铒离子注入碳化硅的射程和退火行为研究*

秦希峰*梁毅王凤翔李双付刚季艳菊

(山东建筑大学理学院,济南 250101)(2010年9月8日收到;2010年9月19日收到修改稿)

用 300—500 keV 能量的铒(Er)离子注入碳化硅(6H-SiC)晶体中,利用卢瑟福背散射技术研究了剂量为 5×10¹⁵ cm⁻²的 Er离子注入 6H-SiC 晶体的平均投影射程 R_p 和射程离散 ΔR_p ,将测出的实验值和 TRIM 软件得到的理论模拟值进行了比较,发现 R_p 的实验值与理论值符合较好, ΔR_p 的实验值和理论值差别大一些.结果表明,注入剂量一定时,注入能量越高,晶格损伤程度越高.1400℃的高温退火,可以实现 6H-SiC 的完美再晶化,但伴随着产生了 Er 原子向表面的外逸出.

关键词:离子注入,投影射程和射程离散,退火行为,卢瑟福背散射技术 PACS: 61.72. uj, 61.72. sh, 61.72. Cc, 82.80. Yc

1. 引 言

由于 Er³⁺波长为 1.54 μm 的 4f-4f 发光对应于 现代通讯的通讯窗口,对于硅基光波导的研究和光 纤通讯的发展具有重要的意义. 自从 Ennen 等^[1]报 道了在 Er 离子掺杂半导体材料砷化镓(GaAs)和硅 (Si)中,观测到 Er³⁺的 1.54 μm 光致发光以来,引 起科学界的高度重视,对 Er 离子掺杂半导体材料的 发光做了大量研究工作,取得了一些重要的研究成 果^[1-8],但在室温下的发光效率还较低,远没有达到 实用技术的需求,还需要进行进一步的深入研究. 随着功率器件、微波器件的不断发展, 传统的 Si 材 料由于材料本身的性能缺陷,在这一领域越来越显 示出一定的局限性.碳化硅(SiC)作为第三代宽带 隙半导体材料的代表,具有带隙宽、熔点高、热导率 大、临界击穿电场大和饱和漂移速度大等优异的物 理和电学性质,在光电子学、高温电子学、抗辐射电 子学和高频大功率器件领域有着巨大的应用潜 力^[9]. 近年来,SiC 材料在材料制备、外延生长和离 子掺杂等方面取得了一系列突破性进展,成为国内 外半导体行业的研究热点[10-15].

Er 掺入 SiC 是预期能在室温发出波长为 1.54 μm 光的材料之一,科学界一直高度重视对于掺铒 SiC 的 1.54 µm 发光的研究. 但是将 Er 离子掺入 SiC 是很困难的,由于在 SiC 中杂质的扩散系数很 低,通常采用的热扩散掺杂需要 1800 ℃的高温,在 这样的高温下,SiC 的表面分解和退辐射变得非常 明显,因此,对 SiC 一般都是采用离子注入的方式进 行选择性掺杂. 近年来,国内外科研工作者在 Er 离 子注入碳化硅掺杂的发光研究上做了大量工 作^[16-19],取得了一些成就.这些研究主要集中于 Er 离子注入碳化硅的浓度和退火温度对发光效率的 影响. 随着集成电路芯片的集成密度越来越高,离 子注入半导体材料中射程分布和退火行为对器件 光电性能的影响非常明显,研究注入 Er 离子的射程 分布和退火行为具有重要意义.本文利用 300-500 keV 能量的 Er 离子注入 6H-SiC 晶体中, 用卢瑟福 背散射技术研究其平均投影射程、射程离散、损伤 分布和退火行为. 用计算机模拟软件 SRIM 2010^[20] 的 TRIM(Transport of Ions in Matter)程序对 Er 离子 注入 SiC 晶体的深度分布进行了理论模拟,把理论 模拟值跟实验测量的结果进行比较,以期为 Er 离子 注入 SiC 晶体掺杂制作半导体集成器件提供参考 依据.

