E A, Shapiro M, Pe'er A, Ye J 2007 Phys. Rev. A 75 013405
- [6] Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483
- Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005
- [8] Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M 2008 Phys. Rev. Lett. 101 133004
- [9] Brown B L, Dicks A J, Walmsley I A 2006 Phys. Rev. Lett. 96 173002

图 4 当 $c_1 = 673 \text{ ps}^{-2}$ 时, 缔合概率 P_b 与两束脉冲延迟时间 Δt 之间的关系

4.结 论

我们利用波包动力学方法研究了两束啁啾脉 冲控制下 H + D⁺ 的光缔合反应.第一束脉冲用来 提高碰撞伴间的碰撞能,从而提高进入到缔合反应 区内的波包概率.第二束脉冲用来增加缔合概率. 计算结果表明:在超低温条件下,两束脉冲可以提 高 HD⁺分子的缔合概率;第一束脉冲的啁啾率直接 影响到缔合概率以及第二束脉冲的优化参数;产物 分子 HD⁺的布居取决于两束脉冲的延迟时间.

- [10] Wang L R, Ma J, Zhang L J, Xiao L T, Jia S T 2007 Acta Phys. Sin. 56 6373 (in Chinese) [汪丽蓉、马 杰、张临杰、 肖连团、贾锁堂 2007 物理学报 56 6373]
- [11] Korolkov M V, Manz J, Paramonov G K, Schmidt B 1996 Chem. Phys. Lett. 260 604
- [12] Marquetand P, Engel V 2007 J. Chem. Phys. 127 084115
- [13] Niu Y Y, Wang R, Liu L, Cong S L 2007 Chin. Phys. Lett. 24 3400
- [14] Niu Y Y, Wang S M, Cong S L 2006 Chem. Phys. Lett. 428 7
- [15] Korolkov M V, Schmidt B 2002 Chem. Phys. Lett. 361 432
- [16] de Lima E F, Ho T S, Rabitz H 2008 Phys. Rev. A 78 063417
- [17] Paramonov G K, Saalfrank P 2009 Phys. Rev. A 79 013415
- [18] Machholm M, Giusti-Suzor A, Mies F H 1994 Phys. Rev. A 50 5025
- [19] Vardi A, Abrashkevich D, Frishman E, Shapiro M 1997 J. Chem. Phys. 107 6166
- [20] Carrington A, Kennedy R A 1985 Mol. Phys. 56 935
- [21] Charron E, Giusti-Suzor A, Mies F H 1995 Phys. Rev. Lett. 75 2815

- [22] Esry B D, Sadeghpour H R 1999 Phys. Rev. A 60 3604
- [23] Feit M D, Fleck J A Jr, Steiger A 1982 J. Comput. Phys. 47 412
- [25] Marston C C, Balint-Kurti G G 1989 J. Chem. Phys. 91 3571
- [26] Lin J T, Jiang T F 2000 Phys. Rev. A 63 013408
- [27] Korolkov M V, Schmidt B 1997 Chem. Phys. Lett. 272 96
- $\left[\,24\,\right]$ $\,$ Heather R W 1991 Comput. Phys. Commun. 63 446 $\,$

Photoassociation reaction of $H + D^+$ in two chirped pulses^{*}

Niu Ying-Yu[†] Wang Rong Xiu Jun-Ling

(School of Science, Dalian Jiaotong University, Dalian 116028, China)(Received 7 January 2011; revised manuscript received 29 June 2011)

Abstract

The photoassociation reaction $H + D^+$ induced by two chirped pulses is theoretically studied. The first pulse is employed to accelerate the collision pairs, and the second pulse is used to enhance the yield ratio of HD^+ . The optimal parameters of the second pulse and the population of product HD^+ depend on the chirp rate of the first pulse. The population of the product HD^+ can be controlled by the delay time between the two laser pulses.

Keywords: photoassociation, HD⁺ molecule, chirped pulse, wave packet **PACS**: 34.50. Rk, 82.20. Bc, 82.30. Nr

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11047177) and the Scientific Research Program of the Education Bureau of Liaoning Province, China (Grant No. 2009A131).

[†] E-mail: niuyy@ djtu. edu. cn