理论计算中电势能零点的选取对电荷注入的影响*

李海宏1) 刘 文1) 刘德胜1)2)†

(济宁学院物理与信息工程系,曲阜 273155)
 2)(山东大学物理学院,济南 250100)
 (2010年11月16日收到;2010年12月4日收到修改稿)

基于紧束缚的 Su-Schrieffer-Heeger(SSH)模型,利用非绝热的动力学方法,研究了金属/聚合物结构中电势能零点的选取对电荷注入的影响.理论计算发现,电场越强,电势能零点的选取对电荷注入的影响就越大.

关键词:电势能,电荷注入,非绝热动力学 PACS: 72.10.-d, 71.15.Pd, 71.23.An

1. 引 言

自1977年科学家们发现,通过掺杂反式聚乙炔 的电导率会急剧提高,可增加几个甚至几十个数量 级,变成良导体^[1-3],对有机共轭聚合物的研究便引 起了人们的极大兴趣. 作为一种新型的功能材料, 有机共轭聚合物既具有金属和半导体的电子特性, 又具有聚合物的易加工、柔韧性、价格低等优点,成 为近年来的研究热点.目前,基于有机共轭聚合物 的各种各样的有机光电子器件已经面世,如有机发 光二极管,场效应晶体管,光伏电池等.这些器件的 工作原理一般都是基于电荷注入、电荷传输以及电 子-空穴对复合这些物理过程. 迄今为止,对电荷注 入和输运的动力学过程已有非常详细的研究[4-6]. Wu 等人研究了金属/聚合物/金属结构中极化子形 成的动力学过程,指出加在聚合物链上的电场有效 地减少了金属电极与聚合物之间的界面势,有利于 电荷的注入与注出^[7];Yan 等人研究了金属/聚合 物/金属结构中金属电极与聚合物之间的界面耦合 对双极化子形成的影响,发现强的界面耦合有利于 电荷的注入与双极化子的形成^[8];Fu 等人研究了自 由电荷由金属电极注入到聚合物层的动力学输运, 指出由于聚合物强的电子-声子耦合作用注入的电 荷在有机层中能形成类极化子的波包并在电场的 驱动下沿链运动^[9].这些理论研究工作都没有考虑 到电势能零点的选取对电荷注入的影响,在本文 中,我们分别把电势能零点选在聚合物链靠近电极 的一端和聚合物链的中间,计算了三种情况下金 属/聚合物结构中的电荷注入.

2. 模型与公式

在紧束缚近似下,利用扩展的 SSH 模型,体系的哈密顿量由三部分组成,

$$H = H_{\rm e} + H_{\rm latt} + H_{\rm ext}, \qquad (1)$$

$$H_{e} = -\sum_{n} t_{n,n+1} \left(C_{n}^{+} C_{n+1} + C_{n+1}^{+} C_{n} \right), \quad (2)$$

$$H_{\text{latt}} = \frac{K}{2} \sum_{n} (u_{n+1} - u_n)^2 + \frac{M}{2} \sum_{n} \dot{u}_n^2, \quad (3)$$

$$H_{\text{ext}} = \sum_{n} V_{n}(t) \left(C_{n}^{+} C_{n} - 1 \right), \qquad (4)$$

其中 H_e 是电子-晶格的相互作用, C_n^+ (C_n) 代表格点 n 上电子的产生(湮没)算符, $t_{n,n+1}$ 代表格点 n 和 n +1 之间电子的跃迁积分:金属电极中, $t_{n,n+1} = t_0$; 聚合物中, $t_{n,n+1} = t_0 - \alpha(u_{n+1} - u_n) - (-1)^n t_e$, α 代 表电子-晶格耦合常数, t_e 代表 Brazovskii-kirova-type 对称性破缺项^[10], u_n 代表第 n 个格点处的晶格位 移. 聚合物和金属电极之间的界面耦合取 $t_1 = 1.0$ eV. H_{latt} 是聚合物晶格的势能与动能, K 代表弹性常 数, M 代表一个 CH 集团的质量, 假定金属电极的晶

©2011 中国物理学会 Chinese Physical Society

^{*}济宁学院青年科研基金(批准号:2009QNKJ04),科技部重大科学研究计划(973)项目(批准号:2009CB929204),国家自然科学基金(批 准号:11074146),山东省自然科学基金(批准号:ZR2010AM026)和国家自然科学基金专项基金(批准号:11047148)资助的课题.

