任意偏振激光作用下二维模型 H 原子的谐波发射*

张春丽^{1)2)†} 冯志波¹⁾ 祁月盈³⁾ 车继馨⁴⁾

(许昌学院电气信息工程学院,许昌 461000)
 (北京应用物理与计算数学研究所,北京 100088)
 (嘉兴学院数理与信息工程学院,嘉兴 314000)
 (空军航空大学军械工程系,长春 130022)
 (2010年10月7日收到;2011年1月21日收到修改稿)

采用二维渐近边界条件和辛算法数值求解了任意偏振激光和 H 原子相互作用的二维含时 Schrödinger 方程的 无穷空间初值问题. 计算了二维 H 原子在不同偏振激光作用下的谐波发射,得到各种椭圆率下谐波谱的特点与已 有文献结果一致. 通过电子的基态布居概率和某一时刻的概率密度分布以及电子的平均位移,对不同椭圆率下谐 波谱的特点进行了分析. 结果表明,将渐近边界条件和辛算法推广到二维是合理和有效的.

关键词:二维渐近边界条件,辛算法,任意偏振激光,高次谐波 PACS: 32.80.Qk, 32.80.Rm, 42.50.Hz

1. 引 言

随着激光技术尤其是短脉冲强激光技术的飞速 发展,目前实验室已可获得最大强度为10²² W/cm² 的激光脉冲.这使得激光技术以及基于激光技术的 相关研究取得了巨大进展,激光与原子、分子、团簇相 互作用的研究已成为物理、化学和材料科学领域极为 活跃的前沿基础研究课题^[1-4].强激光与物质相互 作用的理论基础是强激光与原子相互作用.

在研究激光与原子相互作用的过程中,鉴于电子在激光场电场方向上受到的作用远大于其他方向,因此可以采用一维模型,从而可避免很多非本质的困难^[5,6].由于在一维模型下只能考虑线偏振

激光的作用,因此对于圆偏振激光和椭圆偏振激光 与原子相互作用的问题,一维模型就无能为力了. 对此,我们将应用渐近边界条件和辛算法求解一维 含时 Schrödinger 方程的方法推广到二维.基于二维 渐近边界条件和辛算法,数值求解了激光与原子相 互作用的二维含时 Schrödinger 方程,采用二维模型 计算了 H 原子在任意偏振激光作用下的谐波强度, 并对不同偏振激光作用下的谐波谱给出定性分析.

2. 理论方法

激光与原子相互作用的二维模型可由以下含时 Schrödinger 方程来描述(如无特殊说明,本文计 算均采用原子单位):

$$i\frac{\partial}{\partial t}\psi(x,y,t) = \left[-\frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V_0(x,y) + \varepsilon_1(t)x + \varepsilon_2(t)y \right] \\ \times \psi(x,y,t) \qquad (0 \le t \le NT, -\infty < x,y < \infty), \tag{1}$$

其中T为光学周期,N为光学周期数. 当t = 0时, $\psi(x,y,0) = \varphi(x,y)$ (-∞ < $x,y < \infty$). (2)

为了求解(1)式,需要将无穷空间截断,本文将采用 二维渐近边界条件进行求解.有关二维渐近边界条 件的推导过程可以参照文献[7,8]中一维渐近边界

http://wulixb.iphy.ac.cn

^{*}国家自然科学基金(批准号:10947122)资助的课题.

