大口径高通量三倍频研究*

季来林1)2)* 朱宝强1) 詹廷宇1) 戴亚平2) 朱 检2) 马伟新2) 林尊琪1)

(上海光学精密机械研究所,上海 201800)
 (上海激光等离子体研究所,上海 201800)
 (2010年9月16日收到;2010年10月10日收到修改稿)

为考核神光Ⅱ升级项目三倍频输出能力,以及研究高功率激光驱动器高通量三次谐波转换过程中相关技术问题,在神光Ⅱ第九路上开展了一轮'Ⅰ+Ⅱ'三倍频实验,实验中三倍频最大输出达到2740J,最大输出能通量达到 3.6J/cm²以上,最大转换效率为~63%;根据实验结果结合理论分析,初步研究了影响效率转换主要参量;在实验 中观察到时间相位调制所引起的振幅调制,以及横向受激拉曼散射所引起的破坏.实验结果有效验证了神光Ⅱ升 级的倍频器的相关设计程序和参数,以及神光Ⅱ升级项目的三倍频输出能力.

关键词:非线性光学,三次谐波转换,高通量,时间相位调制 PACS: 42.65.-k, 42.65. Dr, 42.65. Ky, 42.70. Mp

1. 引 言

谐波转换是激光惯性约束惯性聚变中的重要 技术单元,转换过程直接影响最终的驱动器的输出 和激光打靶的特性,其关注的主要的技术指标有谐 波转换效率,谐波转换过程中的光束质量变化. 以 美国的国家点火计划项目(national ignition facility, NIF)为例^[1],使用 42 cm ×42 cm 的方形晶体,光束 口径 39 cm × 39 cm,在最佳的工作条件下,其谐波 转换峰值转换效率超过 80%;输入与输出光束的近 场对比度近似,光束中心 27 cm × 27 cm 区域的对比 度优于 10%;3 ω 输出的聚焦优于 20 倍衍射极限.

目前国内驱动器发展受制于材料,元件加工以 及工程实施水平,其输出能力要远低于 NIF^[2],神光 II(SGII)升级项目立足国内现有的技术基础,力争 使国内驱动器水平有所突破,作为 SGII升级项目的 先行技术验证,本课题组利用神光II 第九路装置对 高通量三次谐波输出能力进行了考核,主要研究了 "I类倍频 + II 类混频"方案在实际运行中的基本 特性如转换效率与倍频晶体失谐角的关系,KDP 晶 体的横向受激拉曼散射对高通量三次谐波输出的 限制,并将实际输出与理论计算结果进行了比较.

2. 实验方案

SGII第九路采用 MOPA 结构,末端光束口径为 310 mm,基频输出达到 5000J@3ns,方波,输出填充 因子为0.6,基频输出达到 28 衍射极限.谐波转换 采用 I 类 KDP 倍频, II 类 KDP 混频,倍频晶体厚度 为11.7 mm,混频晶体厚度为10.5 mm,实验方案见 图1.基频光经晶体倍频和混频后通过一块取样石 英楔形板反射取样(未镀膜)后小角度入射到一块 色分离反射镜,三次谐波经反射后进入卡计2,测量 数据记为 *E*₂,楔板透射光经色分离反射镜(三倍频 高反,基频倍频高透)反射进入卡计1,测量数据记 为 *E*₁.由于大口径分离膜的破坏阈值较低,对于输 出三倍频能量小于 1500 J 发次,用卡计 *E*₁ 直接测 量,并完成对卡计 *E*₂ 定标.三倍频输出大于 1500 J 时,利用卡计 *E*₂ 测量.

3. 实验结果与数据分析

3.1. 实验能量测量定标

如前所述在三倍频输出低于1500 J时,利用卡

©2011 中国物理学会 Chinese Physical Society

^{*} 国家科技重大专项(批准号: GFZX020510305.2)和国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: 10676019/A06) 资助的课题.

 $[\]dagger$ E-mail:jsycjll@ sion. ac. cn

图1 实验光路排布

计 E_1 完成对卡计 E_2 的定标.系统输出三倍频能量为 $E_{3\omega} = E_1 + E_2$,由测试数据确定 $\alpha = E_{3\omega}/E_2$.,测试结果 $\alpha = 10$,测量误差小于2.5%,线性良好,见图2.