©2011 中国物理学会 Chinese Physical Society

^{*}山东建筑大学校内基金(批准号:XN070109)和山东省自然科学基金(批准号:ZR2009FM031)资助的课题.

[†] E-mail:xfqin@sdzju.edu.cn

2. 实 验

实验样品为6H-SiC 晶片,样品表面经过光学抛 光.在离子注入之前进行了清洗处理,清除表面污 染.在室温下,分别利用 300 keV,400 keV 和 500 keV 能量的 Er 离子垂直注入 6H-SiC 晶体样品中. 实际上,为了减少沟道效应的影响,注入时使样品 法线相对束流方向偏离 7°,此角度远大于沟道临界 角,由此引起的投影射程测量的误差小于 1%,在实 验误差范围内. Er 离子的注入剂量均为 5 × 10¹⁵ cm⁻²,这一剂量既保证了背散射分析时有足够的灵 敏度,又减少了溅射效应而产生的误差.离子注入 是在中国科学院半导体研究所的 500 keV 离子注入 机上进行的,为避免由于束流过大引起的过热效 应,注入过程中,束流密度小于 1 µA · cm⁻².注入 后的样品在氮保护气氛中分别以 1200,1300 和 1400 ℃的温度退火 1 h.

在山东大学物理学院的 1.7 MV 串列加速器上 进行了卢瑟福背散射测量,所用的离子是能量为 2.1 MeV 的⁴He²⁺离子,分析 He 束流的强度为10 nA 左右.⁴He²⁺离子束垂直样品表面入射,金硅面垒探 测器探测散射角为 165°的背散射离子,利用多道分 析仪采谱并将所得到的背散射谱输入计算机进行 处理.利用金膜和硅片的背散射谱中金和硅的表面 对探测系统进行能量定标,系统的能量分辨率由金 膜背散射谱表面高度的 12%—88% 之间给出.卢瑟 福背散射测量都是在真空度为 2.6×10⁻⁴ Pa 的压 强下进行的.

3. 实验结果和讨论

低能重离子注入到半导体样品中的分布可以 利用高斯分布很好地描述. 当离子的射程分布呈高 斯分布时,可用平均投影射程 R_p 和射程离散 ΔR_p 来描述其射程分布. 由于低能 Er 离子在 6H-SiC 晶 体中的射程较小,在 Er 离子分布区域内,可以利用 表面能量近似法将能谱转化为深度谱,从而求出 R_p 和 $\Delta R_p^{[21]}$. 平均投影射程可以方便地从深度谱中 求出. 根据金和硅能量定标求出铒离子的表面位置 道数 P_a ,则平均投影射程为^[21]

$$R_{\rm p} = \frac{\Delta E}{N[\varepsilon_0]_{\rm Er}^{\rm SiC}}.$$
 (1)

式中, ΔE 为根据能量定标求出的 Er 离子的表面位

置跟谱峰位置的能量差, N 为 SiC 分子数密度, $[\varepsilon_0]_{\text{Fr}}^{\text{SiC}}$ 为阻止截面因子.

平均投影射程离散可以由 Er 离子背散射谱的 半高度宽(FWHM) w 中求出,但 FWHM 中包含了系 统分辨率和 He 离子能量离散,必须消除其影响,给 出修正的 FWHM,为wc. 在本文中,假定系统分辨率 ws 和 He 离子能量离散 w_B 均为高斯分布,则

$$w_{c}^{2} = w^{2} - w_{s}^{2} - w_{B}^{2}$$

平均投影射程离散为^[21]

$$\Delta R_{\rm p} = \frac{w_{\rm C}}{2 \ln 2N [\varepsilon_0]_{\rm Er}^{\rm SiC}}.$$
 (2)

图 1 所示为 500 keV 的 Er 离子以 5 × 10¹⁵ cm⁻² 的剂量垂直注入 6H-SiC 晶体的卢瑟福背散射谱,分析 He 离子能量为 2.1 MeV,背散射角为 165°.

