Ti-B-C-N 纳米复合薄膜结构及力学性能研究*

罗庆洪1)2)† 陆永浩2) 娄艳芝1)

1)(北京航空材料研究院,北京 100095)
 2)(北京科技大学材料物理与化学系,北京 100083)
 (2010年7月19日收到;2011年1月28日收到修改稿)

利用反应磁控溅射方法在单晶硅和高速钢(W18Cr4V)基片上制备出不同 C 含量 Ti-B-C-N 纳米复合薄膜. 使用 X 射线衍射和高分辨透射电子显微镜研究了 Ti-B-C-N 纳米复合薄膜的组织和微观结构,用纳米压痕仪测试了 它们的硬度和弹性模量. 结果表明,利用往真空室通入 C₂H₂ 气体的方法制备得到的 Ti-B-C-N 纳米复合薄膜中,在 所研究成分范围内只发现 TiN 基的纳米晶. 当 C₂H₂ 流量较小时,C 元素的加入可以促进 Ti-B-C-N 薄膜的结晶,使 晶粒有所增大,力学性能得到提高;当晶粒尺寸约为6 nm 时(C₂H₂ 流量为2 cm³/min),Ti-B-C-N 薄膜的硬度、弹性 模量和断裂韧性均达到最大值,分别为 35.7 GPa,363.1 GPa 和 2.46 MPa·m^{1/2};进一步增加 C 含量,薄膜力学性能 将急剧降低.

关键词: Ti-B-C-N 薄膜, 磁控溅射, 微观结构, 力学性能 **PACS**: 68.60.Bs, 68.37.-d

1. 引 言

通过材料本身强键能获得高硬度的薄膜材料称为本征硬质薄膜,如 c-BN,β-C₃N₄等,但这些薄膜均有致命的缺点,或者内应力大,厚度很难达到应用要求,或者单相薄膜制备很困难.同时,这些薄膜并非热力学稳定的,因而限制了其在一些领域的应用.为解决以上问题,硬质薄膜朝成分多元化、 多层结构和非晶-纳米晶复合结构方向发展^[1,2]. Ti-B-C-N薄膜是新发展的一种多元氮化物硬质薄膜,较容易形成纳米复合结构,兼有 Ti-B-N 和 Ti-C-N 两者的优点,即既提高了薄膜的硬度,又兼顾了摩擦性能等方面的要求,因而近年来备受关注.

Ti-B-C-N 薄膜的制备主要有以下三种途径:一种途径是在 TiCN 薄膜中掺 B 元素^[3],另一种途径 是在 TiBC 薄膜的基础上添加 N 元素^[4-7],还有一种途径则是在 TiBN 薄膜的基础上掺 C 元素^[7,8]. 通过第四元的加入,Ti-B-C-N 有可能获得众多的组成相,如 TiB₂,TiN,c-BN,h-BN,Ti₂N,TiC,Ti(CN)等.因此,可通过工艺参数的控制得到不同的相组成,从而得到各种不同性能的 Ti-B-C-N 薄膜.例如, C 元素的加入可以降低 TiBN 薄膜的脆性^[9],提高 TiBN 薄膜的摩擦性能,降低 TiBN 薄膜的内应力,从 而提高 TiBN 薄膜断裂韧性以及耐磨性.考虑到中 间过程更容易控制,本文从 TiBN 薄膜中加入 C 元 素来研究 Ti-B-C-N 纳米复合薄膜.

反应磁控溅射方法在精确控制纳米晶的尺寸 方面显示了极大的优势,这是因为在采用磁控溅射 法制备薄膜时,与晶粒尺寸相关的可调参数多,如 基体温度、基体离子流密度、基体偏压、反应气体的 压强等,这些参数都对晶粒尺寸有很大的影响^[10]. 调节沉积参数,使得原子有足够的能量在系统中扩 散,晶粒在母体中分布会比较均匀.另一方面,溅射 过程可以实现薄膜的快速冷却,这样形成的薄膜比 较致密.因此,本文采用反应磁控溅射方法制备 Ti-B-C-N纳米复合薄膜.

