# 多间隙耦合腔中注-波同步与耦合

崔 健<sup>1)2)†</sup> 罗积润<sup>1)</sup> 朱 敏<sup>1)</sup> 郭 炜<sup>1)</sup> 1)(中国科学院电子学研究所,中国科学院高功率微波源与技术重点实验室,北京 100190) 2)(中国科学院研究生院,北京 100049) (2010年5月20日收到;2010年6月22日收到修改稿)

本文基于空间电荷波理论,导出了 N 间隙耦合腔中注-波耦合系数和电子注电导计算公式.通过计算分析多间 隙耦合腔中工作模式(2π模)耦合系数和归一化电子注电导随间隙数目 N、直流电压和导流系数的变化,研究多间 隙耦合腔中注-波耦合和同步关系,对分布互作用速调管的理论研究有指导意义.

关键词:多间隙耦合腔,耦合系数,电子注电导,同步与耦合 PACS: 11.25.-w, 11.40.-q, 33.15. Vb

### 1. 引 言

分布互作用速调管(EIK)和分布互作用振荡器 (EIO)是在高频率条件下实现高增益、宽带宽和高 功率的一种重要真空微波器件,而多间隙耦合腔是 其提高增益带宽积和功率容量的关键技术<sup>[1-8]</sup>.多 间隙耦合腔可以大大增加腔体的内表面积,使管子 在高频段工作时仍具有更大的功率容量.同时,由 于腔内存在多个间隙,使每个间隙上的电场强度大 大降低,减少了高频间隙击穿的可能,有利于峰值 功率的提高.

文献[1,2]提出用空间电荷波理论来研究分布 互作用速调管的效率和带宽,并把计算结果与实验 结果作了比较,证实了其理论的有效性,但是关于 注-波同步和耦合计算仅局限于一维有栅间隙的情 况,并且没有考虑空间电荷参数变化对于注-波同步 和耦合的影响.文献[9]在文献[1]基础上推导了双 间隙耦合腔中电子注电导在无栅间隙情况下的计 算公式,并以此来判定模式的稳定性,不过间隙数 目仅限于2,对多间隙耦合腔中注-波互作用机理难 以全面体现.

随着间隙数目 N 的增加, 腔与腔之间除了由漂 移管连接之外, 还通过耦合槽进行耦合, 因此扩展 互作用速调管的谐振腔之间存在直接的电磁耦合, 这使得多间隙耦合腔存在多个谐振模式. 本文从空 间电荷波理论出发,推导 N 间隙耦合腔中谐振模式 注-波耦合系数和电子注电导的一般公式,并以 2π 模为例,通过计算分析耦合腔中其耦合系数和电子 注电导,讨论间隙数目和各种参量变化对注-波同步 及耦合的影响.

#### 2. 理论模型

图1 所示是多间隙耦合腔电路的基本模型,由 若干个重入式谐振腔通过单耦合槽耦合而成,相邻 耦合槽的位置相差180°交错排列.通常把它看作是 两端短路的慢波结构,其电场是由幅值相同、传播 方向相反的前向波和返向波叠加组成的驻波.图1 中r为腔半径,r<sub>a</sub>和r<sub>e</sub>分别为漂移管内、外半径,d 为间隙宽度,d<sub>s</sub>为耦合槽宽度,r<sub>s</sub>为耦合槽中心线 半径,耦合槽张角为 θ,t 为腔间壁厚,l<sub>1,n</sub>是第一个 间隙中心与第 n 个间隙中心之间的距离.

本文基于 Wessel-Berg 空间电荷波理论,对于有限长度的谐振腔间隙,在高频场和空间电荷场同时存在的前提下,从连续性方程、电子运动方程和麦克斯韦方程出发,得到高频场对电子注电流作用的基本方程<sup>[10]</sup>

$$\frac{\partial^2 i_1}{\partial z^2} + 2j\beta_e \frac{\partial i_1}{\partial z} - (\beta_e^2 - \beta_q^2)i_1 = \frac{j\beta_q}{Z_0}E_e, \quad (1)$$

其中 $\beta_e = \omega/v_0, \beta_q = \omega_q/v_0, v_0$ 是电子注直流速度,  $\omega$ 是角频率,  $\omega_q$ 是缩减等离子体频率;  $Z_0 = \frac{2V_0}{I_0} \frac{\beta_q}{\beta_e}$ 定

