水的衰减系数及有效增益长度对受激布里渊 散射输出能量的影响^{*}

何兴道*夏健史久林刘娟李淑静刘建安方伟

(南昌航空大学无损检测技术教育部重点实验室,南昌 330063)(2010年11月14日收到;2010年12月4日收到修改稿)

本文从理论和实验上分析了水的衰减系数及有效增益长度对受激布里渊散射(SBS)输出能量的影响。实验结 果表明,衰减系数越小,SBS输出能量越高。由于脉宽压缩效应,当入射光能量足够高并且有效增益长度相对较长 时,SBS易获得高能量而形成极高的峰值功率。一旦这种峰值功率超过受激拉曼散射(SRS)或者二阶 SBS 阈值, SBS就会作为一个新的激发源去激发 SRS或者二阶 SBS,从而消耗掉部分 SBS 的能量,所以会出现后向有效增益长 度越长,SBS 的输出能量越低的现象。

关键词: 受激布里渊散射, 衰减系数, 有效增益长度, 脉宽压缩 PACS: 42.65. Dr, 42.65. Es

1. 引 言

受激布里渊散射(SBS)由于具有相位共轭和脉 宽压缩效应以及高能量反射率等特点,可以用来消 除光学相位畸变,提高光束质量,因此多年来一直 受到广泛的研究^[1-5]. 当抽运光强度超过 SBS 阈值 强度^[6]时,SBS 就会被激发并放大,由于脉宽压缩效 应,会达到一个极高的峰值功率,而这种极高的峰 值功率又可能激发二阶 SBS、受激拉曼散射(SRS) 等其他非线性过程,会消耗部分 SBS 的能量.另一 方面,SBS 的输出能量也会受到介质增益系数、激光 相干长度、有效增益长度、激光发散角以及透镜焦 距等各种因素的制约^[6,7].根据文献[8]报道,当增 益系数相对较大或者聚焦长度相对较短时,激光输 出能量会被 SBS 钳制在一个相对较小的值,从而起 到光限幅的作用. 他们的研究主要是针对增益系数 及不同透镜的聚焦长度对 SBS 及激光输出能量的 影响,但是对同一聚焦长度不同后向有效增益长度 并没有进一步的说明.本文选用不同衰减系数^[9]的 水作为实验介质,对不同衰减系数及不同有效增益 长度下的 SBS 作了详细的分析. 实验结果表明,衰

减系数及后向有效增益长度对 SBS 输出能量有很大影响.

2. 实验装置

实验装置如图 1 所示.激光器为种子注入式 Nd:YAG 调 Q 脉冲激光器 (Continuum Powerlite Precision Plus),脉宽为 8 ns,重复频率 10 Hz,线宽 宽带为 30GHz,窄带为 90MHz,激光发散角 0.45 mrad,经倍频后得到 532 nm 单脉冲能量约为 1.3 J 的脉冲光.激光器输出竖直偏振光,经过半波片后 变成水平偏振并以高透射率透过偏振片 P,然后被 分成 两 部 分.反射光用功率计 D₁ (Coherent Fieldmate)测量,用来监测入射光功率;透射光经过 四分之一波片后变成圆偏振,圆偏振光经过透镜组 L₁,L₂ 后会聚到长为 2.4 m 的水槽.由相位共轭特 性,激发的 SBS 会沿入射光反向传播,并再次经过 四分之一波片变成竖直偏振光被 P 以高反射率反 射到探测器 D₂(Molectron PM 500A).

为了保证入射光以同一发散角会聚到水槽中 得到不同的后向有效增益长度,透镜 L₁,L₂ 位置保 持固定不变,只水平移动水槽.关于水的衰减系数

^{*}国家自然科学基金(批准号:41066001)和江西省自然科学基金(批准号:2009gzw0024)资助的课题.

[†] E-mail: xingdaohe@126.com

^{©2011} 中国物理学会 Chinese Physical Society

图 1 SBS 测量原理图(λ/2:半波片;λ/4:四分之一波片;P:偏振片;M₁,M₂:全反镜;D₁,D₂:功率计;L₁,L₂:透镜组)

的测量请见文献[9],文章中有详细的理论推导及 实验说明.