[†]通讯联系人. E-mail: liuds@sdu.edu.cn

格原子固定不动. H_{ext} 是来自外场的贡献,包括外偏 压和外电场,在左边金属电极上为使电荷注入加了 一个外偏压, $V_n(t) = V(t)$;在聚合物链上为使载 流子运动加了一个均匀外电场 E(t):若把电势能 零点选在聚合物链靠近电极的一端,

 $V_n(t) = - |e|E(t)[(n - N1 - 1)a + u_n];$ 若把电势能零点选在聚合物链的中间,

$$V_n(t) = - |e|E(t) \left[\left(n - N1 - \frac{N2 + 1}{2} \right) a + u_n \right],$$

e代表电子的电量, a代表二聚化之前的晶格常数, N_1 代表金属电极的格点数, N_2 代表聚合物链的格 点数, 计算中取 $N_1 = 100$, $N_2 = 200$.

为了减小系统突变的影响,我们采用一个半高 斯函数的形式缓慢增加外场,经过时间 T_e后,场强 和偏压保持常数 E₀ 和 V₀,即

$$\begin{split} E(t) &= \begin{cases} E_0 \exp\left[-(t - T_c)^2 / T_w^2\right], & 0 < t < T_c, \\ E_0, & t \ge T_c, \end{cases} \\ V(t) &= \begin{cases} V_0 \exp\left[-(t - T_c)^2 / T_w^2\right], & 0 < t < T_c, \\ V_0, & t \ge T_c, \end{cases} \end{split}$$

(5)

其中 T_{e} 是高斯函数的中心, T_{w} 是高斯函数的宽度, 计算中,取 T_{e} = 30 fs, T_{w} = 25 fs. 其他参数均参照文 献[11]选取, t_{0} = 2.5 eV, α = 4.1 eV/Å, t_{e} = 0.05 eV, K = 21 eV/Å², M = 1349. 14 eV·fs²/Å², a = 1.22 Å.

体系的静态结构,也就是作为动力学演化的初始条件,其电子态满足定态的 Schrödinger 方程,晶格部分由体系能量最小值条件得到.两者耦合在一起通过自治求解得到稳定结构.

体系随时间的演化,采用非绝热的动力学方法 求解.晶格的运动满足经典的牛顿运动方程

$$\begin{aligned} M\ddot{u}_{n}(t) &= -K[2u_{n}(t) - u_{n+1}(t) - u_{n-1}(t)] \\ &+ 2\alpha[\rho_{n,n+1}(t) - \rho_{n-1,n}(t)] \\ &- |e|E(t)[\rho_{n,n}(t) - 1] - \lambda Mu\dot{u}_{n}, \end{aligned}$$
(6)

其中密度矩阵为

$$\rho_{n,n'}(t) = \sum_{\mu} \phi_{n,\mu}^{*}(t) f_{\mu} \phi_{n',\mu}(t) , \qquad (7)$$

电子波函数随时间的演化满足含时 Schrödinger 方程

$$i\hbar\dot{\phi}_{n,\mu}(t) = -t_{n-1}\phi_{n-1,\mu}(t) + V_n(t)\phi_{n,\mu}(t) -t_n\phi_{n+1,\mu}(t).$$
(8)

