双间隙耦合腔电子电导的理论与计算仿真*

黄传禄1)2) 丁耀根1)† 王 勇1)

1)(中国科学院电子学研究所,中国科学院高功率微波源与技术重点实验室,北京 100190)
 2)(中国科学院研究生院,北京 100049)
 (2010年12月28日收到;2011年7月13日收到修改稿)

在速调管双间隙耦合谐振腔中,电子与每个间隙的电场相互作用进行能量交换,在两个间隙上体现出不同的 电子负载效应.传统的电子电导计算模型,只能从整体上而无法在每个间隙上考虑这个效应.基于空间电荷波理 论,建立了双间隙耦合腔中单个间隙电子电导的理论模型,推导出相应的计算公式.利用三维粒子模拟工具进行了 仿真研究,理论计算与仿真结果相符.与传统的电子电导模型相比,该理论模型能反映出双间隙耦合腔中每个间隙 的电子负载效应.利用该模型能更加深入和准确地进行间隙注波互作用的研究以及耦合腔中模式稳定性的分析.

关键词:双间隙耦合腔,空间电荷波理论,电子电导,粒子模拟 PACS: 84.40.-x, 52.40. MJ, 41.20.-q

1. 引 言

分布作用速调管(EIK)在高频率条件下具有高 效率、高功率以及宽带宽的特点[1-3],其高频电路采 用分布作用谐振腔,其中双间隙耦合腔更是被首先 研究和普遍应用[4-7]. 电子注负载是反映间隙注波 互作用过程中高频场对电子注作用的集中电路参 量,包括实部电子电导和虚部电子电纳.电子电导 表征电子注从高频场吸收功率的效应,而电子电纳 则体现了电子注对腔体频率偏移的影响,但造成的 偏移量一般只占中心频率的千分之几^[8],电子电纳 的影响可以忽略,所以对此研究并不多见,电子电 导作为速调管研究中的重要参数,其对研究电子注 与高频场的相互作用以及电路的稳定性具有非常 重要的意义,一直以来都是速调管理论的研究重 点[6,8-10]. 双间隙耦合腔电子电导更是由于其在电 路的稳定性以及注波互作用理论模型中的重要性, 得到了广泛和深入的研究[4-7]. 以往的电子电导计 算模型,不论是基于空间电荷波理论还是运动学理 论都是将双间隙耦合腔作为一个整体,从总体上考 虑电子注与高频场的互作用以及能量交换,并以此 来计算电子电导. 但实际上, 双间隙耦合腔的注波

互作用过程中,电子注在每个间隙中都与高频场进 行能量交换,在两个间隙上体现的电子负载效应也 不同,即电子负载在间隙中具有分布效应.在 EIK 的发展过程中,为了深入研究双间隙耦合腔中电子 注与间隙高频场互作用机理^[11]以及开发 EIK 注波 互作用计算模型^[12,13],同时也为了更加有效地利 用电子电导分析相应模式的稳定性^[6,14],需要研 究双间隙乃至多间隙耦合腔中每个间隙上的电子 电导,以往的电子电导计算模型都不能实现这样的 目的.

本文基于空间电荷波理论模型^[1,15],建立了双 间隙耦合腔中单个间隙上电子电导的计算模型,同 时利用粒子模拟(particle-in-cell)软件 MAGIC3D,建 立了仿真模型,进行了电子电导的仿真研究.理论 模型的计算结果与粒子模拟结果一致,说明该理论 模型能正确地反映电子电导在间隙中的分布效应. 理论与模拟分析表明,该理论模型可以更加准确地 分析耦合腔中的模式稳定性.另外,该模型还可以 推广应用到多间隙耦合腔情形.

2. 理论模型

本文使用双间隙耦合腔中间隙电场分布的普

^{*}国家自然科学基金(批准号:60971073)资助的课题.

[†]通讯联系人. E-mail: dingyg@ mail. ie. ac. cn

^{©2011} 中国物理学会 Chinese Physical Society

遍表达式,利用空间电荷波理论推导得到小信号情况下的群聚电流表达式,从而得到双间隙耦合腔中 各个间隙吸收的有功功率,最终得到每个间隙的电 子电导.