<sup>†</sup> E-mail: cuijian513420@ sohu.com

<sup>©2011</sup> 中国物理学会 Chinese Physical Society



图1 多间隙耦合腔示意图 (a)内部纵截面图; (b)内部横截面图

义为空间电荷波的波阻抗; V<sub>0</sub> 和 I<sub>0</sub> 分别是直流电压 和直流电流; E<sub>e</sub>是高频电场. 由(1)式计算得到群聚 电流

$$i_{1}(z) = \frac{1}{2Z_{0}} \int_{-\infty}^{z} E_{c}(\xi) \left( e^{-j(\beta_{c} - \beta_{q})(z - \xi)} - e^{-j(\beta_{c} + \beta_{q})(z - \xi)} \right) d\xi.$$
(2)

电子注吸收的总功率为

$$P = \frac{1}{2} \int_{-\infty}^{+\infty} E_{c}(z) i_{1}^{*}(z) dz$$
  
=  $\frac{1}{4Z_{0}} \int_{-\infty}^{+\infty} \int_{-\infty}^{z} E_{c}(z) E_{c}^{*}(\xi) e^{j\beta_{c}(z-\xi)}$   
×  $(e^{-j\beta_{q}(z-\xi)} - e^{j\beta_{q}(z-\xi)}) d\xi dz$ , (3)

电子注吸收的有功功率为

$$P_{r} = \frac{P + P^{*}}{2}$$

$$= \frac{1}{8Z_{0}} \left\{ \int_{-\infty}^{+\infty} E_{c}(z) e^{j(\beta_{c} - \beta_{q})z} dz \left[ \int_{-\infty}^{+\infty} E_{c}(\xi) e^{j(\beta_{c} - \beta_{q})\xi} d\xi \right]^{*} - \int_{-\infty}^{+\infty} E_{c}(z) e^{j(\beta_{c} + \beta_{q})z} dz \left[ \int_{-\infty}^{+\infty} E_{c}(\xi) e^{j(\beta_{c} + \beta_{q})\xi} d\xi \right]^{*} \right\}.$$

$$(4)$$

根据耦合系数定义,得到快空间电荷波、慢空间电荷波耦合系数分别为

快空间电荷波耦合系数

$$M(\beta_{e} - \beta_{q}) = \frac{\int\limits_{-\infty}^{+\infty} E_{c}(z) e^{j(\beta_{e} - \beta_{q})z} dz}{V};$$

$$M(\beta_{e} + \beta_{q}) = \frac{\int\limits_{-\infty}^{+\infty} E_{c}(z) e^{j(\beta_{e} + \beta_{q})z} dz}{V}.$$
(5)

其中 V 是多间隙耦合腔的有效电压. 把(5)式代入 (4)式得

$$P_{\rm r} = \frac{V^2}{8Z_0} (\mid M(\beta_{\rm e} - \beta_q) \mid^2 - \mid M(\beta_{\rm e} + \beta_q) \mid^2).$$
(6)

由电子注电导定义  $G_{\rm b} = \frac{2P_{\rm r}}{V^2}$ ,得

$$G_{\rm b} = \frac{1}{4Z_0} (| M(\beta_{\rm e} - \beta_{\rm q}) |^2 - | M(\beta_{\rm e} + \beta_{\rm q}) |^2).$$
(7)

在多间隙耦合腔中,高频电场  $E_c(z)$  在间隙处 为驻波场,在漂移管处为零,这样在给定场的前提 下,由方程(5)和(7)式计算得到多间隙耦合腔电子 注电导.对于 N 间隙耦合腔而言,存在 N 个腔模和 N = 1 个槽模<sup>[11]</sup>,不同模式对应的场型不同,各个间 隙电压大小、方向也不同,各个间隙高频场型和其 耦合系数也会不同,此时总电压不能用各间隙电压 之和来表示,而采用各个间隙电压绝对值相加表示 的有效电压<sup>[12]</sup>:  $V = |V_1| + |V_2| + \cdots + |V_n| + \cdots$  $+ |V_N|, V_n$ 是第 n 个间隙电压.为了进一步描述多 间隙耦合腔中电子注电导表达式,需要知道每个间 隙的高频电场及其分布.以第一个间隙中心作为坐 标系原点,假设第 n 个间隙宽度为  $d_n$ ,间隙中心与 第一个间隙中心距离为  $l_{1,n}$ ,间隙处高频电场为  $E_{c,n}(z - l_{1,n}),间隙外高频电场为零,其耦合系数为$ 

$$\begin{split} M_{g,n} &= \frac{1}{|V_n|} \int_{l_{1,n}-d_{n'^2}}^{l_{1,n}+d_{n'^2}} E_{c,n}(z-l_{1,n}) e^{j\beta_c(z-l_{1,n})} dz. \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$E_{c}(z) = \begin{cases} \sum_{n=1}^{N} E_{c,n}(z - l_{1,n}), \\ l_{1,n} - d_{n}/2 \leq z \leq l_{1,n} + d_{n}/2, \\ 0, \quad \notin \mathbb{H}. \end{cases}$$
(8)