3. 实验结果及分析

3.1. 理论分析

水中声子的寿命约为1 ns,对应的增益长度在 厘米量级,这就意味着在激光相干长度内当聚焦长 度较短时,后向增益长度也相对较短,SBS 接近于瞬 态,在瞬态情况下 SBS 阈值强度可表示为^[10]

$$I_{\rm Lth} \ge \frac{2}{4g_{\rm B}\tau_{\rm B}v_{\rm P}} + \frac{\alpha}{g_{\rm B}}, \qquad (1)$$

式中, $g_{\rm B}$ 为布里渊介质增益系数, $\tau_{\rm B}$ 为介质中声子 寿命, $v_{\rm P}$ 为介质中的声速, α 为水的衰减系数.

从(1)式中可以看出,在瞬态情况下,SBS 阈值 强度只跟介质本身的属性有关.水中的g_B,τ_B,v_P可 以认为是常数,衰减系数越大,SBS 的阈值强度越 高.只有当入射激光强度超过 SBS 阈值强度的情况 下,SBS 才有可能被激发,并在后向传输过程中不断 抽取入射光能量而被放大.

另一方面,用系统的放大增益因子 G 来表征

SBS 的能量反射率^[11]

$$G = g_{\rm B} I_{\rm L} L_{\rm eff}, \qquad (2)$$

式中, $g_{\rm B} = (4\pi^2\gamma^2)/(nc\lambda_0^2\rho_0v_{\rm P}\Gamma)$ 为布里渊增益系数(γ 为电致伸缩系数;n为介质折射率;c为光束; λ_0 为入射光波长; ρ_0 为介质密度; $v_{\rm P}$ 为介质中的声速; Γ 为声子泯灭速率),对于特定的介质来说, $g_{\rm B}$ 为常数; $L_{\rm eff}$ 为有效增益长度; $I_{\rm L}$ 为入射光在焦点附近的功率密度^[12],

$$I_{\rm L} = \frac{E}{\pi \tau_{\rm P} \omega_0^2} = \frac{4E}{\pi \tau_{\rm E} f^2 \theta^2},$$
 (3)

式中,E为入射光能量; $\tau_{\rm P}$ 为激光脉宽; ω_0 为高斯光 束腰束直径;f为聚焦长度; θ 为远场发散角.

根据图 1 所示,在透镜 L_1, L_2 位置固定不变的 情况下, f, θ 为常量,G 只与有效增益长度 L_{eff} 有关, 有效增益长度越长,系统的放大增益因子越大.为 了更好的理解上述理论,相关原理图如图 2 所示.

图 2 SBS 理论模型

从图 2 中可以看出,当前后水平移动水槽时, ω_0 , θ ,f均保持不变,只有有效增益长度 L_{eff} 会发生 变化.

3.2. 实验结果

实验选用 5 种不同衰减系数的水,有效增益长度分别为 0.8 m,1.2 m,1.6 m,2.0 m. 实验结果如 图 3 所示.

图 3 SBS 能量随入射激光能量的变化 (a) 同一长度不同衰减系数;(b) 同一衰减系数不同长度

图 3(a) 所示为聚焦长度在 0.8 m 时不同衰减 系数下 SBS 能量随入射光功率的变化. 从图可看 出,水的衰减系数 α 越小,SBS 能量线斜率越大,当 衰减系数为0.081 m⁻¹时,SBS 能量随入射光能量几 乎成线性增长趋势.这主要是因为水的衰减系数影 响了 SBS 的阈值强度:衰减系数越小, SBS 阈值越 小,当入射光强度超过阈值强度时,SBS 就会被立即 激发并大量抽取入射光的能量而迅速累积到极强 的值. 图 3(b)是在衰减系数为 0.081 m⁻¹时不同后 向有效增益长度下 SBS 随入射光的能量变化图.从 图中可以看出,当入射光能量超过 0.4 J/pulse 时, 1.2 m, 1.6 m, 2.0 m 三个长度下的 SBS 能量由线性 增长逐渐变平缓;当入射光能量超过0.9J时,随着 长度的增加能量会出现下降的趋势.这种有效增益 长度越长,SBS 能量反而越低的现象表面上看并不 符合理论分析的结果,这主要是因为当入射光能量 超过 SBS 阈值时,由于脉宽压缩效应,有效增益长 度越长,SBS 越容易获得足够高的能量而达到一个 极强的峰值功率,当这个峰值功率超过二阶 SBS 或 者 SRS 的阈值时, SBS 就会立即激发二阶 SBS 或者 SRS 从而消耗大量的能量.因此,当入射光能量足够 高时,随着后向有效增益长度的增加,SBS 能量会降 低.这种变化趋势,我们也可以从能量比的关系看 出,如图4所示.