2. 实 验

本文采用 MP500 型磁控溅射系统沉积 Ti-B-C-N 薄膜,采用 Ti 靶和 TiB₂ 靶两个磁控靶,磁控靶采用 射频电源,靶材的纯度均为 99.999%.溅射过程中 工作气体为高纯 Ar,流量为 15 cm³/min,反应气体

^{*}国家自然科学基金(批准号.50871018)资助的课题.

[†] E-mail: qinghong_luo@ yahoo. com. cn

^{©2011} 中国物理学会 Chinese Physical Society

为高纯 N₂ 和高纯 C₂H₂,工作压强为 0.19—0.21 Pa. 靶基距约为 12 cm,基片加 80 V 的直流负偏压, 沉积温度为 400 ℃,沉积时间为 60 min. 基体为高 速钢和(100)单晶 Si 片,沉积前基体经预处理和等 离子轰击^[11].沉积薄膜与基体之间没有过渡层.

为了制备性能优良的 Ti-B-C-N 薄膜,采用逐级 确定参数的方法.首先,确定 TiN 薄膜结晶程度最 好的工艺条件.在这种工艺条件下,再利用磁控溅 射 TiB₂ 靶在薄膜中添加 B 元素,制备出纳米晶复合 结构的 TiBN 薄膜.最后,在力学性能最优的 TiBN 纳米复合薄膜沉积条件下通入 C₂H₂,在薄膜中添加 C 元素,制备 Ti-B-C-N 薄膜.进一步,对制备得到的 Ti-B-C-N 薄膜的微观结构和力学性能进行了研究.

Ti-B-C-N 薄膜的沉积参数如表 1 所列,通过调节 C₂H₂ 流量 Q_{CH},制备不同 C 含量的 Ti-B-C-N 薄膜.

Ti 靶	TiB ₂ 靶	C ₂ H ₂ 流量	N ₂ 流量	沉积时间
功率/W	功率/W	$/\text{cm} \cdot \text{min}^{-1}$	$/\mathrm{cm}^3$ · min ⁻¹	/min
350	500	0.0	2.0	60
350	500	0.5	2.0	60
350	500	1.0	2.0	60
350	500	1.5	2.0	60
350	500	2.0	2.0	60
350	500	3.0	2.0	60
350	500	4.0	2.0	60
350	500	5.0	2.0	60

表1 Ti-B-C-N纳米复合薄膜的沉积参数

采用 D/Max-RB 型转靶 X 射线衍射(XRD)仪 (Cu 靶,电压为40 kV,电流为150 mA)和 JEM-2010 型高分辨透射电子显微镜(HRTEM)分析制备得到 的 Ti-B-C-N 薄膜的组织和微观结构. 薄膜的硬度和 弹性模量采用 Nanoindent II 型纳米硬度仪测量,压 头最大压入深度为100 nm,约为膜厚的1/10,有效 地避免了基体对测量结果的影响. 每个样品任取6 个点进行测量,将其平均值作为测试结果.

3. 结果及讨论

图 1 所示为不同 C₂H₂ 流量 Q_{C2H2}下制备得到的 Ti-B-C-N薄膜的 XRD 谱. 从图 1 (a)可以看出, Ti-B-C-N薄膜共有三个晶体衍射峰,位于 2*θ* 为 36. 2°,42. 1°和61. 3°附近,分别对应 TiN 的(111), (200)和(220)晶面. 从图 1(a)还可以看出,衍射峰 有明显的展宽,指标化后的衍射线指数(*h*,*k*,*l*)为全 奇或全偶,并根据下式计算结果满足3,4,8,11,… 就可以确定为面心立方结构^[12]:

$$\sum m^2 = h^2 + k^2 + l^2 \,. \tag{1}$$

随着 C_2H_2 流量的增加, Ti-B-C-N 薄膜晶体衍 射峰的强度先增强, 后降低, 在 C_2H_2 流量 $Q_{C_2H_2} = 1$ cm³/min 时达到最强, 表明少量 C 的加入可以促进 薄膜的结晶化. 另外, 衍射峰的位置有少许偏移(向 2θ 增大的方向), 这是由于有部分 C 原子进入了 TiN 晶格中, 替代原先进入 TiN 晶格中 B 的位置. 所有 XRD 谱中都未观察到源自 Ti-B-C-N 薄膜的晶 态其他相衍射峰. Fe 基体 Ti-B-C-N 薄膜的 XRD 谱 衍射峰变化趋势(图 1(b)) 与 Si 基体 Ti-B-C-N 薄 膜的 XRD 谱相同.

图 1 不同 C₂H₂ 流量 Q_{C2H2} 下制备得到的两种基体 Ti-B-C-N 薄膜的 XRD 谱 (a) Si 基体,(b) Fe 基体

晶粒度计算公式为^[13]
$$d = \frac{0.89\lambda}{\beta \cos\theta},$$
(2)

式中 θ 为布拉格衍射角, λ 为 X 射线的波长, d 为平均晶粒度, β 为扣除了本底和 Kα 后的 XRD 峰的半高宽.由于所有薄膜中 TiN 的平均晶粒尺 寸均很细小,故本文忽略了微应变引起衍射峰的 宽化.

根据图 1 中 Ti-B-C-N 薄膜 TiN 晶体衍射峰以 及由(2)式计算出两种基体在不同 C_2H_2 流量下制 备的 Ti-B-C-N 薄膜的平均晶粒尺寸,结果如图 2 所示.由图 2 可以看出,无论是 Si 基体还是 Fe 基 体 Ti-B-C-N 薄膜,随着 C_2H_2 流量 $Q_{C_2H_2}$ 的增加,其 晶粒尺寸在 $Q_{C_2H_2} = 1$ cm³/min 时增加到最大,随后 减小.

用场发射扫描电子显微镜观察 Ti-B-C-N 薄膜 断面,得到图 3 所示的形貌像. 从图 3 可以看出,所 制备的 Ti-B-C-N 薄膜的断面光滑平整,均没有发现 粗大的柱状组织存在. 随着 C_2H_2 流量从零增加到 2 cm³/min, Ti-B-C-N 薄膜厚度从 1 μ m 增加到 1.2 μ m.

图 2 不同 C₂H₂ 流量 Q_{C2H2} 下制备得到的两种基体 Ti-B-C-N 薄 膜的平均晶粒尺寸

为了进一步研究 Ti-B-C-N 薄膜的纳米结构,对 C_2H_2 流量为1 cm³/min 的 Ti-B-C-N 薄膜样品进行 了观察,得到如图4 所示的 HRTEM 照片. 从明场像

图 3 不同 C₂H₂ 流量 Q_{C2H2} 下制备得到的 Ti-B-C-N 薄膜的截面形貌像 (a) Q_{C2H2} = 0 cm³/min, (b) Q_{C2H2} = 1 cm³/min, (c) Q_{C2H2} = 2 cm³/min

(图4(a))可以看出,许多黑色颗粒随机分布在薄膜中,尺寸为若干纳米.从 HRTEM 像(图4(b))可以发现,黑色的纳米晶颗粒被非晶基体相包裹.图4
(b)中,纳米晶粒的(200)晶面间距 *d* ≈0.21 nm,内

插图为虚线框处经傅里叶变换后得到的布拉格点, 布拉格点为面心立方晶体 TiN 的衍射花样,晶格常 数 *a* =0.435 nm. 从图 3(c)所示的 HRTEM 像可以 看到更多纳米晶粒的晶格条纹.