计算得到 N 间隙耦合腔的耦合系数

$$M_{N}(\boldsymbol{\beta}_{e}) = \frac{\int_{-\infty}^{+\infty} E_{e}(z) e^{j\beta_{e}z} dz}{V}$$

$$= \frac{\int_{-\infty}^{+\infty} \sum_{n=1}^{N} E_{e,n}(z - l_{1,n}) e^{j\beta_{e}z} dz}{\sum_{n=1}^{N} V_{n} |}$$

$$= \frac{\sum_{n=1}^{N} M_{g,n}(\boldsymbol{\beta}_{e}) V_{n} e^{j\beta_{e}l_{1,n}}}{\sum_{n=1}^{N} |V_{n}|}.$$
(9)

以上推导是在假定只有纵向电场的条件下得到的, 实际间隙中还存在横向电场,此时电子会有横向运动,引起电子注与高频场能量交换<sup>[13]</sup>,但在强磁场 下能量交换非常少,甚至可以忽略<sup>[14]</sup>.对于无栅间 隙的纵向电场,不仅与纵轴(z)有关,还与横轴(r) 有关,所以一般电场分布函数为 *E*<sub>c</sub>(*z*,*r*).如果知道 间隙边缘(*r* = *r*<sub>a</sub>)电场分布 *E*<sub>c</sub>(*z*,*r*<sub>a</sub>),根据场的唯 一性定理,就可以确定系统内任一点的场.因此把 第 *n* 个间隙耦合系数分为纵向耦合系数 *M<sub>z</sub>* 和横向 耦合系数 *M<sub>r</sub>*<sup>[15]</sup>,即

$$M_{g,n}(\boldsymbol{\beta}_{e},r) = M_{z}(\boldsymbol{\beta}_{e},r_{a}) \cdot M_{r}(\boldsymbol{\beta}_{e},r), \quad (10)$$

其中

$$M_{z}(\boldsymbol{\beta}_{e}, r_{a}) = \frac{1}{|V_{n}|} \int_{l_{1,n}-d_{n}/2}^{l_{1,n}+d_{n}/2} E_{c,n}(z - l_{1,n}, r_{a}) e^{j\boldsymbol{\beta}_{e}(z - l_{1,n})} dz$$

是纵向耦合系数;

$$M_r(\boldsymbol{\beta}_e, r) = \frac{I_0(\boldsymbol{\gamma}(\boldsymbol{\beta}_e)r)}{I_0(\boldsymbol{\gamma}(\boldsymbol{\beta}_e)r_a)}$$

是横向耦合系数. 假设电子注半径为  $r_{\rm b}$ , $M_r^2(\beta_e,r)$  在电子注横截面上求均值得

$$\overline{M}_{r}^{2}(\boldsymbol{\beta}_{e}) = \frac{1}{\pi r_{b}^{2}} \int_{0}^{r_{b}} M_{r}(\boldsymbol{\beta}_{e}, r)^{2} 2\pi r dr$$
$$= \frac{I_{0}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{b}) - I_{1}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{b})}{I_{0}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{a})}.$$
(11)

考虑到径向耦合系数影响,则第 n 个间隙耦合系数 改写为

$$M_{g,n}(\boldsymbol{\beta}_{e}) = \frac{\sqrt{\frac{I_{0}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{b}) - I_{1}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{b})}{I_{0}^{2}(\boldsymbol{\gamma}(\boldsymbol{\beta}_{e})r_{a})}} \int_{l_{1,n}-d_{n}/2}^{l_{1,n}+d_{n}/2} E_{c,n}(z - l_{1,n}, r_{a}) e^{j\boldsymbol{\beta}_{e}(z - l_{1,n})} dz}{|V_{n}|}, \qquad (12)$$

其中 $\gamma(\beta_e) = \sqrt{\beta_e^2 - k^2}, k = \omega/c$ 是自由空间电磁 波数,  $I_0 \approx I_1$ 分别是零阶和一阶修正贝塞尔函数.