图 4(a)显示有效增益长度为 0.8 m 时,不同衰 减系数下 SBS 与入射光的能量比随入射光能量的 变化.从图中可以看出,入射光能量在 0—0.15 J 范 围内,能量比呈线性增长趋势,这对应于 SBS 的能 量累加过程;当入射光能量在 0.2—0.35 J 时,能量 比几乎不变;当能量超过 0.35 J 并且衰减系数较小 时时,能量比会出现下降的趋势.图 4(b)为衰减系 数是 0.081 m⁻¹时不同有效增益长度下 SBS 与入射 光的能量比.从图可看出,当入射光能量超过 0.2 J 时,随着有效增益长度的增加,能量比值出现下降 趋势.

图 4 所显示出的能量比表现出不稳定的现象, 是因为当水的线性衰减系数比较小或者后向有效 增益长度较长时,原本稳定发生的 SBS 在此时能量 受到了扰动.我们认为,这是由于 SBS 的能量积累 到足够强从而激发出 SRS、二阶 SBS 等其他非线性 效应.我们在实验过程中也观察到这些非线性效 应,如图 5,图 6 所示.

图 5 是衰减系数为 0.081 m⁻¹, 入射激光能量

为 0. 23 J, 后向有效增益长度为 1.2 m 时光谱仪所 测得的后向散射光谱. 光谱中间最强的峰包括 SBS 及瑞利散射(由于 SBS 频移只有 7.5 GHz, 而光谱仪 的光学分辨率为 0. 75 nm, 因此, 很难将二者分辨 开); 左右两个较低的峰分别是后向 SRS(BSRS)的 反斯托克斯峰(462 nm)和斯托克斯峰(650 nm). 需 要说明的是, 这里的 BSRS 可能包括两部分: 一部分 是由入射光激发的 BSRS, 另外一部分则是由 SBS 激发的前向 SRS(FSRS), 两者同向传播. 由于 SBS

图 6 后向散射的 F - P 频谱图(a 为与入射光 同频率的瑞利散射;b 为一阶 SBS 激发的瑞利 散射;c 为二阶 SBS)

的线宽在百兆赫兹量级, 入射光窄带宽为 90 MHz, 而 SRS 的线宽约为 100 GHz, 因此, SBS 和入射光激 发的 SRS 的谱线几乎重叠, 在现有的实验条件下我 们很难分辨出来. 需要说明的是, 这里的 BSRS 可能 包括两部分:一部分是由入射光激发的 BSRS, 另外 一部分则是由 SBS 激发的前向 SRS(FSRS), 两者同 向传播. 由于 SBS 的线宽在百兆赫兹量级, 入射光 窄带宽为 90 MHz, 而 SRS 的线宽约为 100 GHz, 因

此,SBS 和入射光激发的 SRS 的谱线几乎重叠,在现 有的实验条件下我们很难分辨出来.需要说明的 是,BSRS 的光强要比 SBS 低大约两个量级^[13,14],而 且随着焦点距离的增加,SRS 的能量衰减也相对较 大(与蓝绿光相比波长较长的红光在水中的衰减相 对较大),我们实际测量的 SBS 能量中可能含有大 约1% 能量的 SBRS.

图 6 是入射光能量为 0.11 J,有效增益长度为 1.5 m 时 ICCD 接收到的 F - P 干涉频谱图.图中 a 是与入射光频率相同的瑞利散射,b 是一阶 SBS 激 发的瑞利散射,c 是由一阶 SBS 激发的二阶 SBS.