图 4 Ti-B-C-N 薄膜的 HRTEM 像 (a) 明场像,(b) 高分辨像及 TiN 的衍射花样(内插图),(c) 高分辨像

图 5 所示为用原子力显微镜(AFM)得到的 Ti-B-C-N薄膜表面形貌像. 从图 5 可以看出,单晶 Si 基体上生长的 Ti-B-C-N 薄膜致密度和平整度都很 好. 这和沉积的 Ti-B-C-N 薄膜为纳米复合结构有很 大关系,纳米复合结构薄膜往往没有粗大的柱状组 织,有利于提高其致密度和平整度.

不同 C_2H_2 流量下制备得到的 Ti-B-C-N 薄膜形貌 略有差别, C_2H_2 流量 $Q_{C_2H_2} = 1 \text{ cm}^3/\text{min}$ 的Ti-B-C-N薄 膜表面较其他两个样品略显粗糙,这与其晶粒略大 有关.利用 AFM 软件分析得到 Ti-B-C-N 薄膜的均 方根粗糙度 R_{RMS} 和平均粗糙度 R_{m} ,结果如图 6 所 示. 从图 6 可以看出, Ti-B-C-N 薄膜的粗糙度很小, 平均粗糙度 R_{m} 在 0.9—1.7 nm 之间.

图 7 所示为 Ti-B-C-N 薄膜的硬度和弹性模量 随 C₂H₂ 流量的变化. 从图 7 可以看出,随着 C₂H₂

流量的增加,Ti-B-C-N 薄膜的硬度和弹性模量均先 增大,在 C_2H_2 流量为2 cm³/min 时都达到最大值, 分别为35.7 GPa 和363.1 GPa,随后均大幅下降. 究其原因,一方面,当 C_2H_2 流量较小时,C进入TiN 晶格中引起晶格畸变,提高了Ti-B-C-N 薄膜的 力学性能;另一方面,当 C_2H_2 流量较大时, Ti-B-C-N薄膜的C含量较多,部分C以石墨的形式 存在于Ti-B-C-N薄膜中引起Ti-B-C-N薄膜的力学性 能下降.研究认为^[14,15],纳米晶粒阻止位错增殖源 开动,且非晶基体相对于位错具有镜向排斥力,可 阻止位错的迁移;另一方面,非晶基体可以较好地 容纳随机取向的晶粒错配,因此本文得到的硬度普 遍较高,而 C_2H_2 流量为2 cm³/min 时 Ti-B-C-N 薄 膜硬度值最高还与其适宜的晶粒尺寸(约为6 nm) 和晶粒密度有关^[16].

图 5 不同 C₂H₂ 流量 Q_{C2H2} 下制备得到的 Ti-B-C-N 薄膜表面 AFM 像 (a) Q_{C2H2} = 0 cm³/min,(b) Q_{C2H2} = 1 cm³/min,(c) Q_{C2H2} = 2 cm³/min

图 6 不同 C₂H₂ 流量 Q_{C2H2} 下制备得到的 Ti-B-C-N 薄膜的表面 粗糙度

图 8 为不同 C_2H_2 流量下制备得到的 Fe 基体 Ti-B-C-N薄膜维氏压痕光学形貌像(压力为 1.96 N). 从图 8 可以看出,所有 Ti-B-C-N 薄膜均存在环 状和径向裂纹,但径向裂纹差别较大,随着 C_2H_2 流 量 $Q_{C_2H_2}$ 的增加,Ti-B-C-N 薄膜的径向裂纹长度先变 短,在 $Q_{C_2H_2} = 2$ cm³/min 时径向裂纹几乎没有扩展, 但当 C_2H_2 流量 $Q_{C_2H_2}$ 增加到 3 cm³/min 时,裂纹扩 展又开始增大.