图 2 定标数据线性拟合

3.2. 高通量三倍频输出

表1是实验中相关发次的一些数据,图3和图4显示倍频晶体的失谐角在高通量条件下将明显影响三倍频效率,不同的功率密度对应的最佳失谐角度也不相同,4500J时理论上的内部最佳失谐角度约185 µrad,实验结果相符.理论模拟时,假设时间 波形为方波,脉宽3.2 ns,时间相位调制展宽30GHz,近场光强为6阶超高斯分布,三倍频晶体存在30µrad的失谐,倍频晶体厚度为11.7 mm,混频晶体厚度10.5 mm,倍频晶体对基频光 o 光的吸收为 0.05 8/cm,对倍频吸收为零,表面对基频光的透过 0.98,倍频光 0.98;混频晶体基频透过为 0.94,对倍频透过 0.96,三倍频透过 0.98.

		表1	测试数据	
发次	基频 能量/J	三倍频 能量/J	效率/%	备注
1	3664	2291	62.6	位転目休生逃免亩
2	3452	2157	62.5	「「一」」 「 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「一」」 「 「 「 「 「 「 「 「 「 「 「 」 「 」 「 「 「 」 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」
3	3564	2255	63.3	文內他國。"150 pilau
4	4483	2742	61.2	倍频晶体失谐
5	4542	2742.6	60.4	角度~185 µrad
6	4088	2201	53.8	倍频晶体处于
7	4500	2578	57.3	匹配位附近
8	4460	2682	60.1	倍频晶体失谐
9	4355	2648	60.1	角度~-185 µrad

图 3 输入为 3500 J 时谐波转换效率对倍频失谐角的理论和实验曲线

图 4 输入 4500 J 时谐波转换效率对倍频失谐角的理论和实验 曲线

基频输入 3500 J 时,虽然实验测试数据与理论 趋势拟合很好,但实验实测效率要比理论低很多, 原因是理论模拟时采用的是平面波模型,没有考虑 波前扰动、晶体加工面形等影响,且没有考虑时间 调制的带宽影响,根据后续的测量数据,参考 NIF 的 相关文献[3—5],重新估算了各种效应的影响,修 正后与实验符合很好.

结合实验结果修正理论计算,得到的三倍频能 量输出曲线如图 5,此时倍频晶体失谐 185 µrad,理 论上基频在输入 4800 J 左右时能够得到 3000 J 输 出,但实际上存在明显的偏离,偏离量低,接近 100 J,原因是在高通量条件下出现了受激拉曼效应,在 后面 3.4 节将更具体的讨论这个问题.

3.3. 时间相位调制引起的振幅调制

为抑制熔石英材料中横向受激布里渊散射,对 基频激光进行相位调制将其频谱展宽至 30 GHz,基 频光为正弦相位调制^[6]: $\phi(t) = \sigma \sin 2\pi ft$,调制频 率f为3 GHz,调制带宽 30 GHz.在整个放大链的前 端进行控制,可以有效地抑制相位调制对基频光的 时间波形影响见图 6(b),但由于三次谐波转换过程 对波长非常敏感,相位调制会引起非常明显的振幅 调制,在文献[6]中有很详细的报道,图 6(a)是理 论计算结果,图 6(b)和(c)是终端输出的基频和三 倍频时间波形,理论与实验符合得很好,30 GHz 的 调制带宽会带来±5%左右的振幅调制,导致效率下 降~2%.

3.4. KDP 晶体中横向受激拉曼散射

基频输入达到4500 J时,最高效率要比理论拟 合低2.8%,实验相对于理论趋势有一定的偏离,主 要原因是是晶体的横向受激拉曼散射,下面将很详 细的论述实验中所观察到的受激拉曼散射现象.

在实验中观察到混频晶体后表面亚表层有一 定的破坏,其破坏的形貌和尺寸见图7,表面呈明显 的两团雾状,其尺度大小近似相等.

图 6 时间相位调制对时间波形的影响 (a)理论计算结果; (b)实验观察到基频波形; (c) 三倍频时间波形

实验中还用场图纸观察了侧向的散射光,侧向 散射光具有明显的各向异性,沿混频晶体的 e 轴方 向散射光最强,而沿 o 轴方向最弱,这些特性都符合 横向受激拉曼散射特性^[7].