3. 计算结果与分析

在这些模式中,2π模与其他模式相比具有更大的特性阻抗 R/Q,通常把它作为工作模式. 假设耦合腔中各个间隙宽度相同,即 $d_n = d$ ;相邻间隙中心之间的距离均为l(周期长度);纵向高频驻波电场为周期分布,且只存在于间隙处,在漂移管处截止,此时耦合腔中各个间隙电压相同,即 $V_n = V_g$ ; 在各个间隙边缘处( $r = r_a$ )具有相同的纵向电

$$\mathcal{I}_{g}^{[15]}E_{c,n}(z - l_{1,n}, r_{a}) = \frac{2V_{g}}{\pi d \sqrt{1 - \left(\frac{2(z - l_{1,n})}{d}\right)^{2}}}$$

(如图 2 所示),各个间隙有相同的单间隙耦合系数  $M_{g,n} = M_g$ .考虑到 $M_N$ 可能是复数,通常用其模的平 方 $|M_N|^2$ 来表示电子注与间隙电场能量耦合的强 弱,则(9)式可以改写为

$$\mid M_{N}(\boldsymbol{\beta}_{e}) \mid^{2} = \overline{M}_{r}^{2}(\boldsymbol{\beta}_{e}) J_{0}^{2} \left(\frac{\boldsymbol{\beta}_{e}d}{2}\right) \left(\frac{\sin\left(\frac{N}{2}\boldsymbol{\beta}_{e}l\right)}{N\sin\left(\frac{\boldsymbol{\beta}_{e}l}{2}\right)}\right)^{2}$$

$$= | M_{g}(\boldsymbol{\beta}_{e}) |^{2} \Phi^{2}(\boldsymbol{\beta}_{e}), \qquad (13)$$

其中 
$$|M_g(\boldsymbol{\beta}_e)|^2 = \overline{M}_r^2(\boldsymbol{\beta}_e) J_0^2\left(\frac{\boldsymbol{\beta}_e d}{2}\right)$$
是单间隙耦合

系数模的平方, 
$$\Phi^2(\beta_e) = \left(\frac{\sin\left(\frac{N}{2}\beta_e l\right)}{N\sin\left(\frac{\beta_e l}{2}\right)}\right)^2$$
 体现了多

间隙对耦合系数的影响.

以 Ku 波段休斯型耦合腔为例,选择特性阻抗 *R/Q* 比较大的 2π 模,假设其工作参数为:漂移管内 半径  $r_a = 1.2$  mm,电子注半径  $r_b = 0.8$  mm,2π 模的 谐振频率  $f_0 = 16.8$  GHz,间隙宽度 d = 1.2 mm,间隙 数目 N = 1—7.由(13)式得到耦合系数模的平方  $|M_N|^2$ ,在不同的周期长度 *l* 下随直流电压  $V_0$  的变 化曲线.如图 3 所示,在单间隙情况下(N = 1), $\Phi^2$ 



图 2  $2\pi$  模纵向电场  $E_c(z,r_a)$  在  $r = r_a$  处分布示意图

恒为1,此时  $|M_N|^2 = |M_g|^2$ ,而 $J_0^2$ 的大小取决于电 子间隙渡越角 $\beta_e d$ ,对于一定形状的间隙,d一定, 直流电压越大,间隙渡越角越小, $J_0^2$ 和 $\overline{M}_r^2$ 都会增 加,所以  $|M_N|^2$ 随直流电压的增大而增加;在多间 隙情况下( $N \ge 2$ ),由于 $\Phi^2$ 的影响, $|M_N|^2$ 先增加 后减小,并且随着间隙数目 N 增加,它们的最大值 趋于某一定值,曲线两侧变化越来越陡峭.根据 (13)式,在N间隙休斯型耦合腔中, $|M_N|^2$ 的大小 是由 $M_g^2$ 和 $\Phi^2$ 的乘积决定.根据弗洛奎定理,周期系 统中空间谐波相速为 $v_p = \frac{\omega}{\beta}$ .对于休斯型耦合腔, 通常设计工作在-1 次谐波上,当工作在 2 $\pi$ 模时,相 邻腔电场相位相同,如图 2 所示,即 $\beta l = 2\pi$ ,此时  $v_p = \frac{\omega_0 l}{2} = f_0 l$ .代入(13)式中的 $\Phi^2$ 得

$$\Phi^{2} = \frac{1}{2\pi} = f_{0}l. \ \text{tt} \Lambda(13) \text{tt} \Psi \text{th} \Phi^{2} \text{ ff}$$

$$\Phi^{2} = \left(\frac{\sin\left(N\pi \frac{v_{p}}{v_{0}}\right)}{N\sin\left(\pi \frac{v_{p}}{v_{0}}\right)}\right)^{2}.$$
(14)