[†] E-mail: chunlizhang0601@ yahoo. com. cn

^{©2011} 中国物理学会 Chinese Physical Society

条件的推导. 经过推导可得到在充分远 | x | = R_x 和 $|y| = R_y$ 处的波函数 $\psi_1(x,y)$,

$$\psi_{1R_x}(\pm R_x, y, t) = \varphi(k_1 - \alpha(t)) \\ \times \exp\left(i\left(k_1C(t) - \frac{q(t)}{2}\right)\right), \\ \psi_{1R_y}(x, \pm R_y, t) = \varphi(k_2 - \alpha(t)) \\ \times \exp\left(i\left(k_2C(t) - \frac{q(t)}{2}\right)\right).$$
(3)

这里

$$\begin{split} k_1 &= (\pm R_x, y), \\ k_2 &= (x, \pm R_y), \\ \alpha(t) &= \int_0^t C(\tau) \, \mathrm{d}\tau, \\ q(t) &= \int_0^t (A^2(\tau) + B^2(\tau)) \, \mathrm{d}\tau, \\ C(t) &= (A(t), B(t)), \end{split}$$

其中

$$A(t) = \int_0^t \varepsilon_1(\tau) d\tau,$$

$$B(t) = \int_0^t \varepsilon_2(\tau) d\tau.$$

(3)式就是(1)式在边界 $x = \pm R_x$ 和 $y = \pm R_y$ 上 的解.

利用(3)式可将(1)式截断成如下的有界空间 初边值问题:

$$\begin{split} \mathbf{i} \, \frac{\partial}{\partial t} \psi(x, y, t) &= \left[-\frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + V_0(x, y) \right. \\ &+ \varepsilon_1(t) x + \varepsilon_2(t) y \left] \psi(x, y, t) \\ &\left. \left(0 \leqslant t \leqslant NT, \mid x \mid \leqslant R_x, \mid y \mid \leqslant R_y \right), \right. \\ &\left. \psi(x, y, 0) &= \varphi(x, y), \right. \\ &\left. \psi(\pm R_x, y, t) &= \psi_{1R_x}(\pm R_x, y, t), \right. \\ &\left. \psi(x, \pm R_y, t) &= \psi_{1R_y}(x, \pm R_y, t) \right]. \end{split}$$

$$(4)$$

\$

$$\psi(x,y,t) = a(x,y,t) + \mathrm{i}b(x,y,t),$$

 $V(x,y,t) = V_0(x,y) + \varepsilon_1(t)x + \varepsilon_2(t)y.$ 将空间 $[-R_x, R_x]$ 分成 2N 等分,则 x 方向的空间步 长 $\Delta x = R_x/N$, 离散点 $x_i = i\Delta x(i = -N + 1, -N +$ 2,…,N-2,N-1);同样将空间 [$-R_v$, R_v]分成2M等分,则 y 方向的空间步长 $\Delta y = R_y/M$, 离散点 $y_i =$ $j\Delta y(j=-M+1,\,-M+2,\cdots,M-2,M-1).\ \ i \exists$

$$\psi(x_i, y_j) = \psi_{i,j},$$

$$a(x_i, y_j) = a_{i,j},$$

 $V(x_i, y_i, t) = V_{i,i}.$

至此得到

$$\psi_{i,j} = a_{i,j} + ib_{i,j},$$

$$\psi(\pm R_x, y_j) = a_{\pm N,j} + ib_{\pm N,j}$$

$$= \psi_{1R_x}(\pm R_x, y, t), \qquad (5)$$

$$\psi(x_i, \pm R_y) = a_{i,\pm M} + ib_{i,\pm M}$$

$$= \psi_{1R_y}(x, \pm R_y, t).$$

 $b(x_i, y_i) = b_{i,i},$

然后将空间二阶偏导数用对称差商来代替,
$$\partial^2 u = u = -2u + u$$

$$\begin{aligned} \frac{\partial \psi_{i,j}}{\partial x^2} &= \frac{\psi_{i-1,j} - 2\psi_{i,j} + \psi_{i+1,j}}{\Delta x^2} \\ &= \frac{a_{i-1,j} - 2a_{i,j} + a_{i+1,j}}{\Delta x^2} + i \frac{b_{i-1,j} - 2b_{i,j} + b_{i+1,j}}{\Delta x^2}, \\ \frac{\partial^2 \psi_{i,j}}{\partial y^2} &= \frac{\psi_{i,j-1} - 2\psi_{i,j} + \psi_{i,j+1}}{\Delta y^2} \\ &= \frac{a_{i,j-1} - 2a_{i,j} + a_{i,j+1}}{\Delta y^2} + i \frac{b_{i,j-1} - 2b_{i,j} + b_{i,j+1}}{\Delta y^2}. \end{aligned}$$