根据实验参数以及上述破坏情况结果可以做 一些定性的解释和半定量计算.首先横向受激拉曼 散射(SRS)信号光从自发辐射的噪声中产生,其空 间分布必定与噪声分布以及增益的空间特性有关, 入射的 3ω 光为线偏振,振动沿混频晶体 e 轴方向, 其极化波的振动必定与其平行,其极化波辐射符合 偶极辐射特性,沿垂直振动方向辐射最强,该方向 增益最大,而平行这个方向的光最弱.

其次按照稳态受激拉曼散射理论从噪声激发 中开始: $I_s = I_{noise} \times e^c$, G = gI(t)L, I_s 为斯托克斯散 射光强, I_{noise} 为斯托克斯散射噪声光强, G 为增益大 小, g 为受激拉曼增益系数, 在理论上 $g \propto 1/\lambda$, 三倍 频光产生的 SRS 要比基频、倍频光强很多; 对 3ω 其 拉曼增益系数按文献取小值 0.23 cm/GW. 一般认

图 7 实验观察到的横向受激散射破坏

为阈值水平 G 处于 20—30 之间, G 达到 25 时散射 光就可能呈快速增长,可将抽运光抽空而进入饱 和,高功率激光驱动器安全稳定运行要求受激拉曼 散射要小于千分之几的水平. 由于抽运光是脉冲形 式的,将G改写成G=gI_{average} $\tau c/n$, $I_{average} \int I(x,t) dt/$ dt,为光强在整个脉宽 τ 上的空间平均值,实验中 三次谐波的峰值区域的平均光强约为 1.3 GW/ cm²,其中斯托克斯光的增长和抽运光的特性密切 相关,如果取晶体边缘定点观察,从光束边缘产生 的散射光在横向上与抽运光相互作用,晶体的口径 为360 mm, 光束的口径约为310 mm, 其横向穿越整 个光学元件口径的时间为 0.36 m × 1.5/3 × 108 m/s =1.8 ns,单程增益 G₁=0.23×31×1.3≈9.2,考虑 边缘的漫反射,很大一部分重新回到晶体中作为信 号源再次与抽运光相互作用,且受激散射斯托克斯 光自动满足相位匹配条件,将会消弱散射光的方向 性,这是为什么偏离 o 轴方向仍有很强的散射光的 原因;设边缘反射为 R,第2 程时,增益将受到抽运 光的脉宽影响,抽运光脉宽3.2 ns,沿原路返回的光 获得增益时间约 1.5 ns(边缘效应),其增益为 G_2 = $0.23 \times 1.3 \times 3 \times 10^{10} \times 1.5 \times 10^{-9}/1.5 \approx 9$,所以 $I_{e} \approx$ RInoise e18,对于脉宽为3 ns 左右的方波脉冲最大增益 长度约为60 cm,受激拉曼增益系数如果比文献最 低值 0.23 GW/cm 略偏大 10%, 增益就已达到到临 界水平,这与文献[7-9]结论基本一致.

如前所说散射光将抽取抽运光能量,在实验中观察到高通量条件下转换效率要比低通量时低,如图5,比较合理的解释就是这些损失的能量被散射光所带走的,在基频输入为4500J左右时,散射光能量大约在50—100J之间,占输出三倍频能量的2%—3%,而输出三倍频的平均能通量为 ε=3.4J/

 cm^2 ,这与文献[7]所报道的 KDP 晶体的受激拉曼 散射的阈值 ε_{ttr} 相等.

对于大口径圆形晶体横向受激散射,其圆形边 缘反射所起的作用类似于柱面反射镜,会将散射光 会聚向一个点附近,从而形成很强的光强带来破 坏,见图 8,这对应于实验中所观察到的两处最严重 破坏的中心附近.在随后的实验中采用方形的晶 体,圆形光束作为抽运,在相接近的通量条件并没 有观察到这类破坏.在使用 2 ns 的方波作为抽运, 输入基频能量 2510 J,输出三倍频能量达到 1738 J, 转换效率为 69%,使用 3 ns 方波抽运时,基频输入 4000 J时,三倍频效率~65%,有明显的提升.这种 现象可以做如下解释:晶体横截面可以等价看成一 个谐振腔,方形晶体对应于激光器的平面腔其光场 分布相对均匀,损耗大,增益小,而圆形晶体接近于 共焦腔,损耗小,且其光场分布相对集中,很容易产 生破坏,增益相对来说更大.