其中f_u是与时间无关的分布函数,由最初电子的占

据决定(是0,1或2), λ 的引入是为了消除晶格振 荡,在计算中我们取 $\lambda = 0.01$ fs⁻¹. 非绝热动力学是 把耦合的晶格态和电子态同时进行求解,允许电子 在瞬时本征能级之间发生跃迁. 需要提出的是 $\Phi_{n,\mu}$ (t)不是瞬时本征态 $\Psi_{n,\mu}(t), \Psi_{n,\mu}(t)$ 满足 $H\psi_{n,\mu}(t)$ $= \varepsilon_{\mu}\psi_{n,\mu}(t)$. 在初态 t = 0 fs 时, 有 $\Phi_{n,\mu}(t=0) = \Psi_{n,\mu}(t=0)$,其中假定 $\Phi_{n,\mu}(t)$ 上的占据情况在整个 动力学演化过程中是不变的^[9]. 耦合微分方程(6) 和(8)可采用 8 阶可控步长的 Runge-Kutta 方法来 求解^[12],这已经被证明是个行之有效的方法^[13,14].

3. 结果与讨论

我们用 $\rho_n = \rho_{n,n} - 1$ 来表示聚合物链的每个格 点的净电荷分布,在初态(t = 0 fs),对于聚合物链的 所有格点均有 $\rho_n = 0$.

第一种情况,我们在聚合物链上加电场 $E_0 = 5$ ×10³ V/cm,一个弱场,在金属电极上加偏压 $V_0 =$ 1.05 eV.弱电场下我们选择稍大的偏压是因为这可 以使两种电势能零点选取下电荷注入的不同更明 显,对于更强的电场我们就可以减小加在金属电极 上的偏压.当电势能零点选在聚合物链的靠近电极 的一端时,体系中总的净电荷随时间的演化如图 1 所示.从图中可知,整个的注入过程用了大约 230 fs 然后两层达到了一个动力学平衡.并且大约有 2.68e 的电荷电量被注入到了聚合物层.然而,当电 势能零点选在聚合物链的中间时,体系中总的净电 荷随时间的演化如图 2 所示.由图可见,整个的注入 过程用了大约 270 fs 然后两层达到了一个动力学平 衡.而且大约有 2.62e 的电荷电量被注入到了聚合 物层.这种情况下,电势能零点的选取对电荷注入

图1 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的靠近电极的一端)

图 2 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的中间)

图 3 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的靠近电极的一端)

图 4 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的中间)

第二种情况,增加电场到 $E_0 = 1 \times 10^4$ V/cm,在 金属电极上加偏压为 $V_0 = 0.96$ eV. 当电势能零点选 在聚合物链的靠近电极的一端时,体系中总的净电 荷随时间的演化如图 3 所示. 从图中可知,整个的注 人过程用了大约420 fs 然后两层达到了一个动力学 平衡.并且大约有 2.03e 的电荷电量被注入到了聚 合物层.然而,当电势能零点选在聚合物链的中间 时,体系中总的净电荷随时间的演化如图 4 所示.由 图可见,整个的注入过程用了大约930 fs 然后两层 达到了一个动力学平衡,这要比电势能零点选在聚 合物链的靠近电极的一端时电荷注入需要的时间 大很多.而且大约有 1.92e 的电荷电量被注入到了 聚合物层.这种情况下,电势能零点的选取对电荷 注入有影响.

第三种情况,进一步地增加电场到 $E_0 = 9 \times 10^4$ V/cm,在金属电极上加偏压为 $V_0 = 0.94$ eV.因为强 电场下,注入的电荷在聚合物中不能形成类极化子 的波包而是以扩展态的形式存在,所以在此我们不 选择强电场.当电势能零点选在聚合物链的靠近电 极的一端时,体系中总的净电荷随时间的演化如图 5 所示.从图中可知,整个的注入过程用了大约 800 fs然后两层达到了一个动力学平衡.并且大约有

图 5 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的靠近电极的一端)

图 6 体系中总的净电荷随时间的演化(左边金属电极(实线); 聚合物(虚线).电势能零点在聚合物链的中间)