可见,  $\Phi^2$ 的大小取决于 2π 模相速与电子速度之 比, 与 2π 模相速相关的是相邻间隙中心距离, 与电 子速度相关的是直流电压. 当电子速度与 2π 模的 相速相等时, 即  $v_0 = v_p = \frac{\omega_0 l}{2\pi}$ , 此时  $\beta_e l = 2\pi$ , 有  $\Phi^2_{\max}(\beta_e) = 1, 2\pi$  模同步电压为  $(f_e l)^2$ 

$$V_0 = \frac{(f_0 l)^2}{2\eta} , \qquad (15)$$

其中 $\eta = \left| \frac{e}{m} \right|$ 是电子荷质比,把不同周期长度l代入(15)式得到 $V_0 \mid_{l=4.2 \text{ nm}} = 14.15 \text{ kV}, V_0 \mid_{l=4.6 \text{ nm}} = 16.98 \text{ kV}, V_0 \mid_{l=5.0 \text{ nm}} = 20.06 \text{ kV}, V_0 \mid_{l=5.4 \text{ nm}} = 23.40 \text{ kV}. 当 l 增加, 2\pi 模相速 <math>v_p$ 也随之增加,因此对应的同步电压也随着增大.当 N 比较小时(互作用结构比较短), $\Phi^2$ 在其最大值两侧变化较缓,而  $\mid M_g \mid^2$ 却随直流电压增加而增大,所以  $\mid M_N \mid^2$ 最大 值会出现在大于同步电压的位置.但是随着间隙数

目 N 增加,  $\Phi^2$  对于同步性要求变高, 当  $v_0 \neq v_p$  时,  $\Phi^2$  的值下降得非常快, 所以 |  $M_N$  | <sup>2</sup> 的最大值会趋 向于同步电压处. 当 N 趋于无穷大时, 有

$$\lim_{N \to \infty} |M_N|^2 = |M_g|^2 \delta(\beta_e l - 2m\pi), \quad (16)$$

其中函数 $\delta(x) = \begin{cases} 1, & x = 0, \\ 0, & \pm 0, \end{cases}$ 示只有电子速度与 $2\pi$ 模一次谐波或二次谐波的相速相等时,才会产生耦合作用.

根据修正等离子体频率定义[16]

$$\omega_q = \frac{1.03 \times 10^8 \times F \times V_0^{1/2} \times P_{\rm er}^{1/2}}{r_{\rm b}}$$

其中 *F* 是缩减等离子体因子.实际上如果导流系数 不变,  $\omega_q$  随  $\frac{V_0^{1/2}}{r_b}$  变化不大<sup>[17]</sup>,它的大小主要取决于 导流系数  $P_{er}$ . 假设  $P_{er} = 0.2$ ,对应空间电荷参数  $\frac{\beta_q}{\beta_e} = \frac{\omega_q}{\omega_0} = 0.0366$ .由(5),(7)和(13)式计算得到 归一化电子注电导  $g_b = \frac{G_b}{G_0} = \frac{G_b}{I_0/V_0}$ ,在不同周期 *l* 随直流电压  $V_0$  的变化曲线.如图 4 所示,在单间隙 下(N = 1),  $g_b$  变化平缓且一直大于零;当间隙数 目增加后( $N \ge 2$ ),  $g_b$  随着直流电压变化加剧,并 在同步电压两侧出现一个最大值和一个最小值,两 极值的幅值随着间隙数目增加而增大,对应电压值 也向 2 $\pi$  模同步电压靠拢.

当直流电压略小于同步电压,即电子速度略小 于慢波结构中 2π 模相速时,此时主要是快空间电 荷波与 2π 模一次谐波发生作用,电子注从间隙电 场获得能量,计算得到电子注电导为正.当快空间 电荷波相速与 2π 模一次谐波相速相等时,即  $v_{fp} = v_0$   $\omega_0 l$ 

 $\frac{v_0}{1 - \beta_q / \beta_e} = \frac{\omega_0 l}{2\pi} = v_p, \text{ ith } (\beta_e - \beta_q) l = 2\pi, \text{ f}$  $\Phi_{\max}^2(\beta_e - \beta_q) = 1, \text{ (ke) and } \beta_e = 1, \text{ (ke)$ 

$$V_0 = \frac{(f_0 l)^2 (1 - \frac{\beta_q}{\beta_e})^2}{2\eta}.$$
 (17)

把不同周期长度 l 代入(17) 式得到  $V_0 \mid_{l=4.2 \text{ mm}} =$ 13.14 kV,  $V_0 \mid_{l=4.6 \text{ mm}} =$  15.76 kV,  $V_0 \mid_{l=5.0 \text{ mm}} =$ 18.62 kV,  $V_0 \mid_{l=5.4 \text{ mm}} =$  21.72 kV.