图 8 圆形晶体对散射光的会聚效应

4. 结 论

本次实验证明 KDP 晶体'I + II'方式可以实 现高通量条件(5.6 J/cm²@1 ω 和3 ns)下的高效谐 波转换,但是横向受激拉曼散射是制约高通量谐波 转换的一个瓶颈,实验表明对于大口径 KDP 晶体当 $\varepsilon_{3\omega}$ = 3.4 J/cm² 时横向受激拉曼进入快速增长区, 如果近一步提高输入通量,很可能带来晶体的进一 步破坏,参考美国 NIF 的报道,有必要考虑采用包边 玻璃进行吸收处理,防止形成双程增益.对于神光 II 升级装置,基本对应于目前基频输入 4000 J 水 平,目标转换效率大于60%,实验表明这个指标能够达到,但是对于有效高水平可靠运行的发次数还

需要进一步检验.对于倍频器的设计工作来说,本 轮实验很好地验证了设计程序以及相关设计参数.

- Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, Van Wonterghem B M 2007 Applied Optics 46 3276
- [2] Li K Y, Xiang Y, Feng B, Zhang B, Cai B W, Ma C, Wei X F, Cheng X F 2002 *High Power Laser and Particle Beam* 14 731 (in Chinese) [李恪宇、向 勇、冯 斌、张 彬、蔡邦维、马 驰、魏晓峰、程晓锋、师智全 2002 强激光与离子束 14 731]
- [3] Charles E B, Jerome M A, Chris H A, Stanley E B, R L H, Catherine S L, D H R, Jack H C, Paul J W, Bruno M V W, John A C 1997 SPIE 3047 197

- [4] Wegner P J, Auerbach J M, Barker C E 1999 SPIE 3492 392
- [5] Wenger P J, Barker C E, Caird J A, Sham N D, Mark A H, Lynn G S, Calvin E T, Bruno M V W 1997 SPIE 3047 370
- [6] Eimerl D, Auerbach J M, Barker C E, Milam D, Milonni P W 1997 Optics Letters 22 1208
- [7] Li K Y, Wei X F, Cai B W, Ma C, Zhang B, Lu Z W 2003 *High Power Laser and Particle Beam* **15** 776 (in Chinese) [李恪 宇、魏晓峰、蔡邦维、马 驰、张 彬、吕志伟 2003 强激光 与离子束 **15** 776]
- [8] Charles E B, Richard A S, Bruno M V W, John A C, John R
 M, Jack H C, Kevin R K, Robert B E, Norman D N 1997 SPIE
 2633 501
- [9] Bel'kov S A, Gennady G K, Stanislav M K, Novikov V N, Nikolai N R, Stanislav A S, Voronich I N, Zaretskii A I 1997 SPIE 2633 506

The third harmonics generation with large aperture and high fluency^{*}

Ji Lai-Lin^{1)2)†} Zhu Bao-Qiang¹⁾ Zhan Ting-Yu¹⁾ Dai Ya-Ping²⁾ Zhu Jian²⁾ Ma Wei-Xin²⁾ Lin Zun-Qi¹⁾

1) (Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China)
2) (Shanghai Institute of Laser and Plasma, Shanghai 201800, China)
(Received 16 September 2010; revised manuscript received 22 October 2010)

Abstract

To investigate the output of ultraviolet of ShenguangII upgrade project, and study the relevant problem in the harmonics generation in high power laser driver, an experiment with 'I + II" phase match is conducted in the Shenguang-II NO.9 device. The maximal output energy of ultraviolet reaches 2740 J, the maximal fluency exceeds 3.6 J/ $\rm cm^2$, and the maximal conversion efficiency is ~63%. The parameters that affect the conversion efficiency are preliminary discussed with experimenal results; the amplitude modulation caused by phase modulation and traverse stimulation Raman scattering is observed in experiment. The design program and parameters for Shenguang-II upgrade device are testified by the experimental results.

Keywords: nonlinear optics, the third harmonics generation, phase modulation, traverse stimulation Raman scattering PACS: 42.65.-k, 42.65. Dr, 42.65. Ky, 42.70. Mp

^{*} Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. GFZX0205010305.2) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 10676019/A06).

[†] E-mail:jsycjll@ siom. ac. cn