图 7 Ti-B-C-N 薄膜的硬度和弹性模量随 C_2H_2 流量 $Q_{C_2H_2}$ 的 变化

Lawn 等^[17]给出一个测量薄膜断裂韧性的简单 公式,即

$$K_{\rm c} = \alpha \left(\frac{E}{H}\right)^{1/2} \left(\frac{P_{\rm max}}{c^{3/2}}\right), \qquad (3)$$

式中 P_{max}是压痕的最高载荷;α 是经验常数,此处取 α=0.0319; H 是平均硬度;E 是弹性模量;c 是径向 裂纹的长度,其值可以通过多次光学显微观察(图 8) 测量取平均值得到.此处的平均硬度和弹性模量通

图 8 不同 C_2H_2 流量 $Q_{C_2H_2}$ 下制备得到的 Ti-B-C-N 薄膜的维氏压痕光学形貌像 (a) $Q_{C_2H_2} = 0$ cm³/min,

(b) $Q_{C_2H_2} = 1 \text{ cm}^3/\text{min}$, (c) $Q_{C_2H_2} = 2 \text{ cm}^3/\text{min}$, (d) $Q_{C_2H_2} = 3 \text{ cm}^3/\text{min}$

过纳米压痕试验得到(图7),压入深度约为膜厚的 1/10,有效避免了基体影响,并多次测量取平均值, 弹性模量与之类似,故由(3)式计算的断裂韧性亦 有效地去除了基体的影响.忽略环状裂纹对能量释 放的影响,径向裂纹的长度能够在一定程度上表征 薄膜断裂韧性.通过(3)式计算不同 C₂H₂ 流量下 制备得到的Ti-B-C-N薄膜的断裂韧性,结果如图 9

图9 Ti-B-C-N 薄膜的径向裂纹长度和断裂韧性随 C_2H_2 流量 $Q_{C_2H_2}$ 的变化

所示. 从图 9 可以看出, C₂H₂ 流量为 2 cm³/min 时 Ti-B-C-N薄膜的断裂韧性最大, 其值为 2.46 MPa·m^{1/2}. 究其原因, 当 Ti-B-C-N 薄膜中 C 含量较 少时, C 进入 TiN 晶格中, 断裂韧性增强, 但是当 C 含量过多时, 部分 C 原子以石墨 C—C 键的形式存 在, 脆性增强.

4. 结 论

利用往真空室通入 C₂H₂ 气体的方法制备出 Ti-B-C-N纳米复合薄膜,在所研究成分范围内沉积态 薄膜中纳米晶体相为 TiN. 当 C₂H₂ 流量较小时,C 的 加入促进了 Ti-B-C-N 薄膜的结晶,使晶粒尺寸有所 增大,力学性能提高,薄膜的硬度、弹性模量和断裂韧 性值增加;当晶粒尺寸约为6 nm 时(C₂H₂ 流量为 2 cm³/min),Ti-B-C-N 薄膜的硬度、弹性模量和断裂 韧性均达到最大值,分别为 35.7 GPa,363.1 GPa 和 2.46 MPa·m^{1/2}.进一步增加 C 含量,薄膜力学性能急 剧降低.制备的 Ti-B-C-N 薄膜厚度为 1—1.2 μm,表 面粗糙度很小,平均粗糙度在 0.9—1.7 nm 范围内.