图 1 500 keV,5 × 10¹⁵ cm⁻²的 Er 离子垂直注入 6H-SiC 晶体的 卢瑟福背散射谱

为便于测量和计算,图 2 给出了 500 keV 的 Er 离子以 5 × 10¹⁵ cm⁻²的剂量注入 6H-SiC 晶体中测 得卢瑟福背散射谱 Er 部分的深度分布曲线,图中实

图 2 500 keV 的 Er 离子注入 6H-SiC 晶体中的深度分布曲线 (图中实线为拟合的高斯分布曲线)

线为拟合的高斯分布曲线. 由图 2 可看出, Er 在 6H-SiC 晶体中的分布呈较好的高斯分布,可用表面 能量近似法将能谱转化为深度谱计算其射程分布 和射程离散.

经测量,我们利用(1)和(2)式计算出了 500 keV和5×10¹⁵ cm⁻²的Er离子注入6H-SiC晶体的 平均投影射程和射程离散分别为

 $R_{\rm p} = 116.63 \, {\rm nm},$

 $\Delta R_{\rm p} = 28.53$ nm.

我们用 SRIM 2010 软件的 TRIM 计算程序对 500 keV 的 Er 离子注入 6H-SiC 晶体的平均投影射 程和射程离散进行了计算机理论模拟,计算出的平 均投影射程和射程离散分别为 107.79 nm 和 22.32 nm. 把 500 keV 的 Er 离子注入 6H-SiC 晶体的 R_p 和 ΔR_p 理论模拟结果和实验结果进行比较可看出, 理论模拟值都比实验值大,平均投影射程的差别为 8.2%,射程离散的差别为 27.8%.

表 1 汇总了用卢瑟福背散射技术测量得到的注入能量 E = 300 keV,400 keV 和 500 keV 的 Er 离子 注入 6H-SiC 晶体的平均投影射程 R_{pE} 和射程离散 ΔR_{pE} 以及用 TRIM 计算程序模拟得到的平均投影射 程 R_{pT} 和射程离散 ΔR_{pT} .

表1 平均投影射程和射程离散的实验值和模拟值汇总

<i>E</i> /keV	$R_{\rm pE}/\rm nm$	$R_{\rm pT}/{\rm nm}$	$\Delta R_{ m pE}/ m nm$	$\Delta R_{ m pT}/ m nm$
300	78.29	71.90	20.32	15.51
400	94. 76	89.82	24. 53	19.27
500	116.63	107.79	28.53	22.32

由表1可看出,不同能量Er离子注入6H-SiC 晶体的所有平均投影射程和射程离散的实验值均 大于理论计算值,*R*_p的理论模拟结果和实验结果符 合很好,最大相差约为9%;Δ*R*_p的理论模拟值和实 验值明显过大,最大相差31%.这说明TRIM计算 程序能较好地模拟Er离子注入6H-SiC 晶体的投影 射程分布,但模拟射程离散时偏差太大.由于离子 注入过程中的辐射增强扩散以及离子在贯穿靶材 料时的电荷态起伏可能增大射程分布的宽度^[22],而 TRIM 程序没有考虑这两种效应,我们认为这一偏 差可能是由离子注入过程中辐射增强扩散和电荷 态起伏造成的.

图 3 表示 300—500 keV, 5 × 10¹⁵ cm⁻²的 Er 离 子注入 6H-SiC 晶体的损伤沟道谱,作为比较,同时 给出了 6H-SiC 晶体的随机谱(Random)和未注入离 子时完美晶体的沟道谱(Virgin).可以看出,较低能 量 Er 离子注入 6H-SiC 晶体的损伤沟道谱中,出现 了明显的 Si 和 C 的损伤峰,Si 的损伤峰已经相当 高,300 keV 能量注入时,损伤峰高度达到随机谱的 55%;400 keV 能量注入时,损伤峰高度达到随机谱 的 80%,说明晶体损伤已较严重,但损伤层还没有 完全非晶化.500 keV 能量 Er 离子注入时,损伤峰 顶部和随机谱重合,说明 6H-SiC 表面附近已形成了 非晶层,厚度约为 150 nm.