2.0e 的电荷电量被注入到了聚合物层.然而,当电 势能零点选在聚合物链的中间时,体系中总的净电 荷随时间的演化如图6所示.由图可见,几乎没有电 荷被注入到聚合物层,要想电荷注入就必须增加加 在金属电极上的偏压.这种情况下,电势能零点的 选取对电荷注入的影响很大.这再一次地证明了电 场越强,电势能零点的选取对电荷注入的影响越 大.产生这个结果的原因是当电势能零点选在聚合 物链的靠近电极的一端时,聚合物的能级围绕着靠 近电极的一端向下倾斜,而当电势能零点选在聚合 物链的中间时,聚合物的能级围绕着中间倾斜,靠 近电极的一端上升,另一端下降.电场越强,两种电 势能零点选取下聚合物的能级越倾斜,对电荷注入 的影响就越大.由此我们也了解到相同的电场和偏 压下,当电势能零点选在聚合物链的靠近电极的一端时更有利于电荷的注入.

4. 结 论

基于含时 Schrödinger 方程和牛顿运动方程,我 们研究了金属/聚合物结构中电势能零点的选取对 电荷注入的影响.理论计算中,我们分别把电势能 零点选在聚合物链靠近电极的一端和聚合物链的 中间,比较了三种情况下的电荷注入,结果发现,电 场越强,两种电势能零点选取下对电荷注入的影响 就越大,并且相同的电场和偏压下,当电势能零点 选在聚合物链的靠近电极的一端时更有利于电荷 的注入.

- Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098
- [2] Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J 1977 J. Chem. Soc. Chem. Commun. 578
- [3] Chiang C K, Louis E J, Druy M A 1978 J. Am. Chem. Soc. 100 1013
- [4] Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin.
 59 3461 (in Chinese) [宋 瑞、刘晓静、王亚东、邸 冰、安 忠 2010 物理学报 59 3461]
- [5] Zhang Y, Wang L X 2010 Acta Phys. Sin. 59 5412 (in Chinese) [张 元、王鹿霞 2010 物理学报 59 3461]
- [6] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P, Li J M 2008 Chin. Phys. B 17 1911

- [7] Wu C Q, Qiu Y, An Z, Nasu K 2003 Phys. Rev. B 68 125416
- [8] Yan Y H, An Z, Wu C Q, Nasu K 2005 Eur. Phys. J. B 48 501
- [9] Fu J Y, Ren J F, Liu X J, Liu D S, Xie S J 2006 Phys. Rev. B 73 195401
- [10] Brazovskii S A, Kirova N N 1981 Pis'ma Zh. Eksp. Teor. Fiz.33 6
- [11] Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781
- [12] Brankin R W, Gladwell I, Shampine L F computer code RKSUITE, http://www.netlib.org
- [13] Johansson A, Stafström S 2001 Phys. Rev. Lett. 86 3602
- [14] Johansson A, Stafström S 2002 Phys. Rev. B 65 045207

Influence of the choice of zero electric potential energy on charge injection in theoretical calculation *

Li Hai-Hong¹) Liu Wen¹) Liu De-Sheng^{1)2)†}

(Department of Physics and Information Engineering, Jining University, Qufu 273155, China)
 (School of Physics, Shandong University, Jinan 250100, China)
 (Received 16 November 2010; revised manuscript received 4 December 2010)

Abstract

Within the tightly-binding Su-Schrieffer-Heeger (SSH) model and a nonadiabatic dynamic evolution method, we study the influence of the choice of zero electric potential energy on the charge injection in a metal/polymer structure. Through the theoretical calculation, we find that the influence of the choice of zero electric potential energy increases with the electric field strength increasing.

Keywords: the electric potential energy, the charge injection, nonadiabatic dynamics **PACS**: 72.10.-d, 71.15. Pd, 71.23. An

^{*} Project supported by the Youth Foundation of Jining University (Grant No. 2009QNKJ04), the Program (973) for Key Science Research of the Ministry of Science and Technology, China (Grant No. 2009CB929204), the National Natural Science Foundation of China (Grant No. 11074146), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AM026), and the Special Funds of the National Natural Science Foundation of China (Grant No. 11047148).

[†] Corresponding author. E-mail: liuds@sdu.edu.cn