双间隙耦合腔的结构如图1所示,定义其两个 间隙的轴向电场为

$$E_{1}(z) = \frac{V_{1}}{d} f\left(z + \frac{L}{2}\right)$$

$$\left(z \in \left(-\frac{L_{p}}{2} - \frac{d}{2}, -\frac{L_{p}}{2} + \frac{d}{2}\right)\right), (1)$$

$$E_{2}(z) = \frac{V_{1}}{d} f\left(z - \frac{L}{2}\right) R \exp(j\theta)$$

$$\left(z \in \left(\frac{L_{p}}{2} - \frac{d}{2}, \frac{L_{p}}{2} + \frac{d}{2}\right)\right). (2)$$

这里 V₁ 为间隙1的间隙电压幅值; d 为单个间隙有 效宽度,一般取 d = 2.5D — 3D,其中 D 为间隙实际 宽度; f(z) 为单个间隙中的场型分布函数; R 为两 间隙的电场幅值之比; θ 为两间隙电场的相位差; L_p 为两间隙中心距离.实际间隙中还存在横向电场, 会引起电子的横向运动,造成横向电子电导,但其 影响很小,一般可以不予考虑^[16].两间隙电场通过 耦合缝耦合,在互作用达到稳定状态时表现为间隙 驻波场,在漂移管中截止,其场型分布主要取决于 间隙形状.由于本文只研究互作用过程中间隙电场 对电子注的作用,不考虑电子注群聚对间隙电场的 反馈效应,而且在速调管间隙中空间电荷场一般比 间隙电场要小得多.所以,假定在注波互作用达到 稳定状态后两间隙高频电场处于驻波稳态,保持不 变,不受电子注的影响.

图 1 双间隙耦合腔示意图

根据空间电荷波理论模型,具有电流 $J_0(J_0 < 0)$ 、电压 V_0 的圆形电子注受到间隙中 z 到 z + dz 间隔中的电场 E(z) 调制后在 z' 处产生的交变电

流为[17]

$$di(z') = \frac{1}{2} G_0 \left(\frac{\beta_e}{\beta_p} \right) E(z) \left[j \sin(\beta_p(z'-z)) \right] \\ \times \exp(-j\beta_e(z'-z)) dz, \qquad (3)$$

式中

 $\beta_{\rm e} = \omega/v_0$

为电子注波数;

$$B_{\rm p} = \omega_{\rm p}/v_{\rm c}$$

为相应的等离子体波数,其中 ω_p 为等离子体角频率, v_0 为电子注直流速度;

$$G_0 = -J_0/V_0$$
 $(J_0 < 0)$

为电子注直流电导.由于空间电荷波是基于信号假 设,故(3)式也仅适用于小信号情况下,并且假设电 子注无初始交流成分.基于此基本公式,我们分别 推导双间隙耦合腔中每个间隙的电子电导计算 公式.

2.1. 间隙1 中电子注吸收的复功率 P1

电子注在间隙 1 中 z_1 以及 z_1 + dz_1 间隔中受到 电场 $E_1(z)$ 的调制,在间隙 1 的 z'_1 处产生交变电流 密度 $di(z'_1)$,按照(3)式,可以表示为如下形式:

$$di(z'_1) = \frac{1}{2}G_0\left(\frac{\beta_e}{\beta_p}\right)E_1(z_1)\left[j\sin(\beta_p(z'_1-z_1))\right]$$

$$\times \exp(-\mathbf{j}\boldsymbol{\beta}_{e}(z_{1}^{\prime}-z_{1}))\,\mathrm{d}z_{1}\,. \tag{4}$$

对(4)式从间隙1中电场不为零处(这里为简便先 写为负无穷)开始积分到 z'₁处,便得到 z'₁处总的交 变电流 i(z'₁)为

$$i(z'_{1}) = \int_{-\infty}^{\vec{a}'} \frac{1}{2} G_{0} \left(\frac{\beta_{e}}{\beta_{p}} \right) E_{1}(z_{1}) \left[jsin(\beta_{p}(z'_{1} - z_{1})) \right]$$

$$\times \exp(-j\beta_{e}(z_{1}'-z_{1})) dz_{1}.$$
(5)

电子注吸收的平均复功率为

$$P = \frac{1}{2} \int_{-\infty}^{\infty} E_1(z) i^*(z) \, \mathrm{d}z \,. \tag{6}$$

根据(6)式便得到间隙1中电子注吸收的平均复功 率为

$$P_{1} = \frac{1}{2} G_{0} \left(\frac{\beta_{e}}{\beta_{p}} \right) \int_{l_{1}} \int_{-\infty}^{z_{1}'} E_{1}(z_{1}') E_{1}^{*}(z_{1})$$
$$\times \left[\operatorname{jsin}(\beta_{p}(z_{1}'-z_{1})) \right]$$

 $\times \exp(\mathbf{j}\boldsymbol{\beta}_{\mathrm{e}}(z_1'-z_1))\,\mathrm{d}z_1\mathrm{d}z_1',\qquad(7)$

式中 l_1 为间隙1的积分区域,即间隙1电场不为零的区域.