图 3 不同能量 Er 离子注入 6H-SiC 晶体的损伤沟道谱和随机 谱以及未注入离子时完美晶体的沟道谱

图 4 表示 500 keV, 5×10¹⁵ cm⁻²的 Er 离子注入 6H-SiC 晶体以 1200,1300 和 1400 ℃的温度退火 1 h 后的沟道谱,为了进行比较,还给出 Er 离子注入 6H-SiC 晶体退火前的沟道谱和未注入离子时完美晶体 的沟道谱. 由图可看出,1200 ℃ 退火后 Si 的谱峰高 度没有降低但宽度变窄,表明表面附近的晶格损伤得

图 4 500 keV 的 Er 离子注入 6H-SiC 晶体高温退火后的沟道谱 和退火前的沟道谱

到一定恢复,但还存在约120 nm 厚的非晶层,Er 的谱 峰没有明显变化. 经1300 ℃ 退火后,Si 的谱峰高度 降低且宽度变窄,说明表面附近的非晶层已不存在, 但还存在约90 nm 厚的严重损伤层,损伤峰高度达到 随机谱的90%,Er 的谱峰没有明显变化,但谱峰位置 已向表面偏移. 样品经1400 ℃ 退火后,沟道谱和未 注入离子时完美晶体的沟道谱几乎相同,但表面峰明 显比完美晶体的沟道谱大许多,表明1400 ℃ 退火实 现了6H-SiC的完美再晶化,只是表面处还存在轻微 的晶格损伤,Er 的谱峰变化明显,谱峰变窄、高度增 大,且谱峰位置向表面偏移,分析显示 Er 原子存有量 比退火前降低了21%,说明 SiC 的良好再晶化伴随着 发生了 Er 原子向表面的逸出,高温退火引起了 Er 原 子向表面的外扩散,加氧注入或在 O 气氛中退火可能 会阻止 Er 原子从 SiC 的外扩散^[23].

4. 结 论

利用卢瑟福背散射技术研究了能量为 300— 500 keV,剂量为 5×10¹⁵ cm⁻²的 Er 离子注入 6H-SiC 晶体的平均投影射程 R_p 和射程离散 ΔR_p ,测出 的实验值和 TRIM 软件得到的理论模拟值进行了比 较,发现 R_p 的实验值跟理论值符合较好, ΔR_p 的实 验值和理论值差别大一些,TRIM 软件模拟射程离 散 ΔR_p 时也许需要进行一些修正.损伤研究表明, 注入剂量一定时,注入能量越高,损伤程度越高,能 量为 500 keV,剂量为 5×10¹⁵ cm⁻²的 Er 离子注入 6H-SiC 晶体后,在表面附近形成了非晶层.1400 °C 的高温退火,可以实现 6H-SiC 的完美再晶化,但伴 随着产生了 Er 原子向表面的严重外扩散.

- Ennen H, Schneider J, Pomrenke G, Axmann A 1983 Appl. Phys. Lett. 43 943
- [2] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z, Wang Q M 2009 Chin. Phys. B 18 3044
- [3] Wang J Z, Shi Z Q, Lou H N, Zhang X L, Zuo Z W, Pu L, Ma E, Zhang R, Zheng Y L, Lu F, Shi Y 2009 Acta Phys. Sin. 58 4243 (in Chinese) [王军转、石卓琼、娄吴楠、章新栾、左则 文、濮 林、马 恩、张 荣、郑有炓、陆 昉、施 毅 2009 物 理学报 58 4243]
- [4] Przybylinska H, Jantsch W, Suprun B, Stepikhova M, Palmetshofer L, Hendorfer G, Kozanecki A, Wilson R J, Sealy B J 1996 Phys. Rev. B 54 2532
- [5] Lei H B, Yang Q Q, Wang Q M 1998 Acta Phys. Sin. 47 1201 (in Chinese) 「雷红兵、杨沁清、王启明 1998 物理学报 47 1201]
- [6] Liang J J, Chen W D, Wang Y Q, Chang Y, Wang Z G 2000 Chin. Phys. 9 783
- [7] Hansson G V, Du W X, Elfving A, Duteil F 2001 Appl. Phys. Lett. 78 2104
- [8] Chen C Y, Chen W D, Wang Y Q, Song S F, Xu Z J 2003 Acta Phys. Sin. 52 736 (in Chinese)[陈长勇、陈维德、王永谦、宋 淑芳、许振嘉 2003 物理学报 52 736]
- [9] Derycke V, Soukiassian P G, Amy F, Chabal Y J, D'Angelo M D, Enriquez H B, Silly M G 2003 Nat. Mater. 2 253
- [10] Gao X, Sun G S, Li J M, Zhang Y X, Wang L, Zhao W S, Zeng Y P 2005 Chin. Phys. 14 599
- [11] Lin H F, Xie E Q, Ma Z W, Zhang J, Peng A H, He D Y 2004 Acta Phys. Sin. 53 2780 (in Chinese) [林洪峰、谢二庆、马紫