将(5)和(6)式代入(4)式,并令

$$\mathbf{A} = (a_{-N+1, -M+1}, \cdots, a_{-N+1, M-1}, \cdots, a_{N-1, -M+1}, \cdots, a$$

$$a_{\scriptscriptstyle N-1,M-1}$$
,…)^T,

$$\boldsymbol{B} = (b_{-N+1, -M+1}, \cdots, b_{-N+1, M-1}, \cdots, b_{N-1, -M+1}, \cdots, b$$

$$S_{2} = \begin{pmatrix} & \ddots & \ddots & \\ 0 & & 1 & -2 \end{pmatrix},$$
$$S_{2} = \begin{pmatrix} -2 & & 0 \\ & \ddots & & \\ & & -2 & & \\ 0 & & & -2 \end{pmatrix},$$
$$S_{3} = \begin{pmatrix} 1 & & 0 \\ & \ddots & & \\ & & 1 & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix},$$

 $\left(0 \right)$

$$\begin{split} \boldsymbol{T}_{1} &= -\frac{1}{2\Delta x^{2}} (b_{-N, -M+1}, \cdots, b_{-N, M-1}, 0, \cdots, 0, \\ &b_{N, -M+1}, \cdots, b_{N, M-1}), \\ \boldsymbol{T}_{2} &= -\frac{1}{2\Delta x^{2}} (b_{-N+1, -M}, 0, \cdots, 0, b_{-N+1, M}, \cdots, \\ &b_{N-1, -M}, 0, \cdots, 0, b_{N-1, M}), \\ \boldsymbol{T}_{3} &= -\frac{1}{2\Delta y^{2}} (a_{-N, -M+1}, \cdots, a_{-N, M-1}, 0, \cdots, 0, \\ &a_{N, -M+1}, \cdots, a_{N, M-1}), \\ \boldsymbol{T}_{4} &= -\frac{1}{2\Delta y^{2}} (a_{-N+1, -M}, 0, \cdots, 0, a_{-N+1, M}, \cdots, \\ &a_{N-1, -M}, 0, \cdots, 0, a_{N-1, M}), \\ \boldsymbol{Y}_{1} &= \boldsymbol{T}_{1} + \boldsymbol{T}_{2}, \\ \boldsymbol{Y}_{2} &= \boldsymbol{T}_{3} + \boldsymbol{T}_{4}, \end{split}$$

$$G = U_1 + U_2 + V$$

这样可将(4)式离散成(2N-1)(2M-1)维哈密顿 正则方程组

$$\dot{A} = GB + Y_1,$$

$$\dot{B} = -GA - Y_2.$$
(7)

(7)式可以用辛算法进行求解[9-11]

3. 数值结果

本文采用软核势模型,计算了 H 原子在任意偏振激光作用下的谐波发射,其中软核势的形式取为

 $V_0(x,y) = -1/\sqrt{x^2 + y^2 + 0.64}.$ 激光场电场在 x 方向上的分量

 $\varepsilon_1(t) = E_0 \sin^2(\omega t / (2N)) \sin(\omega t),$ 在 y 方向上的分量

 $\varepsilon_2(t) = \varepsilon E_0 \sin^2(\omega t/(2N)) \cos(\omega t),$

其中 E_0 为激光场电场强度峰值, ω 为激光场的频 率, ε 为偏振光的椭圆率.