2.2. 间隙 2 中电子注吸收的复功率 P₂

根据空间电荷波小信号线性理论,可以将间隙

2 中的交变电流看成以下两部分的叠加:一是电子 注经间隙1 中的电场初始调制后在间隙2 中产生的 交变电流,二是间隙2 中电场对直流电子注调制产 生的交变电流.

直流电子注在间隙 1 中的 z_1 以及 $z_1 + dz_1$ 间隔 中受到间隙 1 的电场 $E_1(z)$ 的调制后,在间隙 2 中 的 z'_2 处产生的交变电流 $di(z'_2)$ 为

$$di_{1}(z'_{2}) = \frac{1}{2} G_{0} \left(\frac{\beta_{e}}{\beta_{p}} \right) E_{1}(z_{1}) \left[jsin(\beta_{p}(z'_{2} - z_{1})) \right]$$
$$\times \exp(-j\beta_{e}(z'_{2} - z_{1})) dz_{1}.$$
(8)

(8)式对整个间隙1区域积分便得到 z'_2 处总的交变 电流 $i(z'_2)$ 为

$$i_{1}(z'_{2}) = \int_{l_{1}} \frac{1}{2} G_{0}\left(\frac{\beta_{e}}{\beta_{p}}\right) E_{1}(z_{1}) [j\sin(\beta_{p}(z'_{2} - z_{1}))]$$

$$\times \exp(-j\beta_{e}(z_{2}^{\prime}-z_{1})) dz_{1}. \qquad (9)$$

直流电子注在间隙 2 中的 z_2 以及 z_2 + d z_2 间隔 中受到电场 $E_2(z)$ 的调制后,在间隙 2 中的 z'_2 处产 生的交变电流 d $i_2(z'_2)$ 为

$$di_{2}(z'_{2}) = \frac{1}{2}G_{0}\left(\frac{\beta_{e}}{\beta_{p}}\right)E_{2}(z_{2})\left[j\sin(\beta_{p}(z'_{2}-z_{2}))\right]$$

 $\times \exp(-\mathbf{j}\boldsymbol{\beta}_{\mathrm{e}}(z_2'-z_2))\,\mathrm{d}z_2\,. \tag{10}$

同样,(10)式对间隙2积分到z'2处便得到z'2处总的 交变电流 i₂(z'2)为

$$i_{2}(z'_{2}) = \int_{-\infty}^{z} \frac{1}{2} G_{0}\left(\frac{\beta_{e}}{\beta_{p}}\right) E_{2}(z_{2})$$

$$\times \left[j \sin(\beta_{p}(z'_{2} - z_{2})) \right]$$

$$\times \exp(-j\beta_{e}(z'_{2} - z_{2})) dz_{2}. \quad (11)$$

综上 *i*₁(*z*₂'), *i*₂(*z*₂') 两部分, 在间隙 2 中 *z*₂' 处的 交变电流为

$$i(z'_2) = i_1(z'_2) + i_2(z'_2).$$
 (12)

根据(6)式可以得到间隙 2 中电子注吸收的平均复 功率为

$$P_{2} = P' + P''$$

$$= \frac{1}{2} \int_{l_{2}} E_{2}(z'_{2}) i_{1}^{*}(z'_{2}) dz'_{2}$$

$$+ \frac{1}{2} \int_{l_{2}} E_{2}(z'_{2}) i_{2}^{*}(z'_{2}) dz'_{2}, \quad (13)$$

其中

$$P' = \frac{1}{2} G_0 \left(\frac{\beta_e}{\beta_p} \right) \int_{l_2} \int_{l_1} E_2(z'_2) E_1^*(z_1) \\ \times \left[j \sin(\beta_p(z'_2 - z_1)) \right] \\ \times \exp(j\beta_e(z'_2 - z_1)) dz_1 dz'_2, \quad (14) \\ P'' = \frac{1}{2} G_0 \left(\frac{\beta_e}{\beta_p} \right) \int_{l_2} \int_{-\infty}^{z'_2} E_2(z'_2) E_2^*(z_2)$$

$$\times \left[j \sin(\beta_{p}(z'_{2} - z_{2})) \right]$$
$$\times \exp(j\beta_{e}(z'_{2} - z_{2})) dz_{2} dz'_{2}, \qquad (15)$$

式中 l₂ 为间隙 2 积分区域.