微、张 军、彭爱华、贺德衍 2004 物理学报 53 2780]

- [12] Rittenhous T L, Bohn P W, Hossain T K, Adesida I, Lindesay J, Marcus A 2004 J. Appl. Phys. 95 490
- [13] Zhang Y, Zhang C H, Zhou L H, Li B S, Yang Y T 2010 Acta Phys. Sin. 59 4130 (in Chinese) [张 勇、张崇宏、周丽宏、 李炳生、杨义涛 2010 物理学报 59 4130]
- [14] Li B, Chen Z M, Lin T, Pu H B, Li Q M, Li J 2007 Chin. Phys. 16 3470
- [15] Qin X F, Wang F X, Liang Y, Fu G, Zhao Y M 2010 Acta Phys. Sin. 59 6382 (in Chinese) [秦希峰、王凤翔、梁 毅、 付 刚、赵优美 2010 物理学报 59 6382]
- [16] Dontas I, Kennou S 2001 Diam. Relat. Mater. 10 13
- [17] Kozanecki A, Jeynes C, Barradas N, Sealy B J, Jantsch W 1999 Nucl. Instrum. Meth. B 148 512
- [18] Awahara K, Uekusa S, Goto T 1999 Nucl. Instrum. Meth. B 148 507
- [19] Kozanecki A, Glukhanyuk V, Jantsch W 2003 Mat. Sci. Eng. B 105 169
- [20] Ziegler J F 2010 http://www.srim.org [2010-08-26]
- [21] Chu W K, Mayer J W, Nicolet M A 1978 Backscattering Spectrometry (New York: Academic) chapt 5, p137—141
- [22] Liu X D 2003 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [刘向东 2003 博士学位论文(济南:山东大 学)]
- [23] Qin X F, Chen M, Wang X L, Fu G, Liang Y, Zhang S M 2010 Nucl. Instr. Methods B 268 1585

Range and annealing behavior of Er ions implanted in SiC*

Qin Xi-Feng[†] Liang Yi Wang Feng-Xiang Li Shuang Fu Gang Ji Yan-Ju

(College of Science, Shandong Jianzhu University, Jinan 250101, China)

(Received 8 September 2010; revised manuscript received 19 September 2010)

Abstract

Er ions with an energy range of 300—500 keV are implanted in 6H-SiC crystal samples separately. The values of mean projected range R_p and range straggling ΔR_p of Er ions with a dose of 5×10^{15} cm⁻² implanted in 6H-SiC crystal are measured by Rutherford backscattering technique. The measured data are compared with TRIM code prediction. It is seen that the experimental R_p values are in good agreement with theoretical values, but for ΔR_p values there are bigger differences between the experimental data and the theoretical values. Research shows that the higher the implanting energy, the heavier the damage is. Perfect recrystallization of 6H-SiC is achieved by annealing at 1400 °C, however it is accompanied by the segregation of Er ions to the surface.

Keywords: ion implantation, projected range and range straggling, annealing behavior, Rutherford backscattering technique

PACS: 61.72. uj, 61.72. sh, 61.72. Cc, 82.80. Yc

^{*} Project supported by the Shandong Jianzhu University Foundation, China (Grant No. XN070109), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2009FM031).

[†] E-mail:xfqin@ sdzju. edu. cn