- [1] Xiao S R, Gao M Z, Deng X C 2008 Nonferr. Met. 60 48 (in Chinese) [肖寿仁、高鸣智、邓晓春 2008 有色金属 60 48]
- [2] Zhang C H, Luo J B, Li W Z, Chen D R 2004 Acta Phys. Sin.
 53 182 (in Chinese) [张晨辉、雒建斌、李文治、陈大融 2004 物理学报 53 182]
- [3] Holzschuh H 2002 Int. J. Refract. Met. Hard Mater. 20 143
- [4] Zhong D, Sutter E, Moore J J, Mustoe G G, Levashov E A, Disam J 2001 Thin Solid Films 398 320
- [5] Tsai P C, Chen W J, Chen J H, Chang C L 2009 Thin Solid Films 517 5044
- [6] Stuber M, Schier V, Holleck H 1995 Surf. Coat. Technol. 74 833
- [7] Shimada S, Takahashi M, Tsujino J, Yamazaki I, Tsuda K 2007 Surf. Coat. Technol. 201 7194
- [8] Mollart T P, Haupt J, Gilmore R, Gissler W 1996 Surf. Coat. Technol. 86 231
- [9] Vyas A, Lu Y H, Shen Y G 2010 Surf. Coat. Technol. 204 1528
- [10] Musil J, Regent F 1998 J. Vac. Sci. Technol. A 16 3301
- [11] Luo Q H, Yu D L, Lu Y H, Lou Y Z, Wang Y B 2010 Chin. J.

Vac. Sci. Technol. **30** 138 (in Chinese) [罗庆洪、于栋利、陆 永浩、娄艳芝、王燕斌 2010 真空科学与技术学报 **30** 138]

- [12] Wu X M, Wu Q C, Sui Y F 1992 Acta Phys. Sin. 41 1133 (in Chinese) [吴雪梅、邬钦崇、隋毅峰 1992 物理学报 41 1133]
- [13] Fang Z B, Gong H X, Liu X Q, Xu D Y, Huang C M, Wang Y Y 2003 Acta Phys. Sin. 52 1749 (in Chinese) [方泽波、龚恒 翔、刘雪芹、徐大印、黄春明、王印月 2003 物理学报 52 1749]
- [14] Li H K, Lin G Q, Dong C 2010 Acta Phys. Sin. **59** 4301 (in Chinese) [李红凯、林国强、董 闯 2010 物理学报 **59** 4301]
- [15] Yu L H, Dong S R, Xu J H, Li G Y 2008 Acta Phys. Sin. 57
 7066 (in Chinese) [喻利花、董师润、许俊华、李戈扬 2008 物 理学报 57 7066]
- [16] Ding W Y, Xu J, Lu W Q, Deng X L, Dong C 2008 Acta Phys. Sin. 57 5174 (in Chinese) [丁万昱、徐 军、陆文琪、邓新 绿、董 闯 2008 物理学报 57 5174]
- [17] Lawn B, Evans A, Marshall D 1980 J. Am. Ceram. Soc. 63 574

Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings *

Luo Qing-Hong^{1)2)^{\dagger}} Lu Yong-Hao^{2)} Lou Yan-Zhi^{1)}

1) (Beijing Institute of Aeronautical Materials, Beijing 100095, China)

2) (Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China)

(Received 19 July 2010; revised manuscript received 28 January 2011)

Abstract

Ti-B-C-N nanocomposite coatings with different C quantities are deposited on Si (100) and high speed steel (W18Cr4V) substrates by the closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. The microstructures of Ti-B-C-N nanocomposite coatings are characterized by X-ray diffraction and high-resolution transmission electron microscopy; while the nanohardness and elastic modulus values are measured by the nano-indention method. The results indicate that in the studied composition range, the deposited Ti-B-C-N nanocomposite coatings are found still only in the TiN base nanocrystalline. When the C_2H_2 flux is small, adding C can promote crystallization of Ti-B-C-N nanocomposite coatings, and the grain can be increased to improve the mechanical properties, when the grain size of about 6 nm (C_2H_2 flux rate 2 cm³/min), hardness, elastic modulus and fracture toughness of Ti-B-C-N nanocomposite coatings achieve the maximum, respectively, 35.7 GPa, 363.1 GPa and 2.46 MPa · m^{1/2}; the further increase of the C content of Ti-B-C-N nanocomposite coating can reduce mechanical properties of coating dramatically.

Keywords: Ti-B-C-N films, magnetron sputtering, microstructure, mechanical properties **PACS**: 68.60. Bs, 68.37.-d

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50871018).

[†] E-mail: qinghong_luo@ yahoo. com. cn