2.3. 双间隙耦合腔中每个间隙的电子电导

以上推导给出了双间隙耦合腔中电子注在每 个间隙中吸收的平均复功率,利用关系式

$$P_{\rm r} = \frac{1}{2} (P + P^*), \qquad (16)$$

便可以分别得到每个间隙中电子注吸收的有功功 率 P_{rl} 和 P_{r2} .然后根据电子电导定义式 $G_e = \frac{2P_r}{V^2}$, 最终分别得到双间隙耦合腔中两个间隙的电子电导分别为

$$\begin{aligned} G_{e1} &= \frac{2P_{r1}}{V_1^2} \\ &= \frac{1}{8} G_0 \left(\frac{\beta_e}{\beta_p} \right) \{ \| M(\beta_1) \|^2 - \| M(\beta_2) \|^2 \}, \quad (17) \\ G_{e2} &= \frac{2P_{r2}}{V_2^2} = \frac{2P_{r2}}{R^2 V_1^2} \\ &= \frac{1}{8} G_0 \left(\frac{\beta_e}{\beta_p} \right) \{ \| M(\beta_1) \|^2 \\ &\times [1 + 2\cos(\beta_1 L_p + \theta)/R] - \| M(\beta_2) \|^2 \\ &\times [1 + 2\cos(\beta_2 L_p + \theta)/R] \}. \quad (18) \end{aligned}$$

将两间隙中电子注吸收的有功功率相加,便得 到电子注在整个耦合腔间隙中吸收的有功功率 P_{rt} , 即 $P_{rt} = P_{rl} + P_{r2}$,从而可以得到整个耦合腔的电子 电导

$$G_{e} = \frac{2P_{rt}}{V^{2}} = \frac{2P_{rt}}{(V_{1} + V_{2})^{2}}$$

= $\frac{1}{32}G_{0}\left(\frac{\beta_{e}}{\beta_{p}}\right)\{|M(\beta_{1})|^{2}$
 $\times [1 + R^{2} + 2R\cos(\beta_{1}L_{p} + \theta)]$
 $- |M(\beta_{2})|^{2}[1 + R^{2}$
 $+ 2R\cos(\beta_{2}L_{p} + \theta)]\}.$ (19)

(19)式便是熟知的根据空间电荷波理论计算得到 的双间隙耦合腔电子电导的表达式^[6,11].这说明在 理论推导过程中保证了两间隙中的功率守恒,证明 了模型的合理性.在(17)—(19)式中,β₁和β₂分别 为空间电荷波的快波和慢波传播常数,

$$eta_1 = eta_e - eta_p,$$
 $eta_2 = eta_e + eta_p;$
为对应于传播堂数 eta 的单

 $|M(\beta)|^2$ 为对应于传播常数 β 的单间隙耦合数

平方,

$$|M(\beta)|^2 = |M_r(\beta)|^2 \overline{M}_r^2(\beta);$$

 $M_z(\beta, a)$ 为对应于传播常数 β 的单间隙纵向耦合 系数

$$M_{z}(\boldsymbol{\beta},a) = \frac{1}{d} \int_{-\infty}^{+\infty} f(z,a) \exp(j\boldsymbol{\beta} z) \, \mathrm{d} z$$

 $\overline{M}_{r}^{2}(\beta)$ 为对应于传播常数 β 的单间隙径向耦合系数 平均值的平方,

$$\overline{M}_r^2(\beta) = \frac{I_0^2(\gamma(\beta)b) - I_1^2(\gamma(\beta)b)}{I_0^2(\gamma(\beta)a)}$$

其中 $I_0(x)$ 和 $I_1(x)$ 分别为零阶和一阶虚宗量贝塞 尔函数; $\gamma(\beta)$ 为对应于 β 的径向传播常数,

$$\gamma(\beta) = \sqrt{\beta^2 - (\omega/c)^2}.$$

由于实际谐振腔间隙都是无栅间隙,场型分 布不仅与纵轴 z 有关,还与横轴 r 有关.如果给定 间隙边缘处电场分布 f(z,a),由场的唯一性定理 就可以确定间隙内任意一点的场分布.f(z,a)一 般用刀刃型分布模型^[17]来近似,则对应β的纵向 耦合系数为

$$M_z(\boldsymbol{\beta}, a) = J_0\left(\frac{\theta_d}{2}\right),$$

其中 $\theta_d = \beta d$ 为间隙渡越角, $J_0(x)$ 为零阶贝塞尔函数.