反之,电子速度略大于慢波结构中 2π 模相速 时,此时主要是慢空间电荷波与 2π 模一次谐波发 生作用,电子注释放能量,电子注电导为负.当慢空 间电荷波相速与 2π 模一次谐波相速相等时,即 v<sub>sp</sub>  $= \frac{v_0}{1 + \beta_q / \beta_e} = \frac{\omega_0 l}{2\pi} = v_p, \text{ ubb}, (\beta_e + \beta_q) l = 2\pi, \hat{q}$  $\Phi_{\max}^2(\beta_e + \beta_q) = 1, \text{ @$\sigma$ end{tabular}}$ 

$$V_0 = \frac{(f_0 l)^2 (1 + \beta_q / \beta_e)^2}{2\eta}.$$
 (18)

把不同周期长度 l 代入(18) 式得到  $V_0 \mid_{l=4.2 \text{ mm}} =$ 15.21 kV,  $V_0 \mid_{l=4.6 \text{ mm}} =$  18.24 kV,  $V_0 \mid_{l=5.0 \text{ mm}} =$ 21.55 kV,  $V_0 \mid_{l=5.4 \text{ mm}} =$  25.14 kV.

由于 $\beta_q/\beta_e = 0.0366$ ,快空间电荷波和慢空间 电荷波相速差别不大,当间隙数目 N 比较小时,从 图 3 可以看出在同步电压附近较大的范围内,耦合 系数模的平方  $|M_N|^2$  随直流电压变化平缓,对于同 步性要求并不高,快、慢空间电荷波对应耦合系数 模的平方  $|M_N(\beta_e - \beta_q)|^2$ 和  $|M_N(\beta_e + \beta_q)|^2$ 比较 接近,由(7)式知, $g_b$ 是两者之差,所以其幅值随直 流电压变化缓慢,实际电子转换效率并不高;当间 隙数目 N 增大后,耦合系数模的平方  $|M_N|^2$ 对于同 步性的要求变高,并且间隙数目越大, $g_b$ 随着直流 电压变化更加陡峭,其最大值和最小值对应的电压 值分别趋于快空间电荷波的同步电压和慢空间电 荷波的同步电压.当  $N \rightarrow \infty$ 时,有

$$\lim_{N \to \infty} g_{\rm b} = \frac{1}{8} \frac{\beta_{\rm e}}{\beta_{\rm q}} | M_{\rm g}(\beta_{\rm e} - \beta_{\rm q}) |^{2} \\ \times \delta((\beta_{\rm e} - \beta_{\rm q})l - 2m\pi) \\ - \frac{1}{8} \frac{\beta_{\rm e}}{\beta_{\rm q}} | M_{\rm g}(\beta_{\rm e} + \beta_{\rm q}) |^{2} \\ \times \delta((\beta_{\rm e} + \beta_{\rm q})l - 2m\pi).$$
(19)

只有当  $(\beta_e - \beta_q)l = 2m\pi$ ,即快空间电荷波的相速 与  $2\pi$  模 *m* 次谐波的相速相等时,快空间电荷波才 会与  $2\pi$  模 *m* 次谐波发生作用,此时  $g_b = \frac{1}{8} \frac{\beta_e}{\beta_q}$  $\mid M_g(\beta_e - \beta_q) \mid^2;$ 而当 $(\beta_e + \beta_q)l = 2m\pi$ ,即慢空间 电荷波的相速与  $2\pi$  模 *m* 次谐波的相速相等时,慢 空间电荷波才会与  $2\pi$  模 *m* 次谐波发生作用,此时

$$g_{\mathrm{b}} = -\frac{1}{8} \frac{\beta_{\mathrm{e}}}{\beta_{\mathrm{q}}} | M_{\mathrm{g}}(\beta_{\mathrm{e}} + \beta_{\mathrm{q}}) |^{2}.$$