选取电场强度峰值 $E_0 = 0.1$,频率 $\omega = 0.0867$,空间边界 $R_x = 200$, $R_y = 200$,计算椭圆率 $\varepsilon = 0$ (线偏振激光)、 $\varepsilon = 0.5$ (椭圆偏振激光)和 $\varepsilon = 1$ (圆偏振激光)下的谐波发射强度.

图1给出了上述三种椭圆率下的谐波谱.从图 1可以看出:在线偏振激光作用下具有谐波谱的一 般特征(速降、平台、截止);当 *ε* = 0.5 时,1 次、3 次、5 次、7 次谐波很明显但是峰值均低于线偏振激 光时的结果,而9 次和 11 次谐波的峰不是很明显;

图1 线偏振激光(ε=0)、椭圆偏振激光(ε=0.5)和圆偏振激
 光(ε=1)作用下的谐波谱

当椭圆率继续增大到 $\varepsilon = 1$ 时,只出现1次谐波.这 说明随着椭圆率的增大谐波的转换效率逐渐降低, 谐波峰逐渐消失,直到椭圆率 $\varepsilon = 1$ 时,只出现1次 谐波.这与文献[12,13]的结论相符,说明将渐近边 界条件和辛算法推广到二维情况是合理和有效的.

同时我们计算了电子在基态上的布居和时间 *t* = 3.37 时的电子概率密度分布以及电子的平均位移,用以分析圆偏振光作用下没有高次谐波发射的原因.

首先,图2给出三种偏振激光作用下电子在基态上的布居.从图2可以看出:电子在线偏振激光 作用下的基态布居振荡减少,最小值大于0.2;在椭圆偏振激光场中,电子在基态上的布居演化曲线与 线偏振激光中的曲线相比振荡的幅度和频率均减 小,曲线变得光滑;圆偏振激光中电子在基态上的 布居曲线光滑地下降最后接近于零,其间不发生振 荡,说明在圆偏振激光作用下脱离核的电子不返 回,没有机会与核复合,即不可能发射高次谐波.

其次,图 3 给出 t = 3.3T 时三种椭圆率下电子 概率密度分布.从图 3 可以看出,线偏振激光场中 电子布居主要集中在x轴附近(图 3(a)),椭圆偏振

图 2 线偏振激光(*ε*=0)、椭圆偏振激光(*ε*=0.5)和圆偏振激 光(*ε*=1)作用下电子在基态上的布居随时间的演化

激光场中电子的布居以(0,0)为中心按椭圆形状旋 出并逐渐减小(图3(b)),在圆偏振激光作用下电 子的布居以(0,0)为中心按圆形旋出并逐渐减小 (图3(c)),说明随着椭圆率的增大电子与核碰撞 复合的机会将减小.这就解释了随着椭圆率的增大 谐波的转换效率降低,波峰逐渐消失.

图3 t = 3.3T 时线偏振激光(ε=0)、椭圆偏振激光(ε=0.5)和圆偏振激光(ε=1)作用下电子概率密度分布 (a)ε=0,(b)ε=0.5,(c)ε=1

最后,给出三种椭圆率下电子的平均位移随 时间的演化,结果如图4所示.在椭圆偏振激光和 圆偏振激光作用下的电子平均位移示于图4(b) 和(c).由图4(b)和(c)可以看出,在这两种激光 作用下电子在核周围做旋转运动,返回并与核复 合而放出高能光子的概率极小,即不能有效地发 射出高次谐波.这与图1中椭圆偏振激光和圆偏 振激光作用下的谐波发射情况一致.图4(a)中线 偏振激光作用下电子几乎沿 x 轴运动,电离电子能 够有效地与核复合,从而发射出有效的高次谐波, 与图1中 ε = 0 的结果一致.同时也证明了线偏振 激光作用下电子在激光场电场方向上的运动远大 于其他方向,所以在线偏振情况下采用一维近似 是合理的.