上述推导是基于空间电荷波一维理论,假设电 子注截面无限大.在考虑有限截面电子注的边缘效 应时^[15],需要把上述推导过程中的β。替换为β_g = *Fβ*_p,其中*F*为等离子体频率缩减因子,其表征了漂移管金属壁对空间电荷力的减弱效应.由上述推导过程可以看出,在小信号下,只要给定间隙场型分布,采用小信号下的电流叠加方法,就可以利用该模型得到三间隙乃至多间隙中每个间隙的电子电导计算公式.对于现在应用广泛的多注双间隙腔,包括采用高阶模式的同轴双间隙腔^[18],由于间隙中每个电子注所在位置、场型分布基本一致,彼此影响很小,所以对每个电子注都可以利用上述模型进行分析.

3. 粒子模拟仿真与理论分析

我们利用粒子模拟工具 MAGIC3D,建立了双间 隙耦合腔模型,研究了双间隙电子电导的仿真方 法,进行了粒子模拟仿真^[6,7,12,19,20],并与上述理论 结果进行了比较.

双间隙耦合腔采用 Ku 波段 50 kW EIK 的群聚 段腔体模型,其仿真模型如图 2 所示. 腔体基本参数 如表 1 所列,其中 V_0 和 μ_{er} 为电子注直流电压和导 流系数,a 为漂移管半径,b 为电子注半径, $f_{2\pi}$ 为 2 π 模谐振频率, f_{π} 为 π 模谐振频率,Q 为腔体品质因 数,B 为聚焦磁场中的磁感应强度. 采用低的 Q 值 是为了减小仿真时间,同时也是为了防止负电导时 谐振腔自激.

图 2 双间隙耦合腔的 MAGIC 模型 (a) 横截面, (b) A-A' 面剖视

表1 模型基本参数

V_0 /kV	$\mu_{ m er}/\mu{ m p}$	a/mm	b∕ mm	D/mm	$L_{\rm p}/{ m mm}$	$f_{2\pi}/{\rm GHz}$	$f_\pi/{\rm GHz}$	Q	<i>В/</i> Т
29	1.585	1.5	1.0	1.4	6.46	15.0	13.5	120	0.5

仿真计算电子电导是依据电子电导定义式 G = 2P_/V²,首先通过仿真模拟获得电子注在每个间 隙中吸收的实功率,然后利用间隙电压幅值计算得 到 G. MAGIC 可以模拟互作用中电子注动能的变 化,并直接给出电子注功率 P。随轴向位置的变化曲 线,从而确定电子注与间隙高频场互作用吸收或放 出的功率. 图 3 所示为 MAGIC 模拟得到的某一时刻 的电子轴向速度 v 变化趋势,其反映了电子经间隙 电场调制后速度变化趋势.图4是利用 MAGIC 模拟 得到电子注从各个间隙吸收或放出功率的示意图. 这里 P_{e} 为电子注实功率, ΔP_{e} 是电子注经过间隙 1 后功率的增量,即电子注从间隙1高频场吸收的功 率; ΔP_{o} 是电子注在间隙 2 中吸收的功率; ΔP_{o} 是 电子注经过两个间隙后吸收的功率,显然 ΔP_{a} = $\Delta P_{o1} + \Delta P_{o2}$. 从图 3 和图 4 都可以看出,电子在间隙 中与高频场能量交换的特点,即两个间隙中都是电子 先放出能量,然后吸收能量,而总体效果上是从间隙 场吸收能量,体现了电子负载效应,而且经过调制后 的电子注在第二个间隙中能量变化更剧烈. 粒子模拟 中发现,聚焦磁场与群聚后的电子注空间电荷力不平 衡会使得电子注径向有波动,形成能量势阱^[6],使得 模拟的电子注功率中包含势阱的影响,从而导致利用 图 4 方法测量电子注功率会产生误差. 但势阱是静态 效应,仅与磁场以及轴向距离有关,所以可以通过改 变参数多次仿真测量的方法降低势阱造成的功率测 量误差.另外.图3还显示出实际的电子注中电子的 速度具有一定不均匀性,即在同一位置不同流层的粒 子速度分布具有一定的零散性.这与我们理论模型中 的设定不一致,但由图3可知,其速度离散只有2%左 右,影响很小,可以忽略.