4. 结 论

实验研究了水的衰减系数及后向有效增益长 度对 SBS 输出能量的影响,并进行了相关的理论分 析.实验结果表明, SBS 输出能量与衰减系数成反 比,衰减系数越小, SBS 输出能量越高;由于脉宽压 缩效应,当入射激光强度足够强时,有效增益长度 越长, SBS 越容易达到一个极强的峰值功率,当峰值 功率超过 SRS 或者二阶 SBS 的阈值时,就会激发二 阶 SBS 等其他非线性过程,从而消耗掉大量的 SBS 能量,因此会出现有效增益长度越长, SBS 输出能量 越低的现象.

- [1] Wang X H , Lü Z W, Lin D Y, Wang C , Zhao X Y 2004 Chin. Phys. 13 1734
- $\left[\,2\,\right]$ ~ Yang J , Lü Z W , He W M , Lü Y L 2005 Chin. Phys. 14 343
- [3] Shi J W, Gong W P, Bai J H, Liu D H 2007 *Physics* **36** 777 (in Chinese) [石锦卫、弓文平、白建辉、刘大禾 2007 物理 **36** 777]
- [4] Shi J W, Li G X, Gong W P, Bai J H, Huang Y, Liu Y N, Li
 S J, Liu D H 2007 Appl. Phys. B 86 177
- [5] Ouyang M, Shi J W, Zhao L H, Chen X D, Jing H M, Liu D H 2008 Appl. Phys. B 91 381
- [6] Bai J H, Shi J W, Ouyang M, Chen X D, Gong W P, Jing H
 M, Liu J, Liu D H 2008 Opt. Lett. 33 1539
- [7] Gong H P, Lü Z W, Lin D Y, Lü Y L 2006 Acta Phys. Sin. 55
 2735 (in Chinese) [龚华平、吕志伟、林殿阳、吕月兰 2006 物 理学报 55 2735]

- [8] Hasi W L J, Lu Z W, Gong S, Lin D Y, He W M, Fan R Q 2008 Appl. Phys. B 92 599
- [9] Liu J, Bai J H, Ni K, Jing H M, He X D, Liu D H 2008 Acta Phys. Sin. 57 260 (in Chinese) [刘 娟、白建辉、倪 凯、景 红梅、何兴道、刘大禾 2008 物理学报 57 260]
- [10] Shi J, Chen X, Ouyang M, Liu J, Liu D 2009 Appl. Phys. B 95 657
- [11] Boyd R W, Rzazewski K, Narum P 1990 Phys. Rev. A 42 5514
- [12] Yang J X, Meng S X 1992 Acta Opt. Sin. 12 233 (in Chinese)
 [杨镜新、孟绍贤 1992 光学学报 12 233]
- [13] Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009 Opt. Lett. 34 977
- [14] Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys. Rev. A 80 033808

Influences of effective gain length and attenuation coefficient on output energy of stimulated Brillouin scattering in water*

He Xing-Dao[†] Xia Jian Shi Jiu-Lin Liu Juan Li Shu-Jing Liu Jian-An Fang Wei (Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China) (Received 14 November 2010; revised manuscript received 4 December 2010)

Abstract

In this paper, the effects of attenuation coefficient and effective gain length on output energy of stimulated Brillouin scattering (SBS) in water are investigated theoretically and experimentally. The experimental results indicate that the smaller the attenuation coefficient, the higher the output energy of SBS is. When the energy of incident laser is very high and the effective gain length is long enough, the SBS may obtain high enough energy thereby reach an extremely strong peak power due to the pulse compression; once it exceeds the threshold of SRS or second – order SBS, the SBS is able to excite an SRS or a second-order SBS as a new source and consumes a part of its own energy. Therefore, the longer the effective gain length, the lower the output energy of SBS is.

Keywords: stimulated Brillouin scattering, attenuation coefficient, effective gain length, pulse compression **PACS**: 42.65. Dr, 42.65. Es

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 41066001) and the Natural Science Foundation of Jiangxi Province (Grant No. 2009gzw0024).

[†] E - mail: xingdaohe@126.com