图 4 线偏振激光($\varepsilon = 0$)、椭圆偏振激光($\varepsilon = 0.5$)和圆偏振激光($\varepsilon = 1$)作用下电子平均位移的演化 (a) $\varepsilon = 0$,(b) $\varepsilon = 0.5$, (c) $\varepsilon = 1$

4. 结 论

本文应用二维渐近边界条件和辛算法数值求 解了任意偏振激光和二维模型 H 原子相互作用的 含时 Schrödinger 方程.通过以上的数值结果可知, 随着椭圆率从 0 增大到 1,谐波的转换效率逐渐降 低,波峰逐渐消失.从电子在基态上的布居和电子 在某一时刻的概率密度分布以及电子的平均位移 三方面进行了分析,随着椭圆率的增大导致电子 与核再碰撞复合的机会减少,从而影响了谐波的 发射.要想得到高转换效率的高次谐波就应该采 用线偏振激光而不是椭圆偏振激光,更不是圆偏 振激光.此结论与文献[12,13]结论相符,说明将 渐近边界条件和辛算法推广到二维情况是合理和 有效的.

- [1] Corkum P B 1993 Phys. Rev. Lett. 71 1994
- [2] Wang Z Y, Gong S Q, Xu Z Z 1999 Acta Phys. Sin. 48 961 (in Chinese) [王中阳、龚尚庆、徐至展 1999 物理学报 48 961]
- [3] Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese) [周效信、李白文 2001 物理学报 50 1902]
- [4] Gong S Q, Wu H T, Wang Z Y, Xu Z Z 2000 Phys. Lett. A 271 223
- [5] La Gattuta K J 1993 J. Opt. Soc. Am. B 10 958
- [6] Grobe R, Eberly J H 1993 Phys. Rev. A 48 4664
- [7] Zhang C L, Liu X S, Ding P Z, Qi Y Y 2006 J. Math. Chem.
 39 451

- [8] Qi Y Y, Liu X S, Liu X Y, Ding P Z 2006 J. Math. Chem. 39 133
- [9] Feng K 1986 J. Comput. Math. 4 279
- [10] Liu X S, Su L W, Liu X Y, Ding P Z 2001 Int. J. Quantum Chem. 83 303
- [11] Liu X S, Liu X Y, Zhou Z Y, Ding P Z, Pan S F 2000 Int. J. Quantum Chem. 79 343
- [12] Protopapas M, Lappas D G, Knight P L 1997 Phys. Rev. Lett.
 79 4550
- [13] Patel A, Protopapas M, Knight P L 1998 Phys. Rev. A 58 R2652

High order harmonic generation from a two-dimensional model H atom in arbitrary polarized laser*

Zhang Chun-Li^{1)2)†} Feng Zhi-Bo¹⁾ Qi Yue-Ying³⁾ Che Ji-Xin⁴⁾

1) (College of Electric and Information Engineering, Xuchang University, Xuchang 461000, China)

2) (Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)

3) (College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314000, China)

4) (Department of Ordnance Engineering, Aviation University of Air Force, Changchun 130022, China)

(Received 7 October 2010; revised manuscript received 21 January 2011)

Abstract

The two-dimensional time-dependent Schrödinger equation of arbitrary polarized laser pulse interacting with a model H atom is solved by using the two-dimensional asymptotic boundary condition (ABC) and symplectic algorithm. In order to investigate the influence of ellipticity on high order harmonic generation (HHG) of atom in arbitrary polarized laser field, we consider different ellipticities, and then compute the HHG for two-dimensional model H atom. Finally, we analyze the characteristics of HHG under different polarized laser fields. So it is reasonable and effective to extend the one-dimensional ABC and symplectic algorithm to the problem of laser interacting with a two-dimensional model atom.

Keywords: two-dimensional asymptotic boundary condition, symplectic algorithm, arbitrary polarization laser, high-order harmonic generation

PACS: 32.80. Qk, 32.80. Rm, 42.50. Hz

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10947122).

[†] E-mail: chunlizhang0601@ yahoo. com. cn