图 5 所示为不加电子注时仿真得到的耦合腔在

图4 电子注功率 P。随z的变化

轴线上(r=0)与间隙边缘处(r=a)的归一化轴 向场型分布(电场值对轴线电场最大值归一化).该 耦合腔模型中场型对称,2π模两间隙电场相位相 同,π模则相差180°.仿真模拟显示,每个间隙中的 场型分布基本取决于自身间隙宽度D,而与两间隙 中心距离L_p基本没有关系.从图5可以看出,对于 无栅间隙模型,电场分布并不局限于间隙中,而是 深入到漂移管中,但在漂移管中迅速截止,电场主 要集中在间隙部分.由于两间隙电场通过耦合缝耦 合的作用,每个间隙边缘处的场型并不对称,但非 常接近刀刃场分布.这说明本文在理论模型中利用 刀刃型的间隙边缘场型分布来近似是足够准确的.

按照理论模型计算间隙的电子电导,关键是求 取电子注的轴向群聚电流.为了符合空间电荷波小 信号假设,我们在仿真模拟时采用的电压调制系数 很小,约为0.05.

图 6 给出了当注电压为 29 kV,注电流为 7.83 A 时,理论计算与仿真得到不同模式下群聚电流轴 向分布,理论曲线采用图 5 的场型分布按照理论模 型计算得到,图中振荡曲线为 MAGIC 模拟得到的不 同时刻的电流分布.从图 6 可以看出,理论结果与模 拟结果符合很好.电子注受到间隙电场调制产生群 聚,由速度调制转化为密度调制,产生交变电流.同 时注意到,对于 2π模式,电流振幅随着距离的增加 而增大,有利于提高互作用效率,而 π 模式在电流 增加到第二个间隙位置后不再增大,反而有所下 降.说明在上述条件下,该模型不适合工作在 π 模 式下,在实际应用中该模型也是工作在 2π模式下.

空间电荷波理论中等离子体频率 $\omega_{\rm p}$ 的定义 为^[17] $\omega_{\rm p}$ = 1.03 × 10⁸ $V_0^{1/2}\mu_{\rm er}^{1/2}/b$. 由此可知,在导流

图 5 双间隙耦合腔不同模式间隙场型分布 (a) 2π 模式,(b)π模式

系数 μ_{er} 恒定时, ω_{p} 随注电压 V_{0} 变化不大^[21],因此 空间电荷因子 $\beta_{e}/\beta_{p} = \omega_{0}/\omega_{p}$ 随 V_{0} 变化也不大.另 外,快波与慢波的间隙耦合系数 $M(\beta_{1})$ 与 $M(\beta_{2})$ 主要取决于间隙渡越角 θ_{d} 以及间隙边缘场型分布, 随 V_{0} 的变化不大.但是, V_{0} 决定电子速度,直接影 响两间隙距离渡越角 $\theta_{p} = \beta_{e}L_{p}$.因此,图7中所示 不同模式下的归一化电子电导曲线 G_{e1}/G_{0} 随 V_{0} 变 化缓慢,但 G_{e}/G_{0} 和 G_{e2}/G_{0} 则随 V_{0} 变化很明显.从 图7可以看出,理论计算与MAGIC模拟结果趋势 相符.

如上所述,注波互作用达到稳定状态时间隙高频电场不受电子注群聚状态的影响,而且间隙距离 L_p 对每个间隙的场型分布也基本没有影响.所以,理论模型中第一间隙电子电导与 L_p 无关,其主要取决于自身的间隙渡越角 θ_a .但 L_p 通过渡越角 $\theta_p = \beta_e L_p$ 密切影响第二间隙电子群聚的相位,从而影响第二间隙电子电导.图8给出了不同模式下电子电

图 6 不同模式的电子注群聚电流轴向分布 (a) 2π 模式, (b)π模式

导随 L_p 的变化曲线. 从图 8 可以看出, G_{el}/G_0 随 L_p 基本没有变化, 而 G_e/G_0 和 G_{e2}/G_0 则随 L_p 变化很明显.