假设周期长度 *l* = 5 mm,间隙宽度 *d* = 1.2 mm, 计算得到归一化电子注电导 *g*<sub>b</sub> 在不同导流系数下 随直流电压的变化曲线.如图 5 所示,当导流系数增 大,*g*<sub>b</sub> 的两个极值逐步减小,且其对应的电压距离 也变大.由(17)和(18)式得,快空间电荷波同步电 压为

$$V_0 \mid_{P_{\rm er}=0.5 \ \mu p} = 17.80 \ \rm kV$$
,



图3 在不同周期长度 l 下,  $2\pi$  模耦合系数模的平方  $|M_N|^2$  随直流电压  $V_0$  的变化曲线 (a) l = 4.2 mm; (b) l = 4.6 mm; (c) l = 5.0 mm; (d) l = 5.4 mm



图 4 在不同周期长度 *l* 下,归一化电子注电导 *g*<sub>b</sub> 随直流电压 *V*<sub>0</sub> 的变化曲线 (a)*l*=4.2 mm; (b)*l*=4.6 mm; (c)*l*=5.0 mm; (d)*l*=5.4 mm

 $V_0 \mid_{P_{er}=1.0 \ \mu p} = 16.91 \ kV,$  $V_0 \mid_{P_{er}=1.5 \ \mu p} = 16.24 \ kV,$  $V_0 \mid_{P_{er}=2.0 \ \mu p} = 15.68 \ kV.$ 慢空间电荷波同步电压为

 $V_0 \mid_{P_{er}=0.5 \ \mu p} = 22.45 \ kV,$   $V_0 \mid_{P_{er}=1.0 \ \mu p} = 23.48 \ kV,$   $V_0 \mid_{P_{er}=1.5 \ \mu p} = 24.28 \ kV,$  $V_0 \mid_{P_{er}=2.0 \ \mu p} = 24.97 \ kV.$ 

可见空间电荷参数 β<sub>q</sub>/β<sub>e</sub> 随导流系数变大后,快空 间电荷波对应的同步电压降低,慢空间电荷波对应 的同步电压升高.此外,导流系数变大后,电荷密度 也变大,空间电荷斥力随之增大,由于库仑排斥力 引起的去聚作用使得速度零散增加,影响了电子注 与间隙处高频电场的能量交换,使得电子的转换效 率变低,g<sub>b</sub> 幅值立即减小.

从图 5 还可以看出,在一定的导流系数下,g<sub>b</sub> 两个极值并不是完全随着间隙数目增加一直增大, 而是增大到一定值后趋于不变.这是由于随着间隙 数目增大(互作用长度增加),一方面,电子能获得 更好的群聚,使电子转换效率增大;另一方面,电子 群聚到一定程度后,库仑排斥力会使电子转换效率 降低,所以在一定导流系数下,间隙数目增加到一 定个数后,间隙处高频电场对电子注调制作用达到 饱和,如果间隙数目再增加,电子转换效率基本不 变,对应 g<sub>b</sub> 两极值变化非常小,并且导流系数越大, 达到饱和的所需的间隙数目越少.

从图4和图5可以看到,归一化电子注电导 g<sub>b</sub> 除了跟间隙数目相关外,还受直流电压 V<sub>0</sub>、周期长 度 l和导流系数 P<sub>er</sub>影响.其中直流电压和周期长度 分别与电子注速度与慢波电路中 2π 模的固有相速 相关,它们之间的相对关系直接决定了注波互作用 程度.导流系数不仅影响归一化电子注电导 g<sub>b</sub> 极值 的大小及其对应的电压,还决定达到饱和所需的间 隙个数.

在输入回路和群聚回路中,工作模式(2 $\pi$ 模) 通常工作在电子注电导为正的直流电压附近,通过 图 4 可以看出,对于一定周期长度休斯型耦合腔,可 以选择直流电压  $V_0$  工作在同步电压左侧,使电子注 电导为正,从而避免发生自激振荡.在输出回路中, 工作模式(2 $\pi$ 模)通常工作在电子注电导为负且其 幅值最大的直流电压附近,这样电子转换效率比 较大.