电子注经过第一间隙的调制产生群聚,在第二间隙与高频场互作用强烈,能量交换比在第一间隙中更多,这一点也可以从图 3 和图 4 得以说明.这体现在电子电导上,便是 *G*_{e2}/*G*₀ 比 *G*_{e1}/*G*₀ 绝对值要大,图 7 和图 8 都反映了这一特点. *G*_e/*G*₀ 是综合两间隙效果,吸收的功率是两间隙吸收功率之和,但间隙电压也是两间隙电压之和,所以总的电子电导值处于间隙 1 与间隙 2 的电导值之间,其趋势变化快慢程度也在两者之间.

根据空间电荷波理论,空间电荷波中的快波和 慢波共同与间隙高频电场进行相互作用,在不同的 参数条件下两种波的互作用强弱程度不同.对于 2π 模式, G_{e2}/G_0 和 G_{e}/G_0 随注电压 V_0 的增加而降低, 由正值变为负值,如图 7(a)所示.这说明在选取的 注电压范围内,随着 V_0 的增大,在相互作用中由空

图7 电子电导随注电压 V_0 的变化 (a) 2π 模式, (b) π 模式

间电荷波中的快波占主导地位逐渐转变为慢波占 主导地位. 同样对于 2π 模式, G_{e2}/G_0 和 G_e/G_0 随间 隙距离 L_p 的增大而变大,由负值转变为正值,如图 8 (a)所示. 这也说明在选取的间隙距离范围内,随着 L_p 增大,在互作用过程中由慢波占主导地位逐渐转 变为快波占主导地位. 由于(18),(19) 式中因子 $\cos(\beta L_p + \theta)$ 的存在,当间隙电场为 π 模式时,第二 间隙电场相位 $\theta = \pi$,导致因子 $\cos(\beta L_p + \theta)$ 与 2π 模式时符号相反,所以 π 模式的 G_{e2}/G_0 和 G_e/G_0 随 V_0 以及 L_p 的变化趋势与相应的 2π 模式的曲线相 反,如图 7(b) 和图 8(b)所示.

从图 7 和图 8 都可以看出,理论计算结果与模拟结果符合很好,说明所建理论模型的合理性.但是两者并不完全对应,在数值上有一定差别,除上面提到的电子注能量势阱的影响外,还有以下两方面原因:(1)在 MAGIC 加入粒子进行热测模拟时,由于电子注在两间隙中的群聚状态不同,造成两间隙电压的幅值和相位的差别,这和理论模型中假设

图 8 电子电导随间隙中心距离 L_p 的变化 (a) 2 π 模式, (b) π 模式

的电场不变的情形并不完全一致.(2)改变注电压 V_0 以及间隙中心距离 L_p 等参数进行模拟时,会使耦 合腔的谐振频率等腔体参数发生变化,另外电子注 的电子电纳也会造成一定的频率偏移.虽然仿真模 型中加入了调谐机构,使频率等参数尽量保持一 致,但仍有部分差别,这使得模拟参数与理论计算 参数不太一致.从图7和图8还可以看出,与 G_{el}/G_0 和 G_{e2}/G_0 相比, G_e/G_0 的模拟结果与理论结果更加 接近,主要原因是在计算电子注从整个间隙吸收的 功率时,我们采用了通过激励源输入功率减去耦合 腔的损耗功率来得到电子注吸收功率的方法,避免 了以上提到的势阱的影响,使测量更加准确.

由图 7 和图 8 可知,对于总的电子电导为负的 区域与各个间隙电子电导为负的区域并不总是一 致.例如,在某些参数区域内总的电子电导 *G*_e/*G*₀ 为 正,但第二个间隙的电子电导 *G*_{e2}/*G*₀ 为负.这说明 在以往的模型中根据总的电子电导 *G*_e/*G*₀ 来判断模 式的稳定性^[4,6]并不准确,因为即使保证了总的电 子电导为正,但由于第二个间隙电子电导为负,仍 可能产生自激振荡.在本文的仿真模拟过程中也证 实了这样的情况,说明本文模型可以用来进行更加 细致和准确的双间隙耦合腔的模式稳定性分析.

4.结 论

本文从空间电荷波基本模型出发,推导了双间

隙耦合腔中单个间隙电子电导的计算公式,并与粒 子模拟结果进行了比较,该模型能准确地计算双间 隙耦合腔中电子电导的分布效应.理论计算和模拟 结果显示,在本文所选取的工作参数范围内,注电 压、间隙中心距离等参数主要影响第二个间隙的电 子电导,电子注与高频场的能量交换主要发生在第 二个间隙.计算分析和模拟结果表明,单纯利用两 个间隙总的电子电导分析模式的稳定性并不准确, 应同时考虑第二个间隙的电子电导情况.

- [1] Chodorow M, Wessel-Berg T 1961 IEEE Trans. Electron. Dev. 8 44
- [2] Wessel-Berg T 1957 A General Theory of Klystrons with Arbitrary Extended Interaction Fields (California: Microwave Laboratory of Stanford University) p376
- [3] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402
- [4] Lin F M, Ding Y G 2004 Vac. Electron. Techn. 2 10
- [5] Quan Y M, Ding Y G, Wang S Z 2008 IEEE Trans. Plasma Sci. 37 30
- [6] Quan Y M 2008 Ph. D. Dissertation (Beijing: Institute of Electronics, Chinese Academy of Sciences) (in Chinese) [全亚 民 2008 博士学位论文 (北京:中国科学院电子学研究所)]
- [7] Hsu H L 2006 Ph. D. Dissertation (Davis: University of California Davis)
- [8] Craig E 1967 IEEE Trans. Electron. Dev. 14 273
- [9] Kowalczyk R, Lau Y Y 2005 IEEE Trans. Electron. Dev. 52 2087
- [10] Wilsen B C, Lau Y Y 2002 IEEE Trans. Plasma Sci. 30 1160
- [11] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 59 7383 (in Chinese) [崔 健、罗积润、朱 敏、郭 炜 2011 物理学报 59 7383]
- [12] Zhao D, Ding Y G, Wang Y 2007 Acta Phys. Sin. 56 3324 (in Chinese) [赵 鼎、丁耀根、王 勇 2007 物理学报 56 3324]
- [13] Yonezawa H, Okazaki Y 1984 A One-Dimension Disk Model

Simulation for Klystron Design (California: SLAC of Stanford University) p5

- [14] Cui J, Luo J R, Zhu M, Guo W 2011 Acta Phys. Sin. 60 061101(in Chinese)[崔 健、罗积润、朱 敏、郭 炜 2011 物理学报 60 061101]
- [15] Xie J L, Zhao Y X 1966 Bunching Theory of Klystrons (Beijing: Science Press) pp88, 94 (in Chinese) [谢家麟、赵永翔 1966 速调管群聚理论(北京:科学出版社) 第 88,94 页]
- [16] Pierce J R, Shepherd W G 1947 J. Bell. Syst. Techn. 26 663
- [17] Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp42, 64, 70 (in Chinese) [丁耀根 2008 大功率速调管的理论与计算 模拟(北京:国防工业出版社)第42,64,70页]
- [18] Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和、丁耀根、肖 刘 2005 物理学报 54 5629]
- [19] Gong H R, Gong Y B, Wei Y Y, Tang C J, Xue D H, Wang W X 2006 Acta Phys. Sin. 55 5368 (in Chinese) [巩华荣、宫玉 彬、魏彦玉、唐昌建、薛东海、王文祥 2006 物理学报 55 5368]
- [20] Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese) [胡玉禄、杨中海、李建清、 李 斌、高 鹏、金晓林 2009 物理学报 58 6665]
- [21] Chodorow M, Kulke B 1966 IEEE Trans. Electron. Dev. 13 439

The theory and computer simulation of beam-loading conductance in the double-gap coupled cavity *

Huang Chuan-Lu $^{1)2)}$ Ding Yao-Gen $^{1)\dagger}$ Wang Yong $^{1)}$

 (Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
 (Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 28 December 2010; revised manuscript received 13 July 2011)

Abstract

In a double-gap coupled cavity of klystrons, the electrons exchange energy with the electric field in each gap through beam-wave interaction process, and different beam-loading effects take place in each gap. However in this case the traditional beam-loading model does not hold true. To solve this problem, we present a novel model according to the space-charge-wave theory to calculate the beam-loading conductance in each gap of the coupled-cavity, and also derive the formulations. Moreover, we perform a simulation study using a three-dimensional particle-in-cell code. The results obtained by the model show good agreement with the simulation results. In comparison with the traditional model, the new model can be used to calculate the beam-loading conductances in diffident regions of the coupled-cavity, and then it can be used to study the beam-wave interactions in the gaps and analyze the mode stability in the coupled-cavity in a high accuracy.

Keywords: double-gap coupled cavity, space-charge-wave theory, beam-loading conductance, particle-in-cell simulation **PACS**: 84.40.-x, 52.40. MJ, 41.20.-q

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60971073).

[†] Corresponding author. E-mail: dingyg@ mail. ie. ac. cn