图5 在不同导流系数  $P_{\text{er}}$ 下, 归一化电子注电导  $g_{\text{b}}$  随直流电压  $V_0$  的变化曲线 (a)  $P_{\text{er}} = 0.5 \ \mu\text{p}$ ; (b)  $P_{\text{er}} = 1.0 \ \mu\text{p}$ ; (c)  $P_{\text{er}} = 1.5 \ \mu\text{p}$ ; (d)  $P_{\text{er}} = 2.0 \ \mu\text{p}$ 

#### 4. 结 论

本文从空间电荷波理论出发,得到了多间隙耦 合腔中的注-波耦合系数和电子注电导计算公式.以 2π模为例,研究了多间隙耦合腔中注-波互作用的 同步和耦合机理.结果表明,单间隙耦合系数模的 平方  $|M_N|^2$ 和归一化电子注电导  $g_b$ 随直流电压变 化平缓;当  $N \ge 2$ 时,  $|M_N|^2$ 和  $g_b$ 的变化加剧,  $|M_N|^2$ 出现一个最大值,  $g_b$ 在同步电压两侧出现 一个最大值和一个最小值,且随着间隙数目增加, 这些极值大小增加,同时对应的电压向同步电压靠 拢;导流系数的增加会使  $g_b$ 两个极值减小、极值之 间电压差别增大、注-波耦合转换效率下降.

- Wessel-Berg T 1957 Microwave Lab Stanford Univ. Tech. Rep. 376
- [2] Chodorow M, Wessel-Berg T 1961 IRE Trans. ED 8 44
- [3] Shin Y M, Park G S 2004 J. Korean Phys. Soc. 44 1239
- [4] Roitman A, Horoyski P, Hyttinen M, Berry D, Steer B 2006 Proc. IEEE International Vacuum Electronics Conference 191
- [5] Roitman A, Berry D, Steer B 2005 IEEE Trans. ED 52 895
- [6] Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907 (in Chinese) [黄 华、罗 雄、雷禄容、罗光耀、张北镇、金 晓、谭 杰 2010 物理学 报 59 1907]
- [7] Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402

- [8] Nguyen K T, Pershing D E, Abe D K, Levush B 2006 IEEE Trans. Plasma Sci. 34 576
- [9] Quan Y, Ding Y, Wang S 2009 IEEE Trans. Plasma Sci. 137 30
- [10] Chodorow M, Susskind C 1964 Fundamentals of Microwave Electronics (New York: McGraw-Hill Book Co.) p158
- [11] Kantrowitz F, Tammaru I 1988 IEEE Trans. ED 35 2018
- [12] Haikov A Z (translated by Huang G N) 1980 Klystron Amplifiers (Beijing: National Defense Industry Press) p93 (in Chinese)
  [哈依柯夫 A 3 著 黄高年译 1980 速调管放大器(北京:国防 工业出版社)第93页]
- [13] Pierce J R, Shepherd W G 1947 J. Bell System Tech. 26 663
- [14] Branch G M 1961 IRE Trans. ED 8 193

- [15] Xie J L, Zhao Y X 1966 Bunching Theory of Klystrons (Beijing: Science Press) p31 (in Chinese) [谢家麐、赵永翔 1966 速调 管群聚理论(北京:科学出版杜)第31页]
- [16] Branch G M, Mihran T G 1955 IRE Trans. ED 2 3
- [17] Chodorow M, Kulke B 1966 IEEE Trans. ED 13 439

## Beam-wave synchronization and coupling in a multi-gap coupled cavity

Cui Jian<sup>1)2)†</sup> Luo Ji-Run<sup>1)</sup> Zhu Min<sup>1)</sup> Guo Wei<sup>1)</sup>

1) (Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics,

Chinese Academy of Sciences, Beijing 100190, China)

2) (Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 20 May 2010; revised manuscript received 22 June 2010)

#### Abstract

The analytical expressions of the beam-wave coupling coefficients and the beam-loaded conductance in an N-gap coupled cavity are derived based on space-charge wave theory. Through calculating the relations of the beam-wave coupling coefficient and the normalized beam-loaded conductance to the gap number, beam voltage and perveance for  $2\pi$  mode, the mechanism of the beam-wave synchronization and coupling in the multi-gap coupled cavity are discussed. The results show that, with the increase of  $N (\geq 2)$ , the beam-wave coupling efficiency and the normalized beam-loaded conductance vary with beam voltage more rapidly and there is a maximum value for the absolute squared value of the coupling coefficient |  $M_N|^2$  and a maximum value and a minimum value for the normalized beam-loaded conductance  $g_b$ . The magnitudes of these extrema increase with the increase of gap number N, and the corresponding voltage is close to the synchronization voltage. The increase of the perveance could make the voltage difference between two extremums of  $g_b$  increase, the magnitudes of these extrema decrease, and the beam-wave coupling efficiency fall.

Keywords: multi-gap coupled cavity, coupling coefficient, beam-loaded conductance, synchronization and coupling PACS: 11.25.-w, 11.40.-q, 33.15. Vb

<sup>†</sup> E-mail: cuijian513420